当前位置:范文派>教学范文>教学反思>圆的面积的教学反思

圆的面积的教学反思

时间:2024-05-22 11:48:44 教学反思 我要投稿

圆的面积的教学反思

  身为一位优秀的教师,我们要在教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,优秀的教学反思都具备一些什么特点呢?以下是小编整理的圆的面积的教学反思,希望能够帮助到大家。

圆的面积的教学反思

圆的面积的教学反思1

  圆是从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此,教学中,我让学生在观察、感知的基础上,动手操作,拼一拼,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导。通过本节课的教学,暴露出了一些实际问题,下面我将从以下几方面反思本节课的课堂教学。

  一、引导学生发现“转化” 。

  本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础识储备,为新知的“再创造”做好知识的准备。

  二、直观演示,加深理解

  让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

  三、练习设计层层深入。

  本节课我设计了三个练习:

  1、让学生根据已知的半径求圆的面积。

  2、让学生根据已知的`直径求圆的面积。

  3、利用已有知识解决生活中的实际问题。

  练习的设计上由易到难,由形象到抽象,由具体到抽象。先是基础知识的练习;然后用圆的知识解决实际问题;最后发挥自己的智慧解决生活中的实际问题。每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。

  四、存在的不足。

  本课教学还有许多不足之处,在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。 ……希望以后通过自己的努力,教学水平能够不断提高。

圆的面积的教学反思2

  《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

  一.明确概念:

  圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

  二.以旧促新

  明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的`本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  三.转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。

  四.公式推导

  平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。

  此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

圆的面积的教学反思3

  “圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫做“无心插柳柳成荫”。

  1、课前提出教学目标。

  教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的`需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?”学生积极发言:“想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎么计算圆的面积等等”。学习目标明确后,我发现两个班的孩子在研究的时候都井然有序,没有不知道该如何入手的,都明确自己在讨论什么,要解决什么问题。汇报的的时候都知道围绕着课前所提出的学习目标回答,没有乱说的,巡讲后我从实践中体会到:教学目标是课堂教学的出发点和最终归宿,教师只有明确教学目标才能更好的驾御课堂;学生只有明确学习目标才能积极参与,事半功倍。

  2、教学形式上,应因材施教,不同的班级和学生采取不同的教学方法。

  课堂中,每名学生都是我们的教育对象,不同的班级,风格、特点也不同。101班的学生比较安静,开始不十分敢发言,于是在复习以前学过的基本图形的面积推导时,我先回忆各种图形的面积推导过程,孩子们说得很好,我也大加赞赏,等他们慢慢熟悉我后,我利用小组讨论来活跃气氛,效果不错,总结时发言的同学多了起来,回答也很到位。98班的学生很活跃,思维快,都抢着举手,学生和我配合也默契。我把知识完全放手交给他们自己解决,把所能想到的方法都用上了:讨论、自学、猜想。学生们都能积极参与,汇报时公式的推导过程说的很完整,练习题计算起来也不费劲。应该说98班是巡讲中讲的最理想的班级。

  在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生提供充足的时间、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我最大的收获是教学中的应变能力提高了,不同的学生给了我不同的体会。当然也发现了自己的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改进的地方;在提出一个问题后应给予学生一定的思考时间,不要过急。

  在今后的教学中我会深深记住这次巡讲,继续改进自己的教学水平。

圆的面积的教学反思4

  片段一:

  师:同学们,在我们的日常生活中有许多长方体、正方体纸盒(出示一个长方体和一个正方体纸盒)猜一猜,制作这两个纸盒时哪个用的纸板多?

  生1:我觉得长方体用的纸板多。因为它比这个正方体长。

  生2:我觉得正方体用的纸板多。因为它比这个长方体高。

  生3:我觉得这两个纸盒用的纸板同样多。因为长方体比正方体长,而正方体又比长方体高,所以就同样多。

  师:究竟怎样才能得出正确结果呢?你觉得我们应该怎么办?

  生:我们应该分别计算出它们六个面的总面积。

  师:请大家拿出长方体或正方体纸盒,摸一摸、说说他们的表面积都包括哪些?

  生:边指边说,包括上下、左右和前后六个面。

  反思:课的开始,创设一个让学生猜一猜做一个长方体纸盒和正方体纸盒,哪个用的纸板较多的情境,引发学生思考,用什么方法才能比较出来呢?学生通过思考与交流,认识到必须分别计算出六个面的总面积,这样设计能激发学生产生好奇心,使学生在自主的观察中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。

  片段二:

  师:如果告诉我们这个长方体纸盒的长、宽、高,你能想办法算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?(长6厘米、宽5厘米、高4厘米)

  师:小组讨论一下,借助手中的长方体,想办法算出所求问题,并把结果写在作业本上,并在小组中交流一下自己的方法。

  生:小组活动,反馈交流。

  生1:我先求出每个面的面积,再把这六个面的面积相加,就能算出这个长方体的表面积了。列式:65+65+64+64+54+54

  生2:我先把长方体相对的面的面积计算出来,再把三大部分加起来,就能算出这个长方体的表面积了。列式:652+642+542

  生3:我先求出上面、前面、左面的面积,然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体中有三组相对的面的面积相等。列式:(65+64+54)2

  师:这几种方法都可以,你喜欢用哪一种就用哪一种。但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的.方法。

  反思:当学生急于想知道长方体表面积的计算方法时,如果把求法直接告诉学生或引导学生一步一步推导出表面积的公式,就不利于学生创新思维的发展。因此,让学生通过小组讨论、探索尝试计算等,共同探索出长方体表面积的计算方法,不仅学生自己主动参与了获取知识的过程,而且也自己探索到解决问题的方法,同时培养了学生的求异思维。

  片段三:

  师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?

  生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于一个正方形的面积乘6。

  生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长棱长6。

  师:请大家快速计算出刚才这个正方体它的表面积。

  生:336,我用33求出正方体一个面的面积,再乘以6就求出6个面的总面积。

  反思:正方体的表面积的计算方法是在长方体表面积的基础上推导出来的,教师没有讲,而是把迁移类推的机会留给了学生,让学生自己去发现,类推出正方体表面积的计算方法,培养了学生的逻辑思维能力。

圆的面积的教学反思5

  “圆的周长与面积”学完后,我进行了一次“圆的周长与 面积”的单元测试,总体成绩还算比较满意,但从试卷上和平时的作业上来看反 应出来的问题还是比较多,下面就这一单元近来的教学作以如下思考:

  一、存在的问题 1、学生对有关圆的概念认识不深刻。 (1)圆周率是圆的周长与直径的关系,学生写成周长与面积或其它的关系,认 识不清;圆的周长除以它的直径,所得的商是( )。有的学生填写的是一个固 定的数,还有的同学填的是3.14,准确答案应是圆周率或∏ 。 (2)半圆的周长总容易理解成圆的周长的一半,其实是圆周长的一半加上它的 一条直径或两条半径。 (3)对圆的周长和面积公式有点混淆。明明知道是求面积,可是却去求周长, 自己还不知道错了。 2、学生对有关圆的生活实际不熟悉。 (1)在实际生活运用中不知道“自动旋转喷灌装置”是什么样的,不能把实际 生活与所学知识联系起来。射程40 米,20 米,10 米,是指喷灌面的半径,不是 直径。安装的位置,是指圆心。 (2)不知道钟面上的分针是圆的半径,常常理解成直径,造成解题错误。 3、学生对组合图形的周长认识不到。 (1)“周长”是指图形一周所有线的长度,小学六年级阶段所认识的“线”只 有两种可以计算长度的线,一是线段,二是圆形的曲线。学生往往会把不在一周 上的线段计入周长,也会不计凹进图形的线,或者减去凹进图形的线的长度。 (2)长方形和其内切圆之间的关系不清楚,看不出长方形的宽就是圆的直径, 找不出长方形的长宽与圆的直径和半径之间的对应关系,求不出长和宽各是多 少,求长方形的周长就无从下手。 4、学生对组合图形的面积掌握情况。 (1)由于学生对图形的平移和旋转比较感兴趣,所以对组合图形的面积掌握较 好,大部分同学都能找到比较简洁的计算方法。 (2)在求半圆的面积时,有些学生总是在求得圆的面积后,忘记乘二分之一或 除以2. 5、学生不愿意动手操作或操作能力不高。 对于没有图形的解答环形面积的应用题,学生不愿动手画草图 来分析,因此找不对两个圆的半径。对动手操作题目不知道怎样下 手,如右图画图形的所有对称轴或多画或少画。 6、两个圆的半径、直径、周长、面积之间的比的关系 两个圆的'半径、直径、周长的比是一致的,如果半径比是3:1,则直径和周 长的比都是3:1,也就是长度单位的比相同;两个圆的面积的的倍数关系,是长 度单位的平方倍,长度单位是3 倍,则面积就是9

  倍。 7、有关计算方面出现的问题。 (1)有的同学在计算某数的平方时,如3 的平方,应该是3 乘3,可总有同学 却成3 乘2. (2)学生在计算碰到3.14 时,不能灵活计算,一般把3.14 放到最后去乘,比 较容易计算,而不灵活的同学不管那一套,3.14 写在哪里就乘哪,计算花费时 间比较多,也容易出错。 (3)有的同学在解答这部分知识时,列出综合算式,但是解答时步骤省略或没 有计算结束就不计算了,出现问题也比较突出。

  二、解决办法: 发现了问题,我赶紧要想出方法进行补救,不能让这种状态持续下去,我是 这样做的: 1、重视公式的推导过程,加强公式的记忆,强化不同公式的区别,先从公式上 打好基础。 2、在解决问题时,先把公式写上,然后再根据公式列式,这样的好处是让学生 好好思考到底需要哪个公式,避免出错误。 3、整理出这个单元的所有概念及公式,粘贴在书上,便于学生早读时记忆和做 作业时查找相应信息。 4、让学生记住3.14 的倍数的结果,这样能提高计算的速度和质量。 5、让学生在列式解答时,计算步骤不能省略,一步一步算出结果,这样还能避 免学生出错。 6、从学生的实际生活入手,如出示了圆形花坛的图片,设计了在花坛周围铺一 条小路求小路的面积这样的问题,创设与学生十分贴近的生活情景,这样充分调 动学生学习兴趣。增强学生学好数学的信心。 7、在教学过程中,把对知识梳理过程的主动权交给学生,让学生小组交流,培 养学生的合作意识,同时给学生相互学习提供一个机会,照顾到每一个学生,不 放弃每一个学生。 8、恰当的运用多媒体技术,以形象直观的课件演示,如“圆的面积”一课帮助 学生理解圆的面积的推导过程。特别是圆周长的一半转化成长方形的长,半径就 是长方形的宽这一教学环节,恰当的运用课件演示弥补了语言描述的不足,而且 学生通过观察更容易理解和掌握。 9、分层练习,照顾全面学生。

  总之,在今后的教学中,努力实现“人人学有价值的数学、人人都获得必要 的数学,不同的人在数学上得到不同的发展”这一教学目标,在教学过程中,追 求积极的教学行为,运用先进的教学模式,灵活恰当的运用多媒体技术,树立“为 学习而设计教学”的备课理念、精心设计每一个环节,使教学流程科学、丰富、 生动活泼、努力培养学生梳理知识,反思、研究的习惯及创新精神和实践能力。

圆的面积的教学反思6

  一、让学生履历知识的构成历程,渗入渗出转化的数学头脑。本节课把让学生履历圆的面积公式的推导历程定为讲授的紧张目的。在讲授中,我先让学生经过堆叠巨细差别的两个圆使他们觉得到圆的面积与半径有干系,再放手让学生运用转化的要领举行操纵,把一个圆通太过、剪、拼等历程,转化成一个类似的平行四边形,从中发明圆和拼成的平行四边形的接洽,并凭据长方形的面积公式推导出圆的面积的盘算公式。在这一历程中,不光使学生有用地明白和掌握圆的面积的盘算公式,并且也让他们得到了数学头脑要领,并造就了学生探究题目的`本领。

  二、看重信息的多向交换,让学生积极自动地学习。完成数学信息的多向交换是当代讲堂讲授的紧张特性。在这节课的讲授中,变数学信息的单向传送为信息的多向交换。讲授历程中不光看重了经过多种本领向学生传送信息,更看重学生与学生之间及学生与讲授内容(课本)间的信息交换,促进了学生积极自动到场数学学习。

  三、实习计划表现了针对性、条理性、综合性和理论性。本节课的讲堂实习既有对圆的面积盘算公式的牢固性实习,也有运用圆的面积办理简略的现实题目的实习,另有综合运用长方形、圆的有关知识办理简略的现实题目的实习。经过这些实习,有助于学生牢固圆的面积的有关知识,构成运用技艺,造就学生的数学本领。

圆的面积的教学反思7

  本课采用课件形式,给学生以生动、形象、直观的认识,富于启发地清晰揭示了知识的内在规律,再加上学生实际动手操作和教师的点拨解说、提问,让学生在自主探索中合作交流,使教学过程到达最优化。

  一、让学生多种感官参与学习,构成正确的几何概念,掌握图形的特征及内在联系,激发学生的兴趣,使学生乐学。

  如揭示圆的面积定义,基本建立了圆的面积概念。又如运用计算机显示由圆到近似长方形的图像的变换过程,揭示出数学知识的内在规律的科学美,并充分体现构图美和动态美的特点,它能刺激学生,强化学生的好奇心,提高学生探求知识奥秘的欲望,有助于解除学生视听疲劳,提高学习效率。计算机的辅助教学促进了学生良好思维品质的构成,到达了预想的教学目的。

  二、把数学虚拟实验引入几何的教学中,以研究的方式学习圆的面积,突出学生在学习中的主体地位,有效培养学生的创新意识。

  例如经过剪切、平移将平行四边形、三角形、梯形拼合成与它面积相等底等高的.长方形、平行四边形时,课件供给的虚拟实验,使它们的面积公式推导过程完整展示在学生面前。学生不仅仅概括归纳出面积计算方法,感悟到转化的思想在几何学

  习中的妙用。并且学生在抽象、概括、归纳推理过程中理解严密的逻辑思维训练,构成一种学习几何知识的方法,产生一种自我尝试,主动探究,乐于发现的需要、动机和本事。从而顺利的想到圆的面积计算公式也能够这样推导。

  教学中先动画展示等分圆的过程,再演示出拼合成长方形的过程,经过几组类似的实验,等分的份数递增,拼成的图形越来越接近于长方形,让学生经过操作实验和观察、比较得出这样的事实,拼成的长方形的面积和圆的面积相等,长方形的宽相当于圆的半径,长相等于圆周长的一半,圆面积的推导过程就完整的展示出来。对于巩固练习,遵循由浅入深、由易到难、循序渐进的原则设计,意在让学生在理解概念的基础上,正确地掌握公式,并能运用知识解决实际的问题。

  可是在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。这是今后教学应当改善的地方和努力的方向。

圆的面积的教学反思8

  学以致用,数学学习更是如此,把所学的知识运用到实际生活中,是数学学习的最终目的。本节课中,我注重紧密联系学生的实际经验,创设了让学生观察生活环境中的情境,向学生展示了生活中的圆形,从中提出数学问题,并加以解决,从而顺利地引出新课,最后又让学生计算出最大面积。通过联系实际,计算面积,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。

  但是,这节课还存在许多不足之处,需要在以后的教学中改进。

  一、时间安排不恰当

  如:复习设计方式不够合理,教师的演示过程加上学生的叙述占用了练习的宝贵时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。

  二、课堂评价需改进

  在课堂评价方面还需加以改进。评价对培养学生的情感和态度有着十分重要的作用。师生共同全方位参与的课堂才会产生心理共鸣,充满激情,充满活力。因为学生很在乎别人,尤其是同伴对自己的肯定。本节课中我感觉在这方面稍微欠缺了一点点。

  三、设计练习应有层次

  练习时,我只设计了基础题和提高题。基础练习巩固计算公式的运用,强调规范的书写格式;提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。但是我觉得应再设计综合题,综合练习既联系了前面所学的.知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点,这样更能提高学生的数学学习能力。

圆的面积的教学反思9

  《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

  一.明确概念:

  圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生务必明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。透过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

  二.以旧促新

  明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的`一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是透过长方形推导的,三角形面积公式是透过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是透过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  三.转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。思考学生的实际状况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自我的意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎样样?电脑继续演示16等份的圆,放在一齐比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎样样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。

  四.公式推导

  平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。

  此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前。”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,透过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维潜力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

圆的面积的教学反思10

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形到曲线图形,不论是学习资料的本身还是研究问题的方法。都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识的学习,不仅仅加深学生对周围事物的理解,激发学生的学习数学的兴趣,也为以后学习圆柱、圆锥打下基础。

  一、感受圆的周长与面积的不一样,明确概念

  本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合会议平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、学具与多媒体辅助教学,激发探究

  透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不应该一上来就问如何计算圆的面积,而应先让学生猜测圆的面积可能与什么有关,当学生猜测出来圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小圆分成若干个小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,后来让学生观看多媒体演示分成64等份、128等份,让学生体会从一个不规则图形到近似的`一个长方形的过程。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具会更利于操作。)

  三、分层练习

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层次对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,简单的解决问题。在每一道练习题的设置上,都有不一样的目的性。但在练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生对的参与程度,知识的掌握程度,促使学生主动发展,提高课堂教学效果。

  数学来源于生活有服务于生活,能够应用宋学只是解决生活实际问题这是学习数学的最终目的。在本节课,都让学生真切地感受到数学就在我们身边,数学与生活是密切相关的,用所学知识解决生活中的实际问题是一件很有成就的事,从而树立学好数学的信心。

圆的面积的教学反思11

  总结第一节课的缺陷,认真查找不足,修改教案后重新上课,效果比第一节课好。反思如下:

  一、激趣。

  1、让学生回忆一下,我们学过哪些平面图形,它们的面积怎样计算。这些图形面积的计算都是怎么推导出来的?(在学习直线图形面积的教学中,学生已经会把未知的问题转化为已知的问题来解决。为后面的教学环节埋下伏笔。)

  2、出示圆,你会计算这个图形的面积吗?你能想想办法吗?(把问题抛给学生,让学生去思考,去探索)。激起学生学习积极性。

  二、引导进行“切—————拼”

  1、我们来试试把这个圆进行切割,再拼一拼,看看能不能转化为我们会计算面积的图形。(回忆平行四边形面积公式的推导过程)

  引导学生将圆切成16个大小相等的小扇形。(如果有学生有其他的切法也允许,为后面的整理公式提供一个对比)

  2、放手让学生充分的去拼,教师加以指导。

  三、交流,整理出公式。

  1、交流,将不同学生的拼图贴在黑板上,请同学说说圆的面积是多少,怎么算的,重点是说说,所拼图形的各个边长是由圆的`什么转化而来的。(如:拼成一个长方形,长=圆的周长的一半宽=半径)

  2、把各种方法进行比较,整理出圆的面积计算公式。

  我的这个教学过程重点是激趣,让学生在非常想要知道的时候引导他们去探索,在他们迫切学要了解的时候剥茧抽丝般的呈现出了圆的面积的计算,整个过程让学生处于一个注意力高度集中,让他们有一种“山重水复疑无路,柳暗花明又一春”的惊喜》而整个活动过程,教师只是起到了一个引导,帮助,组织的作用,学生在学习过程中充分的参与,探索,真正的成了主角。

圆的面积的教学反思12

  数学与人类的生活息息相关,它来源于生活,又应用于生活。本节课中,我注重紧密联系学生的实际经验,创设了让学生观察生活环境中的情境,向学生展示了生活中的圆形,从中提出数学问题,并加以解决,从而顺利地引出新课,最后又让学生计算出最大面积。通过联系实际,计算面积,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的'知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。

  通过各种练习使学生能用代数式准确表示出圆的半径、直径、周长和面积的关系,加深对公式的理解,是学生熟练的用所学知识解决生活中的问题。

  当然,这节课还存在许多不足之处,需要在以后的教学中改进。

  1、在课堂评价方面还需加以改进。评价对培养学生的情感和态度有着十分重要的作用。师生共同全方位参与的课堂才会产生心理共鸣,充满激情,充满活力。因为学生很在乎别人,尤其是同伴对自己的肯定。本节课中我感觉在这方面稍微欠缺了一点点。

  2、教学中,教师声音要洪亮,要用非常饱满的激情去感染学生,带动学生。

  3、课件的背景不能太复杂,影响主要内容展示的清晰度。

圆的面积的教学反思13

  1、圆的面积是在圆的周长的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。

  通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

  2、渗透一种重要的数学思想,那就是转化的.思想,引导学生抽象概括出:

  新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,就可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  3、在教师的引导下,使学生通过自己主动的观察、思考、交流。

  运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

圆的面积的教学反思14

  圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:

  一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性。

  教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的'实践能力和创新意识。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊

  人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓

  三、演示操作,加深理解

  生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。 平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πr h=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r =πr2。此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,

  让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

圆的面积的教学反思15

  本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。

  一、故事激趣,渗透“转化”

  本课开始,我引导学生回忆简述了“曹冲称象”的故事,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、演示操作,加深理解

  当学生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的`方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。

  这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

  在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。

【圆的面积的教学反思】相关文章:

圆的面积教学反思04-12

《圆的面积》教学反思04-14

(优)圆的面积教学反思07-06

圆的面积教学反思(15篇)06-22

圆的面积教学反思13篇06-23

圆的面积教学反思15篇04-12

圆的面积教学设计06-03

《圆的面积》教学设计06-06

《圆的面积》教学设计最新05-08