乘法分配律教学反思
身为一名人民老师,我们需要很强的课堂教学能力,通过教学反思可以快速积累我们的教学经验,那么什么样的教学反思才是好的呢?下面是小编收集整理的乘法分配律教学反思,仅供参考,欢迎大家阅读。
乘法分配律教学反思1
乘法分配律是第三章的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用与生活密切相关的情境图植树问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了 “ 观察、初步发现、举例验证、再观察、发现规律、概括归纳 ” 这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
一、引入生活问题,激趣探究
在教学中,我为学生做好新知铺垫,然后创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的'生活中来的,激发学生学习的热情。首先我创设情景,提出问题: “ 一共有多少名学生参加这次植树活动? ” 。让学生根据提供的条件,用不同的方法解决,从而发现( 4 + 2 ) ×25=4×25 + 2×25 这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知 “ 乘法分配律 ” 。再让学生 “ 观察这个等式左右两边的不同之处 ” ,再次感知 “ 乘法分配律 ” 。同时利用情景,让学生充分的感知 “ 乘法分配律 ” ,为后来 “ 乘法分配律 ” 的探究提供了有力的保障。
二、提供学生独立探究的机会
我要求学生观察得到的两个等式,提出 “ 你有什么发现? ” 。此时学生对 “ 乘法分配律 ” 已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较 “ 模糊 ” 的认识。
三、为学生的学习方式的转变创设了条件
为了让 “ 改变学生的学习方式,让学生进行探索性的学习 ” 不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出 “ 观察这一组等式,你能发现其中的奥秘吗? ” 。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
乘法分配律教学反思2
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学内容:教材第54~55页例题,完成“做一做”。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的'。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
乘法分配律教学反思3
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。在充分感知的基础上引导学生比较这几组等式,发现有什么规律?这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的`练习还可以。如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。
其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
乘法分配律教学反思4
核心提示:乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。 新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成。
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的'基础上教学的。乘法分配律也是学生在这几个定律中的难点。
新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
初步的教学设想是这样的:
首先举一些学生身边的例题求长方形的周长,然后让学生观察这两组算式有什么样的关系。学生通过计算发现每组两个算式相等。在此基础上让学生完成长方形周长计算这样的例子并在黑板上列出,再出示例题,让学生分组讨论并解答。然后分组讨论这些算式有什么规律,引导学生发现乘法分配律并总结出这一规律。最后做一些练习巩固、拓展对乘法分配律的认识。
在教学之后发现有一些问题。孩子对于乘法分配律的作用及意义没有理解透彻,应用不够灵活,而且在口头上感觉很好,但是落笔后就发现很多类型题孩子根本就不会做,而且错误很多。所以对本节课教学目标进行了一些调整。让一名学生在黑板上板演,其他学生在本子上做,最后总结不同方法,看哪种方法简便。进一步体会乘法分配律的作用。
教学目标定位是
(1)通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
乘法分配律教学反思5
师:出示教学挂图并提问:从图上你知道什么?
生:张阿姨买5件夹克衫和5条裤子,一共要付多少钱?
师:能自己列式解答吗?(教师巡视,学生解答)
让用两种不同方法解答的学生分别板演。
师:说说65×5+45×5这种解答方法是怎样想到的?
生:先算买夹克衫和买裤子各用多少元?
师:(65+45)×5这种方法呢?
生:先算买一套衣服用多少元?
师:比较这两种方法,有什么不同和相同呢?
生:想的方法不同导致列的算式不同,但结果相同
师:结果相等的两个算式可以用什么连接?
生:等号揭示:(65+45)×5=65×5+45×5
师:仔细观察等号两边的算式,它们有什么联系吗?(从数,运算符号思考)
生:结果相等,都有三个数,5左边出现了1次,右边出现了两次,左边先加再乘,右边先乘再加……
师:等号左边先算什么?右边呢?
生:等号左边是65加45的和乘5,右边是65乘5的积加45乘5的'积。
师:你能模仿着写出几组这样的算式吗?学生试写
学生列举验证,教师将学生列举的等式写在黑板上,并让学生说出等式两边的得数。
师:还有很多同学想说,像这样的例子举得完吗?
师:由此你想到些什么?
生:这里有规律。
师:我们可以用什么来表示这种普遍存在的规律呢?
生:(字母、符号、文字)
师:试着写一写吧
生:(a+b)×c=a×c+b×c
(△+○)×□=△×□+○×□
师:小结:像这样两个数的和与一个数相乘,也可以用这两个数分别与这个数相乘,再把他们的积相加,这就是乘法分配律。(指着算式说)
顺着读,(任何事物都要从正反两面去看)反过来读乘法分配律
反思:
乘法分配律一课是苏教国标版教材四年级下册的内容,是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上学习的。学生接触过加法、乘法的验算和口算等方面的知识,对此有较多的感性认识,这是学习乘法分配律的基础。教材安排这个运算律是从学生解决熟悉的实际问题引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。教材有意识地让学生运用已有经验,经历运算律的发现过程,让学生在合作与交流中对运算律地认识由感性逐步发展到理性,合理地构建知识。
课程标准提出“让学生经历有效地探索过程”。教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“观察——举例——得出结论”这一数学学习全过程。学生掌握了学习方法,就等于拿到了打开知识宝库地金钥匙。由于乘法分配律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生联想到是否具有普遍性。从而得到猜想:是不是所有的三个数都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。本课从学生的学习情况来看,通过本课的学习不但掌握了乘法分配律的知识,更重要的是学会了数学方法,并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。
乘法分配律教学反思6
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的'预习,因此课上的时间比较仓促。
其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
《乘法分配律》教学反思3
乘法分配律是一节比较抽象的概念课,教师可以根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
具体是这样设计的:先创设佳乐超市的情景调动学生的学习积极性,通过买“3套运动服,每件上衣21元,每条裤子10元,一共花多少元?”列出两种不同的式子,他们确实能够体会到两个不同的算式具有相等的关系。这是第一步:通过资料获取继续研究的信息。(虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。)
第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,教师不要急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。
乘法分配律教学反思7
乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。
一、抓住重点。让学生理解乘法分配律的意义。
在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的'区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。
我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。
二、考虑学生的学习情况,尊重他们的主观感受。
在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。
三、练习中注意乘法分配律的变式。
乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1) 和74×20+74.一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。
今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45*5+65*5和(45+65)*5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45*5+65*5=(45+65)*5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。
乘法分配律教学反思8
今天静下心来观看了省赛课中葛老师执教的《乘法分配律》一课。她巧妙引领。葛老师非常自然的借助孩子们喜爱的农场游戏,引入问题“谁能帮老师算算一共有多少菜?你能列出综合算式吗?先求什么,后求什么?”一方面教师问题的指向性简练明确可以引导学生列出综合算式,另一方面借助情景能有效的帮助学生理解算式的道理,明确意义。更为巧妙的是此情景内容丰富可以列出不同的算式:
2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4为后面的“观察、分类和探究”做好铺垫。
大胆放手。在第一个“求菜”的情境中,是在教师的引导下学生顺利完成了学习的过程,然而后面的“求花”和“求果树”就是放手让学生自己探究了,很自然的激发了学生的探究欲望,分别列出了两组算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。
这样在学生喜爱的农场情景中,巧妙的引发出六道算式,为进一步的观察和探究埋下了伏笔。
得出6个算式后,葛老师再次抛出问题:“这六个算式让你分分类,你打算分几类?理由是什么?”然后葛老师又引导学生同桌先讨论,然后集体汇报,于无形中让学生经历了各个层面的探究活动。让学生观察——猜想——举例验证——,和从“特例”进行验证等一系列的活动,最后归纳出一普遍性的规律。
当结论得出后,葛老师并不是将字母表示进行简单的.灌输,而是巧妙的借助点子图将用字母表示乘法分配律的过程变为因需而设,从而呼之欲出。最后教师还通过乘法的意义加深学生对乘法分配律的理解,并且教师还通过两组以前学过的两位数乘一位数和两位数乘两位数来打通乘法分配律与以前知识的联系。
总之,本节课在学习方式上自主学习与合作探究并存,在思维发展上,教师引导与放手相结合,整个学习过程,因需而设,充满了探究。
乘法分配律教学反思9
小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的.和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算12588;10189你能用几种方法?
12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练,针对典型题目多次进行练习。
练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
乘法分配律教学反思10
乘法分配律是人教版数学第三单元的内容,它是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。但要做到让学生进行“探究、推理、自己总结规律”很难,因为上的是直播棵,为了突破难点,在备课时,我做足了功课,首先我从例题入手,把乘法分配律放在具体的.情境中,结合学生已有的生活经验,学生发现解决问题策略很多,此题可以用两种方法解答:(1)(4+2)×25;(2)4×25+2×25,通过比较,学生知道了为什么:(4+2)×25=4×25+2×25,经历了知识探究的过程,讲完例题后,又让学生通过发语音、课堂连麦的形式让举了许多这样的例子,提高了学生学习的积极性,每个例子不仅可放在具体情境中,也可借助乘法的意义让学生进一步理解,从而得出什么是“乘法的分配律及它的应用”,课堂取得了很好的效果。
乘法分配律教学反思11
《乘法分配律》是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的`猜想并举例进行验证……
1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。
2、展示知识的发生过程,引导学生积极主动探究。让学生根据提供的问题,用不同的方法解决,引导学生观察,让学生说明自己发现的规律。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。
3、出示乘法分配律的几种不同的形式让学生进行练习。
通过这一系列的教学措施,一节课下来,总体感觉良好——觉得同学们掌握得还不错。于是,我布置了让学生们完成练习册中《乘法分配律》这一课的习题。
当我批改练习时我傻了眼,学生的作业大多是中,少部分得良和差(我的作业批改评定标准),为什么会是这样的结果,我进行反思,发现是讲时,例题出示的不多,当时学生都会做了,但是对于熟练掌握这个既是重点又是难的课程的确不是那么简单的,三种题型放在一起学生就很容易受到干扰,结果是张冠李戴,错得让我涕笑皆非。而为了让学生把这个知识点掌握牢固,我整整又用了两节课。
通过这个知识点的教学,我发现数学不多练是不行的。在学生理解之后,必须对其进行及时、有效的练习才可以使知识掌握的更加牢固。
乘法分配律教学反思12
乘法分配律是小学阶段学生比较难理解与叙述的运算定律,但的确又非常重要、运用广泛。在本节教学过程的设计上我采用了让孩子通过“联系实际、感知建模;分类整理,生成模型;发现规律,举例验证;表示规律,建构模型;概括规律,完善模型;应用规律,感受模型”的探索过程,完成本节的教学任务。
在教学过程中,以突破乘法分配律的教学重点和难点为切入点,对本节课知识的学习起到了举足轻重的作用。根据自己的教学教训,在平常的教学中,总是发现学生在学习完乘法分配律之后容易出现(a+b)×c=a×c+b的现象仔细研究其原因,其实是学生学的记的只是乘法分配律的外在形式,对公式只不过是表面肤浅的忘记,而没有真正理解乘法分配律内在的数学意义。因此,我就打破通过观察 发现 猜想 验证 概括的传统教学思路,除了在外在形式上认识规律(教材意图),又从乘法的意义入手,使学生进一步从算式意义方面得出了(a+b)×c=a×b+b×c这样确凿无疑的结论。让学生对乘法分配律的理解不再只是停留在外在的“形”,而是又进入“质”的深化。这种教学建立在学生认知规律的基础之上,实现了有效的建立模型突破了本节的第一个难点。从课后作业可以看出,这种教学效果明显好于以前。
在突破本节第二个难点:乘法分配律容易跟乘法结合律混淆的现象时。敢于挑战自我,不再泛泛地讲两个规律的区别与联系,而采用反式教学写出25×(4×8)=25×4+25×8的现象,让学生既懂得乘法结合律和分配律的区别,又找到了乘法分配律概念的重点。
在本节课的练习设计上,力求有针对性、有坡度的知识延伸,出示扩展型的练习,对分配律的概念加以升华。
这些方面,只是我对自己原来的教学在反思与对比中觉得是对我而言较为进步的'一点点。但是,在实际的课堂操作中,整个教学过程也出现了许多不尽人意的地方。
比如:课堂上由于紧强导致只顾自己思路,而忘了对学生的回答或知识的恰当与否做出及时评定。还有,恐怕在规定时间内完不成任务,而把“总结”与“拓展”放错了位置;学生参与的积极性没有预想中那么高,可能与我相对缺乏激励性语言有关等等问题。
深入思考,觉得还是自己的业务不够熟练,驾驭课堂能力低下而造成的。因此,我想:今后要从以下几方面努力:
一、深入钻研,在挖掘教材上下功夫。
二、多听课,学习别人长处,多查阅资料学习,提高自己的业务水平。
最重要的是更新教学理念,在教学思路的“创新”上狠下功夫,让学生看到的天天都是“新”老师,甚至忘记“传统”形象,这是我最高的追求目标。
乘法分配律教学反思13
《乘法分配律的运用》教学设计及反思
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
(一)复习准备
1.口算:
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一
做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的.结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此
要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
乘法分配律教学反思14
这节课是在学生学习乘法分配律基础上进行教学的。在第一课时学生对于乘法分配律的意义已经有了初步的理解,对于乘法分配律的结构也有了一定的认识,能初步利用乘法分配律进行简便计算。本课内容的教学重点是灵活根据题型应用乘法分配律进行简便计算。
成功之处:
1.课始通过复习乘法分配律的意义,以及应用乘法分配律进行填空的练习,让学生进一步熟悉乘法分配律的结构及特点,加深对乘法分配律意义的理解。
2.分类型进行练习。采用边讲边练相结合的方法,让学生通过专项练习进一步巩固每一类型题目。共分为四类:第一类是a×(b+c);
第二类是a×b+a×c;第三类是a×b+a;第四类是接近整十整百的'数乘一个数。整体教学就是稳扎稳打,一步一个脚印,让所有学生都能掌握其中的变式练习,然后再进行综合训练,让学生灵活解决问题。
不足之处:
1.由于分类型讲解练习,导致时间分配不足,个别题型没有足够的时间进行练习。
2.学生的注意力集中不够,导致个别学生对某一类型的题目没有掌握。
再教设计:
1.加强小组合作的学习,能自己解决的问题,就自己解决,能小组解决的问题,就小组解决,充分发挥小组组际间的交流,留给学生更多的时间和空间,发挥学生主体作用。
2.抓住易出错类型题,重点讲解,重点训练。
乘法分配律教学反思15
计算教学是小学数学教学中的重要组成部分,几乎每一册的教材中都有计算的教学,而其中的“简便计算”教学更是计算教学的一部“重头戏”。学好简便运算,不仅能降低计算的难度,而且能提高计算的正确率和速度,更重要的是,能使学生将学到的定理、定律、法则、性质等运算规律融会贯通,达到学以致用的目的,从而能培养学生良好的计算习惯。
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。所以,对于乘法分配律的教学,我没有把重点放在规律的数学语言表达上,而是注重引导学生积极主动的参与感悟、体验、发现数学规律的过程,并且学会用辩证的思维方式思考问题,培养良好的思维习惯,真正落实学生的主体地位。
在教学中,我主要做到了以下几点:
1、关注学生已有的知识经验。
兴趣是形成良好学习习惯的催化剂。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,也就是根据例题图,提出问题:买5件夹克衫和5条裤子,一共要付多少元?通过两种算式的比较,唤醒了学生已有的知识经验,并有意识的蕴含新知识的教学,激发了学生的学习兴趣。
2、引导学生积极主动探究。
配养学生主动探究的学习习惯,是数学老师在数学课上的重要任务。先让学生根据提供的问题,用不同的方法解决,从而发现(65+45)×5=65×5+45×5这个等式,让学生观察,初步感知“乘法分配律”。再展开类比:假如我们要选择另外两种服装,买的数量都相同,一共要付多少元?你还能用两种方法来求一共要付的钱吗?让学生在再次解决问题的过程中进一步感受乘法分配律的存在。然后我引导学生观察,初步发现规律,再引导学生举例验证自己的.发现,得到更多的等式,继续引导学生观察,直到发现规律,同时质疑是否有反例,再一致确定规律的存在,并得出字母公式。
对于乘法分配律的教学,我把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。让学生在课堂上经历了数学研究的基本过程:即感知——猜想——验证——总结——应用的过程,学生不仅自主发现了乘法分配律,掌握了乘法分配律的相关知识,而且掌握了科学探究的方法,数学思维的能力也得到了发展。
3、注重合作与交流,多向互动。
学生在学习数学知识的过程中能学会与人合作交流,这也是一种良好的学习习惯,而倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维,增强思维的条理性,学生也学得积极主动。
4、练习设计关注学生思维能力的发展。
在练习题型的设计上,我基本尊重课本上知识的体系,在第4个练习中,三组题目的对比练习主要是巩固学生对乘法分配律的理解,让学生通过对比体会计算的简便。而在计算的过程中会选择更合理的方法进行计算,这有助于帮助学生提高计算的正确性,有利于学生养成良好的计算习惯。我在设计教学时,先出示一组题,在学生发现它们之间的联系后,有意让女生做简便的一题,让学生初步感知女生做的题比较简便,然后再出示第二组,还是有意让女生做简便的一题,所以还是女生优先,至此我引导学生发现:有时先加再乘比较简便,有时先乘再加比较简便,可以根据实际情况的不同,作出合理的选择,甚至可以根据乘法分配律先做适当改写,使计算更简便。
这样设计,使学生经历了两轮比赛,对运用乘法分配律可以使计算简便有了初步的体验,并且产生了浓厚的学习兴趣,对下一课时运用乘法分配律进行简便计算打下了良好的基础。最后增加了一个变式题:“5件夹克衫比5条裤子贵多少元?”这是乘法分配律的变式,这在第三课时将会碰到这种题型,所以这里先埋下一个伏笔。由基本题到变式题,有机地联系在一起。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行练习。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,思维能力得到了发展。
教学过程是一个不断探讨的过程,不断追寻的过程。作为一名数学老师,希望能在与学生有限的接触时间内帮助学生更快更好地养成良好的数学学习习惯,使我们的学生终身受益。这是一个值得我永远追求并为之努力的目标。
【乘法分配律教学反思】相关文章:
乘法分配律教学反思06-18
《乘法分配律》教学反思03-17
乘法分配律教学反思15篇07-04
《乘法分配律》教学反思15篇03-27
乘法分配律教学反思(15篇)02-19
乘法分配律教学反思汇编15篇03-18
《乘法分配律》教学反思通用【15篇】09-21
乘法分配律教学设计12-22
乘法分配律教学设计15篇12-22