数列教学反思共15篇
身为一名到岗不久的老师,我们要有一流的教学能力,借助教学反思我们可以快速提升自己的教学能力,教学反思要怎么写呢?以下是小编为大家收集的数列教学反思,欢迎阅读与收藏。
数列教学反思1
本节课是高三总复习冲刺阶段的复习课,为了更好地将知识点连贯起来,对数列及其求和问题有一个更深的认识,首先展示了20xx年的高考大纲中对数列问题的基本要求,也就是本节课的教学目标,要让学生知道数列问题在高考中考什么,怎么考。它规范了教师的教学行为和学生的学习行为,克服教学中的随意性,教学目标的出示有助于引导学生明确本课时的学习任务和要求。
同时将历年高考中出现的典型问题作为例题进行展示,为的'是让学生充分把握好数列问题的难易度,做到心里有底。学生在自主探索和合作交流中理解并掌握本节课的内容。在整个探究学习的过程中充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。例1中运用的分组求和法和例2中的裂项法,从学生课堂反馈来看掌握较好,这也是本节课的重点。例3所涉及到的错位相减法显然难度有点太,学生完成起来有点困难。
梳理归纳环节上,总结反思了每道例题的出题意图,意在培养学生归纳、总结的习惯,让学生自主构建知识体系,清楚高考中每一道题都有它自己的考察方向。激励学生以更大的热情投入到最后的冲刺复习中去。
目标检测部分,意在将本节课的重点做一个重温,两道练习与例1和例2是相对应的。目的就是要让学生一定要掌握本节课的重点。
本节课的优点:
1、整体的思路比较清晰:展示目标,组内讨论,小组展示并释疑解惑,然后通过练习进行辨析,学生自己归纳求和方法,再接下去是方法的应用和巩固,即目标检测,知识梳理、布置作业。整个流程比较流畅、自然。
2、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;能准确的指出学生在处理问题中的不足并帮助及时改正。
本节课的遗憾:
1、在做时例3这张幻灯片没有设计好,导致字有重叠看不清。
2、还应更注重细节,讲究规范,强调反思;
总体来讲,在教授中始终把以学生为本的教学理念贯穿本课。采用将上课的主动权交给学生,而学生的学习积极性有很大的提高,学习效果好。通过对本节课系统的回顾,梳理,发现部分学生在知识点的运用上还存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
数列教学反思2
一、本章的知识结构与学生的认知结构得到了较好的统一
本章的知识结构是:数列的基本概念——特殊数列——数列的应用。首先在理解了数列的基本概念后,进一步认识两个特殊数列:等差、等比数列,通过对两个特殊数列的研究使学生对数列的认识得到深化,进而解决一些实际应用问题。同时,教材注重了通过实例分析引入新知识,这符合从感性认识到理性认识的认知规律,因此说,教材的这种设计符合学生的认知结构。
二、教材设计突出了数学思想方法,符合这套教材的特色
这一章在内容设计上突出了化归与转化思想、数学建模思想等,例如:一些实际应用问题(分期付款问题)需要建立数列模型,转化为等差、等比数列求和问题。教材在编写上注意了数学方法的层层递进,例如:在数列的概念这一节涉及到了观察法,归纳法;在求等差、等比数列通项公式时用到了“作差求和”“作商求积”的方法。这些方法在后面的知识学习中都有所体现。
三、整章内容的设计精简实用,顺理成章
本章例、习题的配置数量多,但没有重复性例题,习题知识点覆盖全,尤其是设置了十个研究性问题,穿插在整章内容中,而且没有给出解答,提高了学生兴趣,这一点于其它章不同,前面几章中有些研究性问题,在提出问题的同时,也给出了解答,这就失去了它的设计意义,
本章第2节设置了“数列求和”,目的是让学生理解求和概念及求和符号,提前安排这一节,分散了难点,使得后面学习等差、等比数列前n项和及特殊数列求和线的难度适中,教学时感到很自然。在习题中实际应用问题不是很多,最后一节“数列应用举例”主要是研究数列求和及求通项公式,应增加几个实际应用问题,让学生对数列知识加以深化。
四、这一章为教师的“教”与学生的“学”提供了广阔的天地
本章的`例、习题及十个研究性问题为教师的教学提供了很多素材,同时为培养学生的探究意识和探究能力提供了广阔的思维空间。这些研究性问题的设计体现了新大纲的要求:注重培养学生数学的提出问题、分析问题、解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力、数学建模能力和数学交流能力。另外,在教学实践中,这些研究性问题的设计可以激发学生的学习兴趣和求知欲,为培养学生的思维能力搭建了一个平台,给学生充分展现自我的机会,促进了学生学习方式的转变,同时,对教师的教学方式提出了挑战,如果教师还沿用传统的教学方式,就会造成资源浪费,这套教材就失去了它的价值,就会使教师陷入讲教材的困难境地。
五、教学时要走出片面追求“严谨”、“系统”,忽视循环深化的误区
受传统观念的影响,课程和教学中一度曾过分强调知识的严谨和系统性,强调学习的一步到位,例如上面的案例中提到的两个例题,实际上是个难点,可能有的教师觉得不够系统,会增加一些利用递推关系,求通项公式的习题,甚至会将竞赛的一些内容加进来才觉得够难度,如果这样随意求“深”求“透”,不能理解教材和大纲的用意,势必会加重学生的学习负担,就可能产生消极影响,所以要真正发挥例题的功能,达到培养学生探究能力的目的。
数列教学反思3
这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。
我将从以下几个方面进行反思:
(一)对课前备课的反思
教学反思不仅仅只是针对课堂教学实际的反思,也应该包括对备课、教案进行反思。在备课过程中,教学设计前后共修改了4次,最后形成完整的一节课的设计。为什么反复修改了4次之多,其中有几个很关键的地方值得一提。
首先,是备学生。我所教的是文科普通班,入班前的数学平均分仅为44分,在第一次测验中平均分还不到60分,学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高。因此在选择教学内容上就考虑到了学生现有的认知水平。
其次,课程内容的选择。内容是数列的求和是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。等到高三复习时再讲还是在高一阶段就慢慢渗透给学生还是值得商榷的。我认为高中数学的学习应该是螺旋上升的,而不是直线型。在高一阶段学生能够掌握的知识是要渗透给学生,学生经历过的,形成一定的经验,到了高三复习阶段就能唤醒这些经验和记忆。关于数列的求和的方法有很多,常见的如倒序相加法、并项法、拆项法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了并项法和分组求和法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。这样对后继学习裂项相消法、错位相减法做一些铺垫。
第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。
(二)对课中教学的反思
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
亮点之处:
学生创新解答
在例1求100?99?98?97?96?95??4?3?2?1的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+?+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+?+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。
在接下来的练习中,教师的设想是学生能够想到将相邻两项合并成一项结果是1,这样很容易就能得到结果。但是高元顺同学并没有在我设想的思路上走,而是给出了一个特别的`回答,他的回答是:我是这样认为的,如果这个数列是6项的话,那么第5项是-5,第6项是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6项的和就等于项数的一半。这个数列是100项,那就等于50。S200 就等于100,所以S201 就等于-101。
他的回答博得听课的老师的一致赞同。他使用的方法通过找规律提出猜想,实际上就是使用了数学思想方法中一个很重要的方法——递推法。
(2)学生成为课堂的主体,教师要甘当学生的绿叶
由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。特别是在例2中,教师针对题目做了简要的分析和提示,让学生去尝试着解题。朱馨同学的板书详尽,将思路方法概括表述出来,过程完整。只是结果出现了一个小错误,教师在点评过程中给予指出,同时也个结果错误也是学生经常犯的。
在这两个例题教学过程中我体会到了学生获得成功的喜悦,这也说明了给学生以思考的时间和空间,学生的回答是不会让老师感到失望了,而是充满了惊喜。
(3)从容面对课堂中的偶发事件
在教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是高元顺同学的回答出乎我的意料,这种做法在我预想之外,当时我面带微笑鼓励他说下去,对他的陈述及时做出肯定和鼓励,同事我的脑子在快速的反应怎样总结他的解法,等他陈述完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正2222222222
奇数的和只差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。
积极的回答的出来。
(三)课后反思,再设计
一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。
若是再教这部分内容时我应该重新调整一下我的教学顺序,如在复习完公式后,可以先提出1+2+3+?+100=?在此基础上进行变式1-2+3-4?-99+100=?,这样再给出练习1,学生有了经验自然很容易就解决了。在例题2问题中,可以再降低一下难度,因此可以将后面的练习3作为例题。而将原例2作为练习的题目。这样的做更体现了知识的循序渐进和螺旋上升,学生容易理解和接受。
(四)感受
上一届的“凤凰杯”让我印象深刻,同时也期盼着也能参加“成长杯”。当李加莉老师宣布由我来参加这届的“成长杯”我感觉我的压力好大了。经过一段时间的精心选题和反复修改教学设计,我终于站在了“成长杯”的讲台了,心情复杂——激动、兴奋、紧张…… 直到下课的铃声想起我的一颗心才算踏实下来。
东北师范大学的孔凡哲教授曾在给我们讲座时说过:没有精心的预设,就没有精彩的生成。我一直都是深刻记得这句话,也在教学中实践它。但是我仍然感觉自己做不到“精彩”而更多的是“平淡无奇”。是这节课我有了深刻的体会,让我开始审视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音……
感谢这次参赛机会,让我在失败中磨练,在挫折中不断完善自己,最终坚强地站在讲台上,让我感受到了“成长”的喜悦。希望在今后的教学中我能总结经验,不断的完善自己,增强专业知识和技能,有效教学和创新教学,让自己尽快“成长
数列教学反思4
1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念。
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项。
(3)通过通项公式认识等比数列的性质,能解决某些实际问题。
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。
教学建议
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的`应用。
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解。
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。
数列教学反思5
对于高考班来说,现在的主要任务就是储备足够的知识和经验,迎接高考。而最近几年的高考题中,创新题多数都是数列部分的题目,所以,本节课的主要教学目标就是复习《等差数列》的相关知识点,掌握高考常考题型,并能达到举一反三。
这节课我是这样安排的:首先向同学们总结了近五年的高考题中数列部分的题目所占分值的平均分,意在引起同学们的重视,然后展示本节课的复习目标,()让同学们能够了解考试大纲的要求,第三让同学们总结本节的知识要点,并利用一定的时间记忆,主要是记忆公式,因为这部分的题目主要是选择适当的公式解决问题,第四是典型例题,我总结了三种例题,也是高考易考题型。
根据本课学习目标,我把学生的自主探究与教师的适时引导有机结合,把知识点通过各种方式展现在学生面前,使教学过程零而不散,教学活动多而不乱,学生在轻松愉悦的氛围中学习知识,拓宽视野。本节课的成功之处:
1.在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的.解法提出自己的不同观点,找出最简单、有效的解决方法。
2.教学方式符合教学对象。复习课就是要以总结的方式对学过的知识加以巩固,同学们通过本节课的复习目标,很方便的了解了重难点,通过典型例题直观的了解考试要点。
不足之处:
1.时间安排欠合理。在让同学们背公式的过程中花费时间太长。课后反思,如果当初就把几个公式展示出来,让同学们背,然后通过教师考察或小组成员之间考察,可能会达到事半功倍的效果。
2.“放”的力度不够。在分析典型例题时,总担心个别基础不好的同学不会,本来可以由学生阐述解题方法,也由我来说,所以学生的主动权给的不够多。
在今后的教学中,我会注意给学生足够的时间和空间,搭建学生展示自己的平台,要充分相信学生的实力,合理安排教学时间。
总之,认认真真准备一堂课,课后会有很多感触,及时整理自己教学上的得与失,如果每一节课都这样精心准备,每一节课后都认真反思,确实对自己今后的教学很多的启示。别饿坏了那匹马教学反思标志设计教学反思辨别方向教学反思
数列教学反思6
这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
1.亮点之处:
(1)学生创新解答在例1求的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+…+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+…+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。在接下来的练习中,教师的设想是学生能够想到将相邻两项合并成一项结果是1,这样很容易就能得到结果。但是学生并没有在我设想的思路上走,而是给出了一个特别的回答,他的回答是:我是这样认为的,如果这个数列是6项的话,那么第5项是-5,第6项是6,用-1+2=1,1+(-3)=-2,-2+4=2,2+(-5)=-3,-3+6=3,因此得到前6项的和就等于项数的一半。这个数列是100项,那就等于50。S200 就等于100,所以S201 就等于-101。他的回答博得大家的一致赞同。他使用的方法通过找规律提出猜想,实际上就是使用了数学思想方法中一个很重要的方法——递推法。
(2)学生成为课堂的主体,教师要甘当学生的绿叶由于数学的抽象、思维严谨等特点,学生往往对于一些较为复杂或者变化多样的题目容易望而生畏,出现懒得动脑思考、动笔去做的现象。教师也常因为时间的限制不可能给学生过多的时间去做“无用功”。在本节课上我放手让学生去思考,让学生去摸索。不怕学生出错,就是让学生能够在摸索中增强思维能力、解题技能和计算经验。在这两个例题教学过程中我体会到了学生获得成功的喜悦,这也说明了给学生以思考的时间和空间,学生的'回答是不会让老师感到失望了,而是充满了惊喜。
(3)从容面对课堂中的偶发事件在教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法——分组求和法。但是学生的回答出乎我的意料,这种做法在我预想之外,当时我面带微笑鼓励他说下去,对他的陈述及时做出肯定和鼓励,同时我的脑子在快速的反应怎样总结他的解法,等他陈述完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和只差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。
2.不足之处
本节课从教学设计到教学实践难免有疏漏失误之处。在讲完课之后静心思考,对本节课做了系统的回顾、梳理,我在以下方面存在不足:
1.教学时间没有把握好在知识准备环节,本来以为学生能很顺利地完成公式的复习,但是没有考虑了学生受现场的影响,没有做及时的反应。我只好在将这些公式板书出来,浪费了一些时间。但是从后来的结果上看将公式板书出来也是有一定好处的。例1和练习1给学生的思考的时间较多,对于这样较容易上手的题目应该快速解决的。例2是本节课的重难点所在,应该留有20分钟的时间让学生思考解决,但是由于时间没有把握好,这部分用了只有15分不到。
2.处理偶发事件的应变能力不足虽然表现得从容不慌,但是从教学效果上看处理偶发事件的应变能力明显不足。这点需要在今后的教学实践中摸索和积累。
3.师生互动仍需加强。在教学过程中我接连提问了几个同学,他们的回答都是一样、差不多的。实际上他们并没有认真去思考。我因为时间的关系没有继续鼓励调动下去,而是转为教师讲解。这样的处理不是很恰当,我应该鼓励一下学生,让有思路的同学能够主动积极的回答的出来。
数列教学反思7
长期以来,我们的教学太过于重视结论,轻视过程。为了应付考试,为了使对公式定理应用达到所谓的“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化。在数学概念公式的教学中往往把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策。 基于以上认识,在设计这两节课时,我所考虑的不是简单地复习等差数列求和公式,而是让学生自己去推导公式。学生在课堂上的主体地位得到了充分的发挥。事实上,定义推导过程就是建构知识模型、形成数学思想和方法的过程。
等差数列是高中数学研究的两个基本数列之一。等差数列的前n项和公式则是等差数列中的`一个重要公式。它前承等差数列的定义,通项公式,后启等比数列的前 项和公式。高三最后复习阶段,可千万要重视课本知识,要注意对课本知识和例题的挖掘,如果我们能指导学生不满足课本所给的知识,学会对课本例题的再研究和再探索,那势必会达到事半功倍的效果。
数列教学反思8
针对数列问题的考试重点及学生的薄弱环节,《数列求和》的系列专题复习课《数列求和1》的教学重点放在了数列求和的前两种重要方法:
1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和);
2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和。
从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。
1、 注重“三基”的训练与落实
数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。
2、 例、习题的选配典型,有层次
一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的`;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。
3、 对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计
对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清求和的项数上,因而在求和的项数上做了文章,有意设计了求和而非求,并且通过这两道题特别强调了算清项数、如何算清项数等问题,抓住了学生解决这类问题的软肋。
4、 教学过程中充分关注到了学生的反应和状态
在解题教学中比较注意启发引导学生,通过自然习得,从而顺理成章达到水到渠成。从题目的设计到解题思路的分析都考虑到了学生的接受能力,从具体到抽象,通常是把问题摆出来、提一句、点一下,尽量不包办代替,努力引发学生的体验和思考,比较注重知识形成过程的教学。同时注意通过多种途径,多种角度,一题多解解决问题,杜绝直接把结果强加给学生,使学生不知所云。
当然这节课的教学也存在着这样那样的不足,比较典型的有以下两点。
1、对于基本公式的掌握仍需加强落实
部分同学公式的记忆仍成问题,本以为课上可以一带而过,不成想主动举手、信心满满、自以为可以完美表现的同学站起来仍然把等比数列的公式说错了,可想而知其他同学的情况了,恐怕也不容乐观,可见连基本公式的强化记忆都是需要老师不厌其烦加以督促的。
2、由于课堂时间容量的限制,学生们的思维活动展现得还不够充分,问题也没有完全暴露出来。
数列教学反思9
本节课有意识地引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生温故旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。
通过引导学生对几个具体数列特点的探索,然后一般地归纳这类数列的特点,进而给出等比数列的定义,并将其数学符号化,再对几个具体数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的运用。培养学生观察分析能力,抽象概括能力。
继引导学生为等比数列下定义之后,探索等比数列的通项公式又是一个重点。这里,我们通过引导学生试着求出a2,a3,a4,进而归纳猜想出an=a1qn-1,然后进行检验证明,即通过既教证明,又教猜想,旨在揭示科学实验的规律,从而暴露知识的形成过程,体现数学发现的本质,培养学生合情推理能力、逻辑推理能力、科学的.思维方式、实事求是的科学态度及勇于探索的精神等个性品质。
试验——猜想——验证——证明,这是探求真理的有效途径之一。试求几个简单的结果是必要的,它是猜想的依据,正如波利亚指出的那样:“首先尝试最简单的情形是有道理的。即使我们被迫最后返回到一种比较周密的较为复杂性研究,那以前最简单情形的研究也可以当作一种有用的准备。”从某种意义上说,猜想的发现的先导,验证猜想的正确性可使猜想变得更可靠,而经过证明正确了的命题终于使猜想变为了真理。这一过程中,各类学生都有问题可想,有话可说,有事可做,学生的思维积极性被极大地调动了起来。
通项公式的一般形式an=am?qn-m(am≠0,a≠0,n,m∈N+)的探求,一方面是前面得出的通项公式的简单应用;另一方面是对求出的通项公式的推广,特别是限制条件“n>m”的去掉,具有一定的创造性,是值得鼓励和称赞的。
学生自觉、主动地要求获取知识与教师向学生灌输知识的效果是截然不同的。如何激发学生的求知欲是教学设计中必须注意的一个问题。在引导学生探索等比数列通项公式时,我们通过对一个例子中a1999求解困境的设置,以激发学生探求等比数列通项公式的欲望。这显然要比直接告诉学生“通项公式多么重要”更有说服力。
值得一提的是,本节课的教学中,我们不但教学生进行知识(等差数列与等比数列)的类比,而且还教学生方法(探求问题的思路)的类比。这里的“教”,实际上是启发引导学生“想”与“说”,这是符合“重视知识的产生、发展与深化过程”的现代教学原则的。
数列教学反思10
在等比数列的教学中,特别是探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,这样很容易让学生思维僵化而且并没有起到让学生归纳类比的思想。所以在教学中通过建模活动启发学生,引导学生从实际情境中发现规律,类比等差数列通项公式的获得过程,寻求等比数列中首先,公比,项数,第n项这四个量之间的关系,引导学生用迭代法及叠乘法得到等比数列的通项公式 。在教学活动中渗透了数学建模的思想。在这个活动中不断将等差与等比的概念及方法做对比,让学生更加清楚地了解等比数列的特征。在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。
在这一节课后,一个很大的感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,要能启发学生,内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。现在的教学需要使用鼓励教育,充分调动学生的积极性和能动性,打开学生思维。
本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导和分析应用。在前面的教学中,学生已经有了等差数列的`有关内容,这节课的重要思想采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标(特别是学生对等比中项和下标和的关系应用)。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有待改进,课件展示得当,但时间把握有点仓促。
就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。
经过这次公开课,另外一个重要的收获是我们备课的时候一定要认真备好三维目标,特别是情感价值态度。只有带着情感态度价值带来备课才能从宏观上来把握整堂课,头脑里清楚我们将带非学生什么东西,这样我们的教学才会具有目标性。这堂课下来,我更多的只是注意了基础知识和基础技能,而忽略了带给学生的思想上的总结。
经过四年的教学让我认识到教学不仅是一门学问,也是一门艺术。教学需要我们在日常教学中不断总结和探索,不断学习,不断研究反思,这样才能在教学中进步和创新。
数列教学反思11
一、教学内容以贴近学生生活实际的具体情境为载体,学习生活中的数学。
如在棋盘中用数对表示棋子的位置、从学生非常熟悉的五子棋对弈情境引入;利用座位这一真实的情境学习排和列;应用知识解决实际问题时,拓展延伸,要求学生利用数对的相关知识解决,体现了数学来源于生活,又用于生活的教学理念,从而使学生体会到我们生活的周围存在着大量的数学知识与问题,激发学生的学习兴趣、促进教学活动的生成。
二、有效设计教学进程,引导学生经历数学化的过程。
本节课中,注重了向学生充分展现知识形成的过程,无论是通过将“小红坐在从左数第4列从前数第3行”简化成用数对来表示,还是把人物图简化成点子图再到方格图,都力图让学生经历数学知识、数学思想的形成过程,从而加深学生对所学数学知识的理解;而且在这个充满探索和自主体验的过程中,使学生逐步学会数学的思想方法和如何用数学方法去解决问题,获得自我成功的体验,增强学好数学的信心。
三、创设了良好的课堂学习氛围,活动形式多样有趣。
课标中指出,数学学习的内容应当是现实的`、有意义的、富有挑战性的,游戏的设置,向学生提供了充分的从事数学活动的机会,让学生感受学习的兴趣,树立学好数学的信心,大大调动了学生学习的积极性,达到了从玩中学的教学设想。
数列教学反思12
探究式教学走进课堂为学生的学习提供了多样化的活动方式,这里我充分利用多媒体手段,并采用了学生朗读,小组讨论合作交流并汇报成果,个别做答,集体做答,学生演板,学生说教师写等方法,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求利用等差数列的通项公式知三求一,体会方程的思想。在推导等差数列的通项公式时选用了不完全归纳法与叠加法,培养了学生的推理论证能力,强调了思维的严谨性。 不过在教学中还是存在一些不足:
1、在回答等差数列的特点时,有的同学会说“前一项与后一项的差为常数”,那么我们讲数列从函数的观点来看是当自变量从小到大的依次取值时,所对应的一列函数值,所以我们以从前往后发展的眼光来看用“后一项与前一项的差为常数”更为妥当。
2、“如果a,A,b三个数成等差数列,这时我们称A为a与b的等差中项”。其实A也是b与a的等差中项,即b,A, a三个数成等差数列。
静下心来思考,在今后的教学中其实还应该注意:
1、在证明等差数列时,学生往往用有限的几个连续两项的差为常数就得到此数列为等差数列的'结论,其实这是一种不完全的归纳,是由特殊到一般,这种方法是不严密的。应该用等差数列的
数学表达式来证明。怎样用等差数列的数学表达式来证明等差数列还需要利用课堂时间进行专门训练,因为在高考有关数列的考题中往往第一问就是用定义证明等差数列。
2、用数学建模解决实际问题时绝不是单纯的几个计算而已,一定要强调格式,解应用题,数学模型一定要交代,而且要交代清楚,平时的训练中不能忽略这个问题,在对答案时要把文字部分反复几遍要学生用笔记在解答过程中,这样他们才能引起重视,以后学习解概率题时不会丢掉必要的文字叙述。
数列教学反思13
高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。本节课以学生为主体,教师为主导,充分调动了学生的积极性。教师教态自然,亲和力好,课堂气氛融洽。教学环节的设置松弛有度,从例题入手,探索实验,概括提炼,综合应用,步骤层次感强,学生参与度高,老师指导有方,引导得法,学生能充分体会成功的喜悦,从而促进学生学习的兴趣。
1.选题针对性强,点评到位
选材取自学生练习,针对性强,内容相对集中;从学生问题的点评答疑中,提炼结论,符合从具体到抽象的认知规律
2. 充分发挥学生学习的自主性
学生在课堂上体现了高度的参与和热情。学生对于本节课的`内容由于事先做好了导学案,所以有充分的思考和训练时间,通过合作学习,进一步应用定义解决问题,学生积极主动参与复习的全过程,特别是让学生参与归纳、整理的过程,为学生提供了充分的锻炼机会。
3.系统有效的完成教学任务
系统规划复习和训练的内容,帮助学生将所学的分散知识系统化。注意从学生的认识出发,通过学生解题的体验,挖掘提升数学方法和知识;注意细节和纠错,及时反馈作业中的问题。学生错误得到点评纠正,学生的思维和创造性得到提高。
数列教学反思14
在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考:
一、对内容的理解及相应的教学设计
1、“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题。因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念。
2、等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题。其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开。本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”。
3、用公式解决问题的内容很丰富。本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程。这样的处理比较恰当。
二、求和公式中的数学思想方法
在推导等差数列求和公式的过程中,有两种极其重要的数学思想方法。一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法。
从特殊到一般的探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。
从一般到特殊的化归思想方法的揭示是本节课的最大成功之处。以往人们常常只注意到“倒序相加”是推导等差数列求和公式的关键,而忽视了对为什么要这样做的思考。同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的.求和,求和的本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”。相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的思想精髓。不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现。
在等差数列求和公式的推导过程中,其实有这样一个问题链:
为什么要对和式分组配对?(因为想转化为相同数求和)
为什么要“倒序相加”?(因为可以避免项数奇偶性讨论)
为什么“倒序相加”能转化为相同数求和?(因为等差数列性质)
由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因。
三、几点看法
1、注意挖掘基础知识的教学内涵
对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地。其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上。
2、用好教材
现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图。当然,由于教材的客观局限性,还需要教师去处理教材。譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平。
3、学无止境
一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次。譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当。课没有最好只有更好!
数列教学反思15
今天讲授《等比数列前n项和公式》。引导学生探究等比数列前n项和公式是重要内容。在探究公式的计算方法时,让学生通过观察、分析、类比、联想解决问题。有意识地使学生在推导过程中,忽略公比q=1和q≠1的情形,从而突破了公比的q=1和q≠1难点,学生在推导公式中通过自己探究解决了“错位相减”的重要数学思想。高中新课程正强调对数学本质的认识,强调返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。
本节课后还有以下体会:
(1)以学生为主体
爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此数学学习的核心是思考,离开思考就没有真正的数学。这节课,通过创设了一系列的问题情景,边展示,边提问,让学生边观察,边思考,边讨论。鼓励学生积极参与教学活动,包括思维参与和行为参与,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程。在教学难点处适当放慢节奏,给学生充分的.时间进行思考与讨论,让学生做课堂的主人,充分发表自己的意见。激励的语言、轻松愉悦的氛围、民主的教学方式,使学生品尝到类比成功的欢愉。
(2)巧设情景,倡导自主探索、合作交流的学习方式
学生的数学学习活动不应只限于接受、记忆、模仿和练习,还应倡导自主探索、合作交流等学习方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下,不断经历感知、观察发现、归纳类比、抽象概括、演绎证明、反思与建构等思维过程,体验等比数列前n项和公式的“在创造”过程,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力。
苏霍姆林说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”本节课正是抓住学生的这一心理需求,从新课引入到课后作业,创设了一系列“数学探究”活动,为学生开展积极主动的、多样的学习方式,创设有利条件,激发了学生学习数学的兴趣,并鼓励学生在学习过程中,养成独立思考,积极探索的习惯。
【数列教学反思】相关文章:
数列教学反思05-18
数列求和教学反思06-03
《等差数列》教学反思05-16
等差数列教学反思04-09
数列的教案03-25
《等差数列》说课稿12-06
匆匆教学反思教学反思11-20
教学反思体育教学反思03-16
高中数学数列教案03-11