《分数除法》教学反思
作为一名人民教师,我们需要很强的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,那么大家知道正规的教学反思怎么写吗?以下是小编精心整理的《分数除法》教学反思,仅供参考,希望能够帮助到大家。
《分数除法》教学反思1
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的`数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
《分数除法》教学反思2
4月22日上午,是我校五年级的家长开放日,我上了一节《分数与除法》的公开课。课后有幸得到了我的导师——广西师大熊宜勤教授的点评,由于当时时间比较紧,我们要赶到拱极小学去听黄智云老师的课,匆忙之中熊教授给我提出了两点宝贵意见:1.在重难点的突破上花的时间还不够.2.练习的设计量过多,没有很好的为本节课服务。听了她的建议以后,我陷入了深深的反思之中。是啊,都十几年的教龄了,怎么还会犯这样的错误呢?备课时,我只考虑到家长们要来听课,脑子里想得更多的是怎样才能把课上活?煞费苦心的`创设了一个猪八戒分饼的情境,虽然这样能把整节课的教学内容串联在一起,整体感比较强,学生也很喜欢,但是却没有把例2中的重难点抓住。我的本意原是想把课堂交给学生,引导学生进行具体操作,让学生在具体操作中得出3除以4的商,以明确每人分得的不满1块,可用分数来表示,让学生明白一块饼的就等于3块饼的。可是在教学时,由于没有及时引导学生突出单位“1”,再加上没有使用展台操作,学生的理解就是没有那么到位。接着,我在教学例2后,引导学生观察黑板上的几个算式,总结归纳出分数与除法的关系也只用了1分多钟的时间,很多学生印象还不够深刻就进入了练习环节,以至于后面的练习出现了卡壳现象。
回想自己的这一节课,真的是有太多不足的地方。带着熊教授给我提出的问题,第二天,我聆听了苏文俊老师上的这节课。课一开始,她就复习了上节课中我们学习的分数的意义和分数单位等内容,接着创设了分饼情境,(1)把6块饼平均分给2个同学,每人分得多少块?(2)把1块饼平均分给2个同学,每人分得多少块?(3)把1块饼平均分给3个同学,每人分得多少块?6÷21÷21÷3从数据上看,看得出都是苏老师精心设计的。从商是整数到商可以用小数也可以用分数表示,到除不尽需要用分数表示的思路,充分地让学生体会到解决问题的策略。在复习了把一个数平均分,用除法计算的同时,突出了知识间的联系。另外,对于例题2的教学她也把握得非常好,操作非常到位。2种分法:3块饼平均分给4个人,每人分得多少块?3÷4=?(块)学生经历了猜想和验证。这个估算对于学生用分数表示结果的思考有很重要的帮助。在这节课中,苏老师真正地把课堂交给了学生,她凭借教材内容,不断设疑问难,引导学生积极参与新知的探索过程,给学生充分的思维空间和时间,学生们独立思考、相互讨论、推理交流、经历解决问题的过程,充分体现了学生是学习的主体。正因为学生前面有了大量的感性认识,到后面总结出分数与除法的关系也水到蕖成。
对于例题后面进行的对应训练,苏老师能结合本节课的重难点,设计有层次的练习。学生在理解并掌握了分数与除法之间的关系后,通过这组习题体验到了成功的快乐,建构了知识的框架,实现了数学思想的逐步深入。
回想熊教授的话,再对比苏老师的课堂,让我真正体会到了要想上好一节课,备课时必需要考虑到学生可能会遇到的问题,真正从学生的角度出发,重视学生学习的过程。在教学中把重点放在揭示各个知识形成的方法,展示学习新知识的思维过程之中,让学生通过感知——概括——应用的思维过程去发现真理,掌握规律。
对于课堂练习的设计,不能太多,因为练习量多的弊端会让学生厌烦,我们要注意满足学生的成就感,保持学生的学习兴趣。另外,练习不仅仅是巩固所学知识,还要继续为学生的思维能力发展创设情境,充分发挥它的巩固新知识和发展思维能力的双重作用。
能得到专家的指导,特别是零距离的指导,感受非常深刻,收获也特别多。愿自己在今后的教学中能多取他人之长,补己之短,使自己在教育教学(此文来自)这条路上,越走越宽,不断超越自我,完善自我。
《分数除法》教学反思3
本周我们对分数除法这一单元所学知识,进行系统整理和复习。通过整理和复习,把前面分散学习的知识加以梳理和归纳,提出要点。
1.在复习概念方面,主要复习了分数除法的意义和比的意义。通过式子b×3/4=a,明确b的3/4等于a,由b×3/4=a得出a÷3/4= b;a÷b=3/4,a与b的比是3:4,使学生更清晰地感悟乘法与除法,分数与比之间的内在联系。
2.在复习计算方面,先让学生说一说分数除法的计算方法,使学生明确整数可以看成分母是1的分数,所以不管被除数、除数是整数(0除外)还是分数,都可以把除转化为乘,即除以一个数(0除外),等于乘这个数的'倒数。
3.在复习比的化简方面,通过让学生说出比和除法、分数的关系,化简比的依据,然后完成练习题,结合题目对常用化简方法加以概括总结。
分数比:前后项同乘分母的最小公倍数
整数比:整数比前后项同时除以它们的最大公约数,化简成最简单整数比
小数比:前后项的小数点右移动相同位数
重点强调了化简比和比值的区别:化简比是以比的形式出现,而比值是一个数。
4.在复习比的应用方面,通过分析数量关系,变换条件让学生感受到分数乘除法形变神不变的内涵。
六年级有男生60人,(),女生有多少人?
(1)女生人数是男生的2/3
(2)男生人数是女生的2/3
(3)男生人数比女生多2/3
(4)男生人数比女生少2/3
(5)女生人数比男生多2/3
(6)女生人数比男生少2/3
通过不同形式的变式练习,使学生体会到只要掌握住数量关系,就能解决问题。
在复习过程中也存在一些问题:
1.复习中只注重了基本的练习,但是题型千变万化,学生灵活解题能力欠缺。
2.对于实际数量和分率的区别,学生容易出现混淆。
3.在分数乘除法应用题中夯实数量关系的分析,用“单位1”已知和未知来进行乘除法的检验和验证。
《分数除法》教学反思4
首先通过课前谈话解决了分数除法的意义。接下去重点来研究分数除以整数的计算方法,我出示了这样一道例题:布艺兴趣小组的同学要用米的花布给小猴做衣服。如果做背心,可以做3件,你能提出什么问题?学生们一致的提出了“做一件背心需要花布多少米?”的问题。问题一出,学生马上就把算式列出来了,÷3,可是这个算式应该怎么计算呢?通过四人小组讨论合作,最终想出了好几种方法。
法1:÷3=0.9÷3=0.3(米)(把分数化作小数,然后再计算)
法2:÷3=(×)÷(3×)=(米)(运用分数的基本性质)
法3:÷3=×=(米)(因为把整块布看作一个整体,平均分成三份,其中的一份就占了整块的,所以直接乘以)
法4:÷3==(米)(把分子平均分成3分,分母不变)
把三种方法整理出来后,他们感觉不出来哪种方法简便。于是我接着把改为,让他们再用自己发现的方法进行计算。结果学生们发现用方法1时,化成小数时除不尽;用方法2太麻烦;用方法4时,11除以3,除不尽;还是用方法3最简便。
随后,我让他们观察、讨论、交流÷3=×=(米)与÷3=×=(米)这两道题的计算方法,学生们发现除以整数等于乘以整数的倒数。
第二环节解决一个数除以分数的`计算方法。
我把例题改为:布艺兴趣小组的同学要用米的花布给小猴做衣服,每件衣服要用米,能给几只小猴子做衣服?有了第一题的基础,大部分学生马上就想到÷=×=3(只),我问他们,为什么其他方法不用了呢?学生们说马上异口同声的回答,如果你把改为的话,小数不行,除数转化为1麻烦,反正只要乘以它的倒数就行了。接着我又问如果老师把米换成1米,你认为又该怎么计算呢?学生们说还是乘以后面的数的倒数。
最后总结:同学们,从这几题中你发现了什么?——分数除法的计算方法学生们脱口而出。
第三环节,做一些练习。
在整个教学过程中,我是以学生学习的组织者,帮助者,促进者出现在他们的面前。这样不仅充分发挥学生的自主潜能,培养学生的探索能力,而且激发学生的学习兴趣。学生学的轻松,记得牢固,教师教的快乐,教的放心。
《分数除法》教学反思5
“已知一个数的几分之几是多少,求这个数”的应用题,是由分数乘法意义扩展到除法意义而产生的应用题,这类应用题历来是教学中的难点。这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,紧扣已掌握的分数乘法应用来组织教学显得比较重要。此外,由于分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,不同的仅是一个条件和问题不同,因此教材强化用列方程的方法解,这样做就能利用分数乘除法之间的内在联系,统一分数乘除法应用题的解题思路。因此,在教学中我注重已下几点:
一、 重视新旧知识的内在联系。
分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,因此在探索新知之前,精心设计复习练习。一是找单位“1”和写数量关系式练习;二是出示与例题有关的`分数乘法应用题。复习与新知有密切联系的旧知,为新知的探究铺路搭桥, 为学生更好地从旧知迁移到新知做准备,起到水到渠成的作用。
二、重视思路教学。
思路,是学生确定解题方法的分析、思考过程,这个过程应是有条有理的,有要有据的。本课分析、具体地设计了使学生形成思路的过程:首先,分步思考;接着,引导学生完整地复述思考过程;最后,通过个别、集体训练,使学生形成完整思路。
三、重视训练学生讲题。
应用题教学重在分析数量关系。学生只有理解了题目中的数量关系,
才会进一步进行思考。若在学生不理解题目中的数量关系的情况下进行分析,则思无源,想无据。所以,讲清题目中的数量关系是分析的基础,必须给予足够的重视。
四、重视列方程解答。
本节课没有设计算术思路,因为用列方程解答分数应用题是有限的,能比较熟练地解答,但达不到熟练的程度,发现不了解答规律。
本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。
《分数除法》教学反思6
今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。
自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的.东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的教学时间的容量,那么遗憾也许会降到最低程度。
通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。
《分数除法》教学反思7
应用题的教学是小学一至六年级数学教学的重要内容,也是学生学习中出现问题最多的内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些老教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位“1”;知“1”求几用乘法,知几求“1”用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。
而我教学时,所说的话并不多,除了“谁能说出这一题的数量关系式?”“谁会解答?”“还有其他的方法吗?”“说说看”“有没有不同的意见”等激励和引导以外,教师没有任何过多的讲解,当学生一次听不明白,需要再讲一遍时,我也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,我决不暗示;学生能说出的,我决不讲解;学生能解决的,我决不插手。由于我在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的.探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。
教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。我在教学中准确把握自己的地位。我真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。
在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。
《分数除法》教学反思8
在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。
我认为优点体现在:
一、能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义;
二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。
不足之处是:
在教学环节的设计上,学生动手操作的内容过多,使整堂课显得罗嗦,练习的时间相对缩短了,本节课的重点内容是让学生理解:一个饼的四分之三也就是三个饼的四分之一,这个环节结束后自然而然地就引出了“分数与除法的'关系”,因前面耽误的时间过长,致使本节课的内容没有讲完,学生没有理解透彻,教师就急于进入下一个环节的教学。从刘老师的这节课上,我也看到了自己在教学中的不足,作为数学教师,怎样上好一节课,怎样让学生切实理解所学内容?
我认为有以下两点值得去深思:
一、有没有把课堂还给学生?
课改风风火火进行了这么多年,而且一直提倡把课堂还给学生,让学生做课堂的主人,教师只做引导者,可是实际的课堂教学中,教师讲的多,学生说的少,完全还是过去老的教学方法,造成这种情况的原因是:1、教师恐怕学生学不会,低估了学生的能力就;2、耽误教学进度;3、教师还没有形成意识……
二、如何“还”?
很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。
说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。
《分数除法》教学反思9
《分数除法》第一课时包含了两方面的内容:分数除法的意义和分数除以整数。本课时是在学习了倒数的基础上开展教学,所以学生已经理解了倒数的意义。实验教材与老教材比较,对于分数除法的意义教学有所弱化,不再要求学生讲清楚每道分数除法的意义,而是改为利用除法算式改写出乘法算式,相对来说,降低了本节课的难度,更加贴合学生实际情况。根据以上情况,本节课把重点定在理解分数除以整数的算理和计算方法上,其中,理解算理是本节课的难点。
教学本节课时,我首先出示4/52,直奔主题。利用例题,让学生进行探究学习。让他们先说说解题设想,包括折一折、画一画、算一算等方式。出乎我意料的是学生经过思考后,争先恐后地说出了多种解答方法。虽然有些方法都是不恰当的,但是学生积极主动的思考,使我感到最高兴的事。有些学生的每种算法把算理都解释得非常清楚。然后引导然后学生说说3份或其他几份怎么算。计算:4/53。最后引导归纳出:把一个数平均分成几份,求其中一份,就是求这个数的几分之一。
《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。
在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的.空间留给学生。在本课中,我注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。
同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。
《分数除法》教学反思10
本节课,我认为最突出的地方就是能让学生自己主动探索知识,充分体现了以学生为主体的探究式的教学模式,以设疑导入激发学生的学习兴趣,在探究新知中让学生运用所学的知识采用不同的方法来计算,发散学生的思维,小组讨论交流,总结出计算分数除以整数的方法,并在小组内举简单的例子试算,然后小组汇报方法,学生分别说出了几种不同的计算方法,然后老师再出示习题,用自己总结的方法去计算,最后总结出分数除以整数的最通用的方法。整个探究新知的过程都是学生自主学习,主动探究来完成的,培养了学生的发散思维及发现问题、解决问题的能力。
具体分析如下:
一、引导学生从生活实例入手学数学。
《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始我就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际。例题:量杯里有升果汁,平均分给2个小朋友喝,每人喝多少升?(出示教学挂图)教师:你们能从这里面找出什么信息?怎样列式?为什么?设置这样的教学情境激发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、以探索为主线鼓励学生算法多样化。
学生是课堂教学中的主体,所以要将更多的时间、空间留给学生,充分调动和发挥学生主动性。从问题的提出,就让学生参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性选择,允许不同的学生从不同角度认识问题,采用不同的.方式表达自己的想法,用不同的知识与方法解决问题。
三、注重培养学生分析问题能力
在解决问题的时候,教师通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只教例题答案,或让学生死记硬背计算方法等等做法,而是充分让学生通过动手操作、合作交流等亲身实践体验,让学生在探究中加深理解,提高能力,为学生学习以后的知识做好充分的准备。
这节课成功之处:在教学中充分尊重了学生,使学生经历了自主探究、自主优化的学习建构过程。主要表现在两个方面:一是对教材的创新处理,激活了学生探究的空间,探究由原来的单调、枯燥转化为生动、多元、富有生命力,使课堂充满灵动与智慧。紧接着的是在教学的发展过程中,我没有局限于此,而是再次放手,让学生解决:量杯里有升果汁,平均分给3个小朋友喝,每人喝多少升?留给学生充分的时间和空间,检验自己的探究成果
《分数除法》教学反思11
一个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。
教学目标我是这样定位的:
1. 通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。
2. 在合作探究的过程中,提高迁移类推、分析比较的综合能力。
3. 获得成功的体验,认同数学在生活中应用的广泛性。
在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的`作用。
总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。
对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。
《分数除法》教学反思12
教学分数与除法的关系时学生很是配合,仿佛早已掌握了所有知识点,对于我的提问对答如流,甚至当我给出例题3÷4时,全班不假思索不屑一顾的脱口而出四分之三,而当我问出为什么时,他们甚至不愿意去思考,仿佛我问的这个"为什么"简直就是废话中的废话。整个班级躁动不安,是清明假期来临的缘故吧。看着即将发怒的老师,孩子们安静下来一张张稚气的脸望着我,眼神中带有一丝丝惊恐。我突然想笑,这不就是儿时的自己吗?我沉住气笑着说:明天放假了,看来大家很是兴奋吧!孩子们长舒一口气掩面而笑。我接着说:站好最后一班岗的战士才是真正的好战士。同学们心领会神的坐得端端正正。"授人以鱼,不如授人以渔。"我接着说,"大家都知道3除以4得四分之三,那3除以4为什么等于四分之三呢?四分之三就相当于鱼。而老师想让你得到的是渔,你觉得呢?"果然还是聪明的孩子,轻轻一拨,大部分开始思考了,我和孩子们开始了我铺好的探究之旅。
一、通过操作,感悟算理。
我叫学生拿出课前准备好的三个圆,让学生在小组内用自己喜欢的方式来验证对3除以4这一结果的猜想。孩子们或静下心来仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的`孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法
(一):把三个圆一个一个分,每次得四分之一,分3次,就得3个四分之一,就是四分之三张饼。方法
(二):把三个圆叠起来,平均分成4份,得到3张饼的四分之一,也是3个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证3÷4用分数四分之三来表示结果。还有学生想出了方法
(三):3除以4得0.75,0.75化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。
二、再次说理,悟出关系。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把3块饼平均分给5个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
三、对比练习,深化知识。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1 的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"来的重要的多!
作者简介
刘璐,中国共产党党员,大学本科学历,艳梅名师工作室研修员。20xx年参加工作至今,一直担任小学数学教学工作。多次参加教学比武,分获市特等奖,县特等奖,县一等奖。数次被评为乡优秀教师,获县嘉奖。20xx年一师一优课获部级优课。坚持用"爱"和"知识"去呵护每一位学生,期待每个课堂都能充满"童真".
《分数除法》教学反思13
观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。
“数学教学要从学生的.生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:
一、以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
二、分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。
《分数除法》教学反思14
为了激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量 。我作了以下的教学尝试。
教学中,为让学生认识解答分数除法应用题的关键是什么时,我让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。
把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。
在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于”后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的`数量的线段图;“知”1“求几用乘法,知几求”1“用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
《分数除法》教学反思15
分数除法教学是整个小学阶段应用题教学的重、难点之一。一个数除以分数是在一个数除以整数的基础上,继续学习一个数除以分数的方法。如何推导分数除法的计算方法,有多种方法。例如:利用商不变规律进行推导;利用等式的基本性质进行推导;利用逆运算关系和分数的基本性质进行推导;联系实际问题分析、推导等。
而教材选用的是最后一种,意在结合具体的情景,通过线段图的分析,让学生明白算理。而在以前的教学中,我习惯让学生通过大量的例子归纳方法,让学生经历从特殊到一般的归纳过程。所以,在第一次教学时我先让学生计算两组比较简单的算式,并且引导学生对算式进行观察、比较和分析,让学生通过猜想——尝试——验证,发现一个数除以分数和乘这个分数的'倒数的结果都相等。然后进行练习,学生学习效果也不错,教学过程一切自然流畅。
清晰地记得去年教学此内容时,下课后,一个学生问我:“老师,一个数除以分数为什么要乘这个分数的倒数呢?”这句话引起了我的反思。是啊!一个数除以分数的算理还没有讲清楚呢?因为一直以来都是这样教学,只是通过猜想、尝试、验证、归纳一个数除以分数和乘这个分数的倒数的结果相等,也就把计算法则作为一个规定硬性地塞给了孩子,而忽视了算理的教学,这种学生只知其然而不知其所以然。翻阅教材,发现教材是通过画线段图让学生来明白算理,注重的算理的教学,忽视猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?
经过仔细反思之后,今年我在教学此内容时,调整了我的教学过程。我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。孩子们高兴地说分数除法的算理也恰恰证明了我们猜想是正确的。
从这节课,使我感悟到,计算教学,最省事的教法就是把计算方法和盘托出,直接告诉学生,然后进行大量的训练。可是这样教学,尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。为了培养学生的学习能力和探究能力,促进学生的发展,我们应该舍得花时间让学生经历计算方法的探索过程。这也是课程改革理念在计算教学中的具体体现。
【《分数除法》教学反思】相关文章:
分数与除法教学反思04-11
分数除法教学反思04-05
《分数与除法》教学反思04-21
《分数除法》教学反思05-24
分数除法教学反思06-08
《分数与除法》教学反思07-29
《分数与除法》数学教学反思06-11
《分数与除法的关系》教学反思06-14
分数除法应用题教学反思01-04