当前位置:范文派>教学范文>说课稿>《对数函数及其性质》说课稿

《对数函数及其性质》说课稿

时间:2024-09-09 06:35:32 说课稿 我要投稿
  • 相关推荐

《对数函数及其性质》说课稿

  在教学工作者实际的教学活动中,时常需要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。优秀的说课稿都具备一些什么特点呢?以下是小编整理的《对数函数及其性质》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

《对数函数及其性质》说课稿

  一、说教材分析

  本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。

  《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:

  知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。

  过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。

  情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神。

  结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:

  重点:对数函数的概念、图象和性质;

  难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;

  二、说学情分析

  对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。

  三、说教学与学法

  教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。

  老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。

  四、说教学过程

  教学过程分为以下环节:

  实例引入、直观感知——总结类比、形成概念——类比探究、分析归纳——知识应用、提升能力——师生交流、归纳小结——作业布置

  (一)实例引入、直观感知

  1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

  问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数

  问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数

  问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

  设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念。

  2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。

  问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)

  问题四:你能类比指数函数得到此类函数的一般式吗?

  设计意图:体现了类比和特殊到一般的数学思想

  (二)总结类比、形成概念

  问题五:你能根据指数函数的定义给出对数函数的定义吗?

  (师生共同归纳出对数函数的定义)

  问题六: 与 中的x,y的相同之处是什么?不同之处是什么?

  设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域

  (三)类比探究、分析归纳

  问题:有了研究指数函数的经历,你会如何研究对数函数的性质?

  设计意图:提示学生进行类比学习

  合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。

  合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。

  设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。

  教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。

  合作探究3:对照指数函数的性质,总结归纳对数函数的性质。

  (学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

  (四)知识应用、提升能力

  例1:求下列函数的定义域

  (该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)

  例2:利用对数函数的性质,比较下列各组数中两个数的大小:

  设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法。

  思考巩固:已知 ,比较m,n的大小

  设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度。

  (五)师生交流、归纳小结

  由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。

  (六)布置作业

  教材P73 练习1,2

  设计意图:练习难度不大,是对本节知识的巩固。

【《对数函数及其性质》说课稿】相关文章:

《不等式及其基本性质》说课稿04-29

氯气的性质说课稿07-13

小数的性质说课稿10-21

小数的性质说课稿07-30

小数性质说课稿08-06

《小数性质》说课稿08-30

比的基本性质说课稿09-25

《比的基本性质》说课稿05-20

《分数的基本性质》说课稿07-03

分数的基本性质(说课稿)07-04