数列教学反思
作为一位刚到岗的人民教师,我们的工作之一就是教学,借助教学反思我们可以拓展自己的教学方式,那么你有了解过教学反思吗?下面是小编收集整理的数列教学反思,希望能够帮助到大家。
数列教学反思1
针对数列问题的考试重点及学生的薄弱环节,《数列求和》的系列专题复习课《数列求和1》的教学重点放在了数列求和的前两种重要方法:
1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和);
2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和。
从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。
1、 注重“三基”的训练与落实
数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。
2、 例、习题的选配典型,有层次
一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。
3、 对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计
对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清求和的项数上,因而在求和的项数上做了文章,有意设计了求和而非求,并且通过这两道题特别强调了算清项数、如何算清项数等问题,抓住了学生解决这类问题的软肋。
4、 教学过程中充分关注到了学生的反应和状态
在解题教学中比较注意启发引导学生,通过自然习得,从而顺理成章达到水到渠成。从题目的设计到解题思路的分析都考虑到了学生的接受能力,从具体到抽象,通常是把问题摆出来、提一句、点一下,尽量不包办代替,努力引发学生的体验和思考,比较注重知识形成过程的教学。同时注意通过多种途径,多种角度,一题多解解决问题,杜绝直接把结果强加给学生,使学生不知所云。
当然这节课的教学也存在着这样那样的`不足,比较典型的有以下两点。
1、对于基本公式的掌握仍需加强落实
部分同学公式的记忆仍成问题,本以为课上可以一带而过,不成想主动举手、信心满满、自以为可以完美表现的同学站起来仍然把等比数列的公式说错了,可想而知其他同学的情况了,恐怕也不容乐观,可见连基本公式的强化记忆都是需要老师不厌其烦加以督促的。
2、由于课堂时间容量的限制,学生们的思维活动展现得还不够充分,问题也没有完全暴露出来。
数列教学反思2
这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。
(一)对课前备课的反思
首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。
其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的`如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。
第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。
(二)对课中教学的反思
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
(1)学生的创新解答
在例1求1002-992+982-972+962-952L+42-32+22-12的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成
199+195+191+L+7+3,这样转化是学生最容易想到的。另一种是转化成了
100+99+98+L+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。
(2)课堂中的偶发事件
在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。
(三)课后反思,再设计
一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。
数列教学反思3
探究式教学走进课堂为学生的学习提供了多样化的活动方式,这里我充分利用多媒体手段,并采用了学生朗读,小组讨论合作交流并汇报成果,个别做答,集体做答,学生演板,学生说教师写等方法,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求利用等差数列的通项公式知三求一,体会方程的思想。在推导等差数列的通项公式时选用了不完全归纳法与叠加法,培养了学生的推理论证能力,强调了思维的严谨性。 不过在教学中还是存在一些不足:
1、在回答等差数列的特点时,有的同学会说“前一项与后一项的差为常数”,那么我们讲数列从函数的观点来看是当自变量从小到大的依次取值时,所对应的一列函数值,所以我们以从前往后发展的眼光来看用“后一项与前一项的差为常数”更为妥当。
2、“如果a,A,b三个数成等差数列,这时我们称A为a与b的等差中项”。其实A也是b与a的等差中项,即b,A, a三个数成等差数列。
静下心来思考,在今后的教学中其实还应该注意:
1、在证明等差数列时,学生往往用有限的`几个连续两项的差为常数就得到此数列为等差数列的结论,其实这是一种不完全的归纳,是由特殊到一般,这种方法是不严密的。应该用等差数列的
数学表达式来证明。怎样用等差数列的数学表达式来证明等差数列还需要利用课堂时间进行专门训练,因为在高考有关数列的考题中往往第一问就是用定义证明等差数列。
2、用数学建模解决实际问题时绝不是单纯的几个计算而已,一定要强调格式,解应用题,数学模型一定要交代,而且要交代清楚,平时的训练中不能忽略这个问题,在对答案时要把文字部分反复几遍要学生用笔记在解答过程中,这样他们才能引起重视,以后学习解概率题时不会丢掉必要的文字叙述。
数列教学反思4
探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,而是通过数学建模活动启发学生,引导学生从实际情境中发现规律。类比等差数列通项公式的获得过程,寻求等比数列中四个量之间的关系,引导学生利用迭代法及叠加法得到等比数列的通项公式 。在教学活动中渗透了数学建模的思想。
在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。
本节课后,最大的一个感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,而且内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。
本节课是等比数列的`第一课时,注重概念的讲解以及通项公式的推导。由于前边已经学习了等差数列的有关内容,本节课主要就是采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有条理,课件展示得当,时间把握恰当。
就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。
课后反思,使我更深刻地认识到教学不仅是一门学问,也是一门艺术,值得我们在日常教学中不断探索,不断学习,不断研究,不断反思,只有这样才能不断地进步。这也为我以后的教学奠定了很好的基础,让我明确了自己今后努力的方向。在今后的教学中我会不断地反思,寻找不足,争取更大的进步。
数列教学反思5
本节课是学习等差数列的第一课,注重了学生基本知识和基本能力的培养。理解等差数列的概念,了解等差数列的通项公式推导过程,培养学生观察、分析、归纳、推理的能力;通过练习,提高学生的分析问题和解决问题的能力。
本节课,学生对定义和通项公式掌握不错,对一些基本问题能按照要求转化为首项和公差来处理。能使用简单的性质;对基本量之间的转化比较灵活;课堂展示、质疑气氛活跃。重要的一个原因是数列主要解决是数的问题,求数列的通项实质是寻找一列数所具有的规律,这一部分与学生以前学过的找规律问题类似,因而学习起来轻松有兴趣,他们也有对其进行探究的热情,如学生用定义推导出通项公式an a1?(n 1)d nN*,培养了学生的推理论证能力和思维的严谨性。学生的解题具有一定的规范性。
本节课,我始终注重“以生为本”,打破教师奖,学生听的传统教学模式,一开始让学生带着问题自主学习,自己去发现问题;再通过合作探究,以集体的智慧去解决问题;最后教师加以引导、点评、小结,效果良好。
本节课,学生的学习积极性很高涨,但是设计教学的成面与学生的知识面还有一定的的`差距不然可以使学生的学习兴趣进一步高涨,在以后的教学中,除了备好教材外,还要备好学生。因为,一堂好课不是看老师讲的有多好,而是看学生学得有多好。
本节课,教师有饱满的情绪去激励学生,感染学生,创设良好的课堂心理气氛。因为轻松、愉悦的学习环境可以诱发学生的学生的学习兴趣,开发学生的学习潜能,从而更好地帮助他们接受新知识,并在获得新知识的基础上,形成创造性学习能力。教师起到一个引导作用,教学有法,教无定法,相信只要我们大胆探索,勇于尝试,课堂教学一定会更精彩!
数列教学反思6
在等比数列的教学中,特别是探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,这样很容易让学生思维僵化而且并没有起到让学生归纳类比的思想。所以在教学中通过建模活动启发学生,引导学生从实际情境中发现规律,类比等差数列通项公式的获得过程,寻求等比数列中首先,公比,项数,第n项这四个量之间的关系,引导学生用迭代法及叠乘法得到等比数列的通项公式 。在教学活动中渗透了数学建模的思想。在这个活动中不断将等差与等比的概念及方法做对比,让学生更加清楚地了解等比数列的特征。在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。
在这一节课后,一个很大的感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,要能启发学生,内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的'表现给与充分的表扬、鼓励以及正确的引导。现在的教学需要使用鼓励教育,充分调动学生的积极性和能动性,打开学生思维。
本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导和分析应用。在前面的教学中,学生已经有了等差数列的有关内容,这节课的重要思想采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标(特别是学生对等比中项和下标和的关系应用)。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有待改进,课件展示得当,但时间把握有点仓促。
就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。
经过这次公开课,另外一个重要的收获是我们备课的时候一定要认真备好三维目标,特别是情感价值态度。只有带着情感态度价值带来备课才能从宏观上来把握整堂课,头脑里清楚我们将带非学生什么东西,这样我们的教学才会具有目标性。这堂课下来,我更多的只是注意了基础知识和基础技能,而忽略了带给学生的思想上的总结。
经过四年的教学让我认识到教学不仅是一门学问,也是一门艺术。教学需要我们在日常教学中不断总结和探索,不断学习,不断研究反思,这样才能在教学中进步和创新。
数列教学反思7
作为一名高中数学教师来说 , 上好每一堂课,要充分挖掘教材,要从 " 教 " 的角度去看数学 , 还要对教学过程以及教学的结果进行反思。高中数学不少教学内容适合于开展研究性学习;教学组织形式是教学设计关注的一个重要问题 , 提炼出本节课的研究主题。对学生来说 , 学习数学的一个重要目的是要学会数学的思想。他不仅要能 " 做 ", 还应当能够教会别人去 " 做 " 。以下是我对本次课教学的一些反思。
本节课主要有两个方面的内容,一是求等比数列前n项和的方法,即错位相减法;二是等比数列前n项和的公式。由于学生初次学习,以前没有接触过错位相减法方法,所以要想让学生自己总结出错位相减这一方法应该是比较困难的,所以我先从简单的多项式化简,构造两个类似的例子让学生自己比较它们的结构出发,给他们一个直观的感受。为拿出错位相减做铺垫。在教学中,学生也确实通过两个例子的比较,比较容易的总结出了这个方法。所以由学生自己来给出通项公式也就顺理成章了,拿出通项公式后,学生总习惯于直接套用公式而忽视对公式的分情况讨论,所以一定要反复强调。课后,在各位数学老师的`帮助下,我认识到在强调公式的时候只是从公式本身出发是不够的,学生理解的也很模糊,如果在这里加上实际的例子效果应该会更好,这是以后需要加强的地方。后面在讲解例题的时候由于时间关系,没有在黑板上进行细致的演算,一带而过,高估了学生的计算能力。
总之,结合新课程的教学理念进行相应的课后反思,努力上好每堂课,我相信可以不断提高业务能力和水平,从而更好地服务于学生。
数列教学反思8
本节课有意识地引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生温故旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
通过引导学生对几个具体数列特点的探索,然后一般地归纳这类数列的特点,进而给出等比数列的定义,并将其数学符号化,再对几个具体数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的运用。培养学生观察分析能力,抽象概括能力。
继引导学生为等比数列下定义之后,探索等比数列的通项公式又是一个重点。这里,我们通过引导学生试着求出a2,a3,a4,进而归纳猜想出an=a1qn-1,然后进行检验证明,即通过既教证明,又教猜想,旨在揭示科学实验的规律,从而暴露知识的形成过程,体现数学发现的本质,培养学生合情推理能力、逻辑推理能力、科学的思维方式、实事求是的科学态度及勇于探索的精神等个性品质。
试验——猜想——验证——证明,这是探求真理的有效途径之一。试求几个简单的结果是必要的,它是猜想的依据,正如波利亚指出的那样:“首先尝试最简单的情形是有道理的。即使我们被迫最后返回到一种比较周密的较为复杂性研究,那以前最简单情形的研究也可以当作一种有用的准备。”从某种意义上说,猜想的发现的先导,验证猜想的正确性可使猜想变得更可靠,而经过证明正确了的命题终于使猜想变为了真理。这一过程中,各类学生都有问题可想,有话可说,有事可做,学生的思维积极性被极大地调动了起来。
通项公式的一般形式an=am?qn-m(am≠0,a≠0,n,m∈N+)的探求,一方面是前面得出的通项公式的简单应用;另一方面是对求出的通项公式的推广,特别是限制条件“n>m”的去掉,具有一定的创造性,是值得鼓励和称赞的。
学生自觉、主动地要求获取知识与教师向学生灌输知识的效果是截然不同的。如何激发学生的.求知欲是教学设计中必须注意的一个问题。在引导学生探索等比数列通项公式时,我们通过对一个例子中a1999求解困境的设置,以激发学生探求等比数列通项公式的欲望。这显然要比直接告诉学生“通项公式多么重要”更有说服力。
值得一提的是,本节课的教学中,我们不但教学生进行知识(等差数列与等比数列)的类比,而且还教学生方法(探求问题的思路)的类比。这里的“教”,实际上是启发引导学生“想”与“说”,这是符合“重视知识的产生、发展与深化过程”的现代教学原则的。
数列教学反思9
数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。
利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。
给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。
为了提高学生的反应能力,我从最简单的数列——正整数数列——开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。
( 1 )数列 1 , 2 , 3 , 4 , 5 ,……是一个正整数数列,每一项与项数相等,其通项公式为 。
( 2 )数列 2 , 4 , 6 , 8 , 10 ,……是一个由正偶数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。
( 3 )数列 1 , 3 , 5 , 7 , 9 ,……是一个由正奇数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。
( 4 )数列 1 , 4 , 9 , 16 , 25 ,……是一个由正整数的平方数组成的数列,()观察每一项与项数之间的关系,最后总结归纳出通项公式
( 5 )数列 1 , , , , ,……是一个由正整数的开方组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。
然后参照以上 5 个数列,由同学们归纳出下列数列的通项公式:
( 1 )数列 3 , 5 , 7 , 9 , 11 ,……的通项公式为 。
( 2 )数列 0 , 3 , 8 , 15 , 24 ,……的通项公式为 。
( 3 )数列 , , , , ……的通项公式为 。
( 4 )数列 , , , ,……的通项公式为 。
通过以上由易入难,由简入繁的.教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。
学生对数列通项公式的归纳获取思路明确,理解比较深刻,较好地完成了课前预设的目标。
数列教学反思10
今天讲授《等比数列前n项和公式》。引导学生探究等比数列前n项和公式是重要内容。在探究公式的计算方法时,让学生通过观察、分析、类比、联想解决问题。有意识地使学生在推导过程中,忽略公比q=1和q≠1的情形,从而突破了公比的q=1和q≠1难点,学生在推导公式中通过自己探究解决了“错位相减”的重要数学思想。高中新课程正强调对数学本质的认识,强调返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。
本节课后还有以下体会:
(1)以学生为主体
爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此数学学习的核心是思考,离开思考就没有真正的数学。这节课,通过创设了一系列的问题情景,边展示,边提问,让学生边观察,边思考,边讨论。鼓励学生积极参与教学活动,包括思维参与和行为参与,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程。在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,让学生做课堂的主人,充分发表自己的意见。激励的语言、轻松愉悦的氛围、民主的'教学方式,使学生品尝到类比成功的欢愉。
(2)巧设情景,倡导自主探索、合作交流的学习方式
学生的数学学习活动不应只限于接受、记忆、模仿和练习,还应倡导自主探索、合作交流等学习方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下,不断经历感知、观察发现、归纳类比、抽象概括、演绎证明、反思与建构等思维过程,体验等比数列前n项和公式的“在创造”过程,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力。
苏霍姆林说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”本节课正是抓住学生的这一心理需求,从新课引入到课后作业,创设了一系列“数学探究”活动,为学生开展积极主动的、多样的学习方式,创设有利条件,激发了学生学习数学的兴趣,并鼓励学生在学习过程中,养成独立思考,积极探索的习惯。
数列教学反思11
高三复习课以其庞大的容量让奋战在一线的老师们吃尽苦头,每位老师都有课时拮据的感叹!而资料中涉及的知识和原有内容冲突时,学生无所适从,参与探究获得知识的机会偏少,老师传授总显得相当匆忙,课堂更多成了教师的表演与独白,每当我反省学生究竟学会了那些东西时,总会汗颜;课程是按时完成了,但其有效性有多少?该让学生更主动积极地参与课堂教学,在探究中体验知识的联系,那怕一节课只学会一两种题型的解决策略,也比满堂灌,最终什么都没学到强多了。而资料中涉及的'知识和原有内容冲突时,学生更是无所适从,如何把资料和课本更好结合,则是我们每一位教师必须重视的。
在《数列求和》的内容中我最初设计了两课时,讲分组求和法、倒序相加法、裂项相消法,并引申出求通项公式的迭加(乘)法,乘比错位相减法,并补充求通项公式的待定系数法。当我重新审视教学设计和资料时, 发现资料中的裂项法和拆项法与我前面所讲的有冲突,如何能减小冲突,且多留时间给学生思考 ,取得更好的效果,于是决定改变资料教学内容,裂项法是重要的求和方法,不仅渗透了化归的重要思想,而且也是高考的热点问题,从最简单的题目入手,循序渐进,或者会有不可估计的收获吧…
数列教学反思12
问题是数学的心脏,问题意识是创造性思维能力的核心。怎样的问题才叫做“好”,罗强老师给出了精湛的描述:初始性、情境性、全息性、结构性。
我想,一个好的问题如同一个生动活泼、引人入胜的故事,吸引着学生兴趣盎然的步入数学殿堂;一个好的问题犹如一颗优质的种子,让数学知识在此生根发芽,成为枝繁叶茂的参天大树;一个好的问题能让学生的思维插上翅膀,在数学的天空自由翱翔……
数列整个中学数学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,尤其是加深了学生对函数概念的认识,并从函数的观点出发来研究数列问题,使对数列的认识更深入一步;而学习数列又为后面学习数学归纳法等内容作了铺垫。同时数列还有着非常广泛的实际应用,是反映自然规律的基本数学模型。有助于培养学生的建模能力,发展应用意识。数列还是培养学生数学思维能力的好题材,自始至终贯穿着观察、分析、归纳、类比、递推、运算、概括、猜想应用等能力的培养,不仅如此,数列还是对学生进行计算、推理等基本训练、综合训练的重要题材。因此学好数列有助于学生数学素养的提高。
[方法简述]
本节课是《数列》第一节,是一章的学习基础。但由于是入门的第一节,概念多,知识点多,学生常感到琐碎。教学中我主要采用“问题导引,自主探究”式教学方法:首先创设情景,抓住知识的切入点,学生情感和思维的兴奋点;再通过探究性问题的设置来启发学生思考,使非本质特征被一一地剥离,让本质特征更好地被揭示在学生一步步的探索过程中,并在思考中体会数学概念形成过程中所蕴涵的数学方法;继而通过层层深入的例题配置,巩固加深学生对知识的理解。
高二学生已经具有了一定的观察、归纳能力和一定的学习能力,因此本节课一问题为载体,以学生活动为主线,有意识的留给学生适度的思考空间,让学生在观察中分析,在类比中发现,在思索中概括,在探究中获取新知,帮助学生逐步形成积极探索、合作交流的学习方式。
[目标定位]
学习是人对知识的内化过程,只有学生通过自己去发现、思考、揭示数学规律,才能更有效的促进素质和能力的提高。在教学中,通过学生的探索,形成并掌握数列的概念、表示法、分类;体会数列是一类特殊的函数,能用函数观点理解数列相关知识;理解数列的通项公式,会根据数列的前几项写出某些简单数列的通项公式;在探究过程中,培养学生的观察、类比、归纳、概括能力,提高学生直觉思维能力;渗透从特殊到一般、类比与转化的数学思想;培养学生积极参与、大胆探索、敢于创新的思维品质以及合作意识。通过让学生体验成功,培养学生学习数学的信心和热爱生活的情感。
[教学设计]
一、创设情境,引入概念
法1:上课伊始,老师借助多媒体讲述故事:有一个叫杰米的人,有一天他碰到一件奇怪的事,一个叫韦伯的人对他说:我想和你订个合同,我将在整整一个月内每天给你十万元,而你第一天只需给我一分钱,以后每天给我的钱是前一天的两倍、杰米说:真的?你说话算术!合同生效了,第一天杰米支出1分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元,到了第十天,杰米共支出10元2角3分,收入100万元,到了第二十天,杰米共支出1048575元(1万多),收入200万元,杰米想要是合同定两个月,三个月该多好啊!可从第21天开始,情况发生了变化:第21天杰米支出1万多,收入10万元、到第28天,杰米支出134万多,收入10万元,结果杰米在31天得到310万元的同时,共付给韦伯2147483647分,也就是2000多万元,杰米破产了!
为什么杰米会破产?很显然的原因:没有学好数学,尤其没有学好我们即将学习的在实际生活中有着广泛应用的这一章——《数列》
法2:以草花扑克牌引发学生探讨兴趣,草花实际上就是三叶草,代表着祈求、希望、爱情,如果你能找到四叶草,相传你就找到了『幸福』。
从而引出斐波那契数列,让学生再找出生活中常见的数列。
设计意图:
通过多媒体动态演示故事,使学生注意力迅速集中到所学内容上来,并设置悬念,激发学生学习数列的愿望。
二、观察归纳,形成概念
教师提出问题1:什么是数列?
为了方便学生的'理解,再借助多媒体进行几项活动:
切一刀可将一个比萨饼分成2部分;切两刀最多可将比萨饼分成4部分;切三刀最多可将比萨饼分成7部分;…继续切下去,比萨饼最多被分成的部分可得到一列数
③2,4,7,11,…
④从1984年到20xx年我国体育健儿参加6次按奥运会获得的金牌数:15,5,16,16,28,32、
⑤场地上堆放了一批钢管,从下往上数有4,5,6,7,8,9,10
⑥场地上堆放了一批钢管,从上往下数有10,9,8,7,6,5,4、
⑦写出精确到1,0、1,0、01,0、001,…的不足近似值排成一列数:3,3、1,3、14,3、141,…
设计意图:
培养学生观察、思考的能力。借助多媒体增强学生感性认识、
教师提出:以上7列数有些什么特征?学生会很快发现:有一定的规律。紧接着教师提出:是有一定规律,这些规律具体的应该怎么说?引导学生发现:次序!
教师指出:为研究方便,我们把数列中的每一个数叫做这个数列的项,各项依次叫做第1项(首项),第2项,第3项,…(总之,这一项拍在数列中第几位就叫做数列的第几项)
再让学生每一个人举出一个数列的例子,写在草稿纸上,同桌交流。
设计意图:
概念是逻辑分析的对象,具有丰富意义和内涵,同时又具有直观生动的背景,因此概念课应让学生从概念的原型或实例出发,经历概念的抽象过程,领悟直观和严谨的关系。让学生的学习由感性升华到理性。
三、问题导引,深化概念
问题2:数列⑤和⑥是否为同一个数列?
在问题2的解决过程中,强调了“次序”,即只有项和次序完全相同的数列才是同一数列。让学生发现:数列和数集的不同:数列中的数有序,而数集中的数无序;数列中的数可以相同,而集合数的数具备互异性。
设计意图:
在形成概念时,也许会有学生认为数列是有一定规律的数的集合,通过问题2的分析,加深对概念理解,为下面学习排除障碍。
设计意图:
数列与函数的关系是本节课的重点,在问题的导引下,让学生在思考交流中领悟知识,突出重点,并让学生注意到数列与函数的特殊与一般的关系。
教师强调:用函数的观点看数列,其内容会更加丰富多彩。请一位学生回忆函数的研究内容——函数的定义及性质,而后学习了几个特殊的函数,以及函数的应用,
类比函数,你能说出数列的研究历程?数列也是这样:在掌握了数列的概念之后,我们会去研究两个特殊数列,而后应用所学习的数列知识解决问题。
设计意图:
尝试着让学生运用类比,自己发现将要研究的内容,提高学生的问题意识。
问题3:类比函数的表示方法,你认为数列常见的表示方法有哪些?
让学生思考、讨论后回答:
1、列表法(有时也称为列举法):函数两行,数列一行即可、前面的数列,数列的一般形式给出的都是列举法;
2、图象法;
3、解析法。
问题4:数列的图象是什么样子?
让学生先在笔记本上画出数列④⑤⑥的图象,并在投影仪展示,让学生观察得出:
怎样分类?即根据项数是有限的还是无限的分为:有穷数列和无穷数列,再对这7个数列进行判断。
设计意图:
自己画图,使学生对数列图象迅速理解,而且所选的三个图象恰好引出数列分类知识,使课堂前后连贯,知识过渡自然。)
数列是特殊的函数,而函数最常见的表示方法是解析法,本节课先研究
列的通项公式。需注意的是:通项公式是解析法表示数列中的一种,下节课还要学习其他的解析法。
设计意图:
通过设置问题2—6,使学生在思考、讨论、交流中深化了数列概念。
四、典例剖析,应用概念
在研究函数的时候,函数的很多性质常常是通过解析式来研究,那么数列的很多问题自然是通过通项公式来研究,也就是说通项公式在数列中有着非常重要的作用。
有的题还要借助分子和分母之间的关系
教师提出:已知数列的前几项,用观察法写出数列的一个通项公式应该怎样思考?让学生讨论回答:概括一下主要有2个方面:
1、要注意观察数列中项与序号的关系;
2、要注意观察数列中项的几大特征如:符号特征;相邻项之间的关系;分子分母的独立特征以及相互关系,然后在此基础上化归一下,联想一下转化为我们已知的,熟悉的数列,而后写出来。
设计意图:
为了使学生能熟练应用刚学知识,达到巩固提高的效果,设计以上两道例题,用议一议、试一试、做一做、变式训练的形式,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。并通过及时总结,使学生从会做一个题到会做一类题。
五、归纳反思,提高认识
让学生从知识和方法上总结一下本节课的收获:
1、知识要点:数列的定义;数列的项;数列的通项公式;数列的三种表示方法;数列的分类。
2、数学思想:从特殊到一般以及分类、转化的思想。
3、写出一个通项公式的常用技巧:
设计意图:
对教学内容归纳、疏理,小结本节课渗透的数学思想方法,便于学生课后复习。使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。
六、布置作业,延伸课堂
设计意图;学生已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高。
[教学反思]
本堂课的教学,在提出问题与解决问题、独立思考与合作交流等的有机结合中,有序和谐、民主平等地展开。在教学设计中通过丰富的实例引入概念,鼓励学生动脑、动手、动口,经历观察归纳、探索交流、分析问题解决问题的过程,收获新知和方法,提高数学素养。教学过程中通过环环相扣、设置得当的问题链,激活学生的思维、唤起学生的热情、完善学生的知识结构,使学生整堂课始终处在一种积极的学习状态中:看得专心、听得认真、做得投入、说得流畅、合作得愉快。
另外,本节课在指导学生进行反思上也做了一定工作,反思可以说是学生认知水平从低级到高级发展的一个主要环节,所谓反思也是解决问题后自问几个为什么,为下次解决问题获得有用的经验和教训,从而引导学生不断总结经验教训,真正领悟到数学思想方法,以达到优化学生认知结构,促使学生思维升华,由此达到提高学生学习数学能力之目的。
本节课设计在实施过程中要避免用问题牵着学生走,而是设置情境,让问题呼之欲出,让学生自己发现问题,提出问题进而解决问题。这一点在采用“问题导引,自主探究”这一方式的教学中都应注意。
数列教学反思13
在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考:
一、对内容的理解及相应的教学设计
1、“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题。因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念。
2、等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题。其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开。本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”。
3、用公式解决问题的内容很丰富。本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程。这样的处理比较恰当。
二、求和公式中的数学思想方法
在推导等差数列求和公式的.过程中,有两种极其重要的数学思想方法。一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法。
从特殊到一般的探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。
从一般到特殊的化归思想方法的揭示是本节课的最大成功之处。以往人们常常只注意到“倒序相加”是推导等差数列求和公式的关键,而忽视了对为什么要这样做的思考。同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的求和,求和的本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”。相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的思想精髓。不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现。
在等差数列求和公式的推导过程中,其实有这样一个问题链:
为什么要对和式分组配对?(因为想转化为相同数求和)
为什么要“倒序相加”?(因为可以避免项数奇偶性讨论)
为什么“倒序相加”能转化为相同数求和?(因为等差数列性质)
由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因。
三、几点看法
1、注意挖掘基础知识的教学内涵
对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地。其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上。
2、用好教材
现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图。当然,由于教材的客观局限性,还需要教师去处理教材。譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平。
3、学无止境
一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次。譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当。课没有最好只有更好!
数列教学反思14
一.教材分析及能力要求:
数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。
二.教学中的重点、难点教学
数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。
三.教学过程反思
在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的'前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。
数列教学反思15
对于高考班来说,现在的主要任务就是储备足够的知识和经验,迎接高考。而最近几年的高考题中,创新题多数都是数列部分的题目,所以,本节课的主要教学目标就是复习《等差数列》的相关知识点,掌握高考常考题型,并能达到举一反三。
这节课我是这样安排的:首先向同学们总结了近五年的高考题中数列部分的题目所占分值的平均分,意在引起同学们的重视,然后展示本节课的复习目标,()让同学们能够了解考试大纲的要求,第三让同学们总结本节的知识要点,并利用一定的时间记忆,主要是记忆公式,因为这部分的题目主要是选择适当的公式解决问题,第四是典型例题,我总结了三种例题,也是高考易考题型。
根据本课学习目标,我把学生的自主探究与教师的适时引导有机结合,把知识点通过各种方式展现在学生面前,使教学过程零而不散,教学活动多而不乱,学生在轻松愉悦的氛围中学习知识,拓宽视野。本节课的成功之处:
1.在课堂实施过程中,教学思路清晰、明确,学生对问题的.回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。
2.教学方式符合教学对象。复习课就是要以总结的方式对学过的知识加以巩固,同学们通过本节课的复习目标,很方便的了解了重难点,通过典型例题直观的了解考试要点。
不足之处:
1.时间安排欠合理。在让同学们背公式的过程中花费时间太长。课后反思,如果当初就把几个公式展示出来,让同学们背,然后通过教师考察或小组成员之间考察,可能会达到事半功倍的效果。
2.“放”的力度不够。在分析典型例题时,总担心个别基础不好的同学不会,本来可以由学生阐述解题方法,也由我来说,所以学生的主动权给的不够多。
在今后的教学中,我会注意给学生足够的时间和空间,搭建学生展示自己的平台,要充分相信学生的实力,合理安排教学时间。
总之,认认真真准备一堂课,课后会有很多感触,及时整理自己教学上的得与失,如果每一节课都这样精心准备,每一节课后都认真反思,确实对自己今后的教学很多的启示。别饿坏了那匹马教学反思标志设计教学反思辨别方向教学反思
【数列教学反思】相关文章:
数列求和教学反思06-03
等差数列教学反思04-09
《等差数列》教学反思05-16
数列的教案03-25
《等差数列》说课稿12-06
高中数学数列教案03-11
匆匆教学反思教学反思11-20
教学反思体育教学反思03-16
《等差数列》说课稿11篇01-13