《三角形的内角和》教学反思
身为一名刚到岗的教师,课堂教学是我们的工作之一,教学反思能很好的记录下我们的课堂经验,那要怎么写好教学反思呢?以下是小编精心整理的《三角形的内角和》教学反思,仅供参考,欢迎大家阅读。
《三角形的内角和》教学反思1
课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的.动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;
第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:
1、 学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一 条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析, 留给学生的时间不足,这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。
《三角形的内角和》教学反思2
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、三角形分类的基础,学生也有提前预习的习惯,几乎孩子们都能回答出三角形的内角和是180度,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
本节课主要是学生在小组中合作探索,可以量一量、剪一剪、折一折。选择一种或者几种方法来验证三角形的内角和是180度,并运用所得的结论解决实际生活中的一些问题!让学生进行实验、动手操作、自主探索,使学生主动积极的参加到数学活动中来!
创设情境,营造研究氛围。怎样提供一个良好的学习平台,使学生有兴趣去研究三角形内角的和呢?为此我以生活中与三角形相关的例子引入课题,之后学生由课题引出疑问 “三角形的内角指的.是什么?”“三角形的内角和是多少?”然后让学生根据图形自己解答疑问。然后通过计算三角板上三角形的内角和,引发学生的猜想:其他三角形的内角和也是180°吗?带着这个疑问,让学生小组合作探索,验证。小组合作的时候,学生找到了三种方法,分别是量一量,剪一剪,折一折的方法。通过这三种方法验证了 “三角形的内角和是180°”的结论。然后将利用这一规律解决了刚开始的疑问。然后我给出三角形。再一次明确:不论三角形的大小如何变化,它的内角和是不变的。
在课堂上,我们要学会放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
《三角形的内角和》教学反思3
背景:
最近,张店区教研室举行了“青年教师优质课”评选,我们学校有位刚毕业一年的年轻教师参加。经过大家共同选教材、研究商量后,确定参评课题为“三角形的内角和”。这是新实验教材四年级下册的内容,从教材上看,教学内容比较简单,就是让学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180°,会应用这一规律进行计算。很显然,许多学生肯定有这样的知识经验,每个班都有部分学生已经能说出这一知识点。根据这样的现状我们让年轻教师根据自己的理解先备课、设计教学思路,随后我们进行了跟踪听课。
试讲教学片断:
创设情境,引入新知:
教师先出示色彩鲜艳,用卡纸制作的学具:钝角三角形、锐角三角形、直角三角形等,让学生分辨,复习上节课的内容。学生回答的轻车熟路,感觉非常简单。继而教师拿出直角三角形,说道:“请大家画出一个直角三角形。”很快,学生便大功告成,举起画完的作品让老师看。
老师边点头边露出赞许的微笑。接着提出第二个问题:“聪明的同学们,能不能画出有‘两个’直角的三角形呢?画画试试。”没出5秒钟,反应快的学生便脱口而出:“老师,画不出来!”老师紧接追问:“为什么呢?”学生:“因为三角形的内角和是180°,两个直角就是180°了,画不出第三个角了。所以画不成三角形。”学生说得太好了,老师赶紧接过了话题:“这位同学说三角形的内角和是180°,你们知道吗?”其他学生似乎还没明白怎么回事,只好连忙点头说知道。教师肯定的说:“是的,三角形的内角和就是180°,我们怎么想办法验证一下呢?请大家想想办法。”学生经过很长时间的合作、探究,得出了三种办法,全班交流汇报。练习分为基本练习和综合练习两个层次。学生计算的没多大问题。最后一题是思维拓展练习:研究一下四边形的内角和?五边形、六边形的内角和呢?多边形呢?因时间的关系,无一人能够想出策略。
反思:
教师创设情境采用的是给学生制造思维障碍的方法,让学生画出有“两个”直角的三角形,欲擒故纵,有其果,学生肯定会究其因,同时,还能让学生在体验中,寻找数学的真谛,此创设情境的方法真是妙哉。听课时,我也为他这样的设计感到高兴,心想,一定能产生好的教学效果,但事实却不是如此,学生一堂课显得比较沉闷,只有部分好学生在迎合老师,学生并没有充分的参与到数学学习中来。课后,我反复的思考,为什么会这样呢?后来发现原因有以下几点:
一是因为教师在出示问题时,没有把“两个”直角三角形的“两个”强调清楚,有许多学生没有听清要求;
二是因为教师没有留给学生充分的思考的时间,好学生反应快,答案脱口而出,其他学生思维还没产生任何的碰撞,更没经历实验的过程。
三是我们现在教育体制下的学生大都缺少质疑权威的意识和习惯,显得顺从,没有主张和个性。在好学生说出三角形的内角和是180°后,其他学生对于这一知识点真正知道的有多少?但正因为是好学生的回答,在其他学生眼中,这是学习的权威啊,他说的肯定是对的,结果大家只有稀里糊涂的点头附和,是的,三角形的内角和是180度。
在这一环节的教学中,很多学生就吃了夹生饭,根本没有透彻的理解和掌握。看似精彩的情境创设,如果得不到教师适度的调控和把握,也焕发不出它应有的光彩。
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。深刻的思考、仔细的推敲以上情境的.创设,也不难发现,它尽管有它的闪光点,但也有不足的地方,就是它的设计引入没有从大部分学生的知识经验出发,没有照顾到全体,知道三角形内角和是180°的学生毕竟是少数,这也就是它没能激发起学生学习欲望的原因所在。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境 ,激发学生的兴趣,让学生在学习数学中愉快地探索。
再者,最后一题,是在学习了三角形内角和基础上的拓展,任何多边形都可以转化为多个三角形来计算内角和,学生无一人能够想出办法,仔细想想,是我们的题目出的太难,还是学生太笨呢?都不是,是我们教师的引导作用没发挥出来,没能激发起学生学习的内部活力,也就无谈学生的动手实验、猜想、验证。当然,学生的实验、猜想、验证能力的培养并不是一堂课的问题,而是朝朝夕夕,无声无息的渗透。作为任何一个站在教学前沿的教师,我们都应有这样的教学理念,让自己的学生在数学学习中通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动丰富的探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
再次实践:
经过大家的共同评课和授课教师自己的反思,我们重新改变了创设情境的方法。
师出示一正方形纸,问:这是一张(正方形)的纸,它有(4)个角,这4个角在数学里,我们给它一个名称,把它叫做正方形的(内角),而且每个内角都是(直角),那么它的内角和是多少度呢?为什么?
生1:正方形的内角和是360°,因为每个内角都是90°,有4个内角,就是4个90°,也就是360°。
师:现在,我们把这个正方形纸沿着对角线剪开后会怎样呢?
(师演示,并指导生拿出正方形纸折一折、剪一剪)
生3:通过刚才的观察与操作,我发现这样沿对角线剪开后,得到了2个三角形,都是等腰直角三角形。
师:谁来猜想一下其中的1个三角形的内角和是多少度?
生:通过刚才的观察与操作,我发现三角形的内角和是180°。因为正方形的内角和是360°,沿对角线剪开后,等于把正方形平均分成了两份,也就是把360°平均分成两份,每份是180°,所以这个三角形的内角和是180°。
生:我发现三角形的内角和是180°。因为沿正方形对角线剪开后,等于把正方形原来的直角平均分成了两份,每份是45°,两个45°加上90°就得到180°,所以我知道三角形的内角和是180°。……
师:同学们猜的对不对呢?用什么办法可以知道?
生:验证。
师:对,需要经过验证。
(分小组对三角形进行验证。看它的内角和是不是180°)
组织学生汇报 (测量的同学边汇报边板书,剪拼的同学利用投影汇报。)
生1:我们用量角器对3个角进行了测量,再分别把3个角的度数相加,得出了内角和为360°。
生2:我们将这个直角三角形的两个锐角用量角器测量,把两个锐角相加是90°,再加上直角的度数,这样我们知道直角三角形的内角和是180°。
生3:我们小组将三角形的两个锐角剪下来,然后拼在一起组成了一个直角,再把另一个直角拿来拼在一起,这样组成了平角,证实直角三角形的内角和是180°。
生4:我们是先将一个角折过来,使它顶点落在底边上,再把另外两个角也折过来,这样三个角正好拼成一个平角,所以我们知道这个钝角三角形的内角和是180°。
《三角形的内角和》教学反思4
三角形的内角和是180°是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
成功之处:
1.教学中注意了两点:一是让学生理解“内角”“内角和”的含义;二是让学生为了使所得的结论具有普遍性,对锐角三角形、直角三角形、钝角三角形进行操作实验。
2.教学中采用让学生课前剪出锐角三角形、直角三角形、钝角三角形,然后量出每个角的度数,初步感知三角形的内角和的特征。课上让学生汇报三角形的内角和的度数有180°、178°182°等。由于学生在量、画三角形的过程中出现误差,导致出现三角形的内角和是180°左右,在此情形下,让学生通过小组合作交流,在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。探索验证三角形内角和的特征。通过学生间的合作交流、智慧碰撞、思维火花闪现,出现了剪一剪、折一折两种验证方法,从而得出三角形的内角和是180°这一三角形重要性质。
3.在解决问题中,明确应用三角形内角和是180°,可以解决在一个三角形中,已知两个角的度数,可以求第三个角的度数。
不足之处:
在对于直角三角形中,可以引导学生采用简便方法求出其中一个角的度数,对于直角三角形的.特点加以分析。
重视对直角三角形、等腰三角形中,求其中一个角度数的方法的对比练习,让学生比较清晰的解决特殊三角形的一个角的度数。
《三角形的内角和》教学反思5
在教学《三角形的内角和》这一课时,为了达到本节的教学目标,我在教学中根据学生的认知特点,放开手让学生去自己验证三角形的内角和是多少。
上课前学生就已经知道三角形的内角和是180°,为了让学明白为什么是180°,激发了学生的学习兴趣。在讲“三角形的内角和”时,开始就由大小不同的三个角(锐角、直角、钝角)争论谁的角大入手,导出锐角三角形、直角三角形、钝角三角形争论谁的内角和大。对于这场争论的`结果是什么,会引发学生的思考,究竟哪个三角形的内角和大?这也正是我本节课要与学生共同研究的问题。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我及时揭示课题,提出学习目标,引导学生讨论学习方法。当学生通过量一量、拼一拼、折一折之后得出自己的结论时,他们体验了成功,也学会了学习。在这节课中师生互动交流,共同找到了几种验证三角形内角和是180°方法,很好地体现了师生的双边活动。试想,如果上课之初,我自己一味的的去告诉他们三角形的内角和为什么是180°,并且告诉他们探究方法,我想即便告诉的方法再多,再详细,他们学到的也只是有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。
为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。
《三角形的内角和》教学反思6
“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
在课堂中,我引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的.三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
《三角形的内角和》教学反思7
1、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、面向实际的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、表达、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学习而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。
2、让每位学生都有所发展。这节课我进行了8次课堂巡视,其中4次参与学生的讨论、交流,两次分别对三名学困生进行重点辅导,巡视时关注面较广,目的性明确。但在“个别学生课堂行为表现”的重点观察中,一位学困生在前半节课中共举了两次手,未被我关注,之后再没举过一次手。课后这位学生找到我问我原因。我与他进行了个别谈话,问他为什么后半节课没再举手,回答是:“反正也不会提问到我。”学生的态度似乎有些不以为然,其实蕴含着不满。说明我们教师在课堂中不应忽略个体差异、害怕问题暴露,相反应充分重视、关爱学困生,让每位学生都有所发展。
3、对数学学习的评价要做到既关注学生学习的结果,更要重视他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。对学生的'精彩回答应予以热情的肯定,促使学生的思维更加活跃。
4、加强对学生的思维和方法的指导。创造一个好的数学问题情境,提供孩子们理解数学的模型和材料是教学设计活动中的第一步,但是要让学生看到其中所蕴涵的数学观念,作为教师不能让这些数学活动只停留在表面。
《三角形的内角和》教学反思8
一、教材分析
三角形的内角和这堂课的内容中心的知识点是一句话:三角形的内角和是180度。学生很容易掌握。但是,三角形的内角和为什么是180度,教材采用了观察三角板,引导学生提出疑问:是不是所有的三角形内角和都是180度,进而用三种不同类型的三角形折一折,验证出这个结论。可以说,教材本身的编排就是让学生在动手操作中自主得出结论,而不是死记硬背。
一、操作盲点
在教学中,我按照教材的意图,引导学生动手操作推导出三角形的内角和。让我感到遗憾的是,许多学生不知道如何去折三角形,以巡视的过程中,发现了许多错误的折法。我想,这一环节采用小组合作的形式也许会更好。但是小组合作有时候也会流于形式,不利于一些中下等学生自主思考。在小组合作这一形式的运用上,想达到效果真的是很难以把握的事情。
三、语言表达
不过,让我感到高兴的事,这一段时间一直在做的事情终于有了一点头绪,这一学期来,我一直在注重让学生用语言表达出自己的思想,昨天在课上,我发现有一些学生很愿意去说,而且说出来话的还是蛮有一点数学语言的味道的。譬如想想做做第1题,求一个直角三角形中一个锐角的度数时,大部分学生是用90度去减的,我问了一个为什么?有学生当即就说:是因为直角三角形另外两个锐角的和加起来是90度,所以只要用90度去减就可以了。很简单的一句话,让我很有成功感,因为出自学生的口中,我班上是这样一种情况,大多数学生会做但是却不愿意用语言去表达,而我一向认为,语言是思维的外壳,不说如何能表达自己的思想,大胆自信地表达自己的语言,对自己的性格也是一种很好的训练。所以强调一定要去说。经过一段时间的强调,终于初见希望。真是心情很好。
今天讲了三角形的内角和,因为有些学生已经知道了三角形的内角和是180度,而且为了使课上生动我故意没有让他们课前预习。当我揭示课题后,学生中有几位按捺不住激动,小声嘀咕是180度。我于是顺势提问,同意他们的意见的`举手,一半以上的学生不约而同举起了手。我说到底是不是呢?你们有什么办法可以去验证。我让他们拿出课前准备的三角形,小组讨论后动手验证。经过巡视发现所有的小组都想到了通过量出各个三角形的内角再计算出内角和来验证的。我让他们再想想有没有别的方法可以验证出三角形的内角和是180度的。可惜只有两个小组通过动手折一折来验证的,在他们的演示后我在黑板上的三角形上板书出各个角的度数及三只角的度数和的算式。同时我让他们对直角三角形的内角和等式进行观察,他们发现了其中的两个锐角和总是90度。我提问通过折我们把三角形的三只内角拼在一起组成一个平角,还有没有其他办法也可以把三只角拼一拼的,可惜没有一个同学想到把三只角撕下来拼的。以前教的时候好像学生想到的方法比现在的学生多,这让我很难过和想不通。是不是我平时的教学没有最大程度地调动起学生的学习激情?是不是我平时的教学有过于急而没有给学生足够的时间思考?是不是我平时总有越俎代庖的现象?……可是我觉得平时我还是就最大程度注意到这些的,看来教学的确是值得我们永久去实践、探索的。
《三角形的内角和》教学反思9
在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:
1、学生小组合作学习的能力还有待于进一步培养
在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的`过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。
2、我本身驾驭课堂的能力还有待于提高
由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
《三角形的内角和》教学反思10
笔者在执教四上数学时,接到数学片开课的通知,反复思量最后选择了四下的《三角形的内角和》这一教学内容。一开始有的老师认为不可以,因为四下的《三角形的内角和》这个内容之前需要先上三个内容,即:认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边。如果给四上的学生上这个内容就违背了教材内容编排的有序性和知识的连续性。但是,难道一定要了解了三角形的特性,对三角形进行分类,知道三角形的三边关系之后再来研究三角形的内角和?难道就不能在学生对三角形有一定的感性认识的基础上,学习了角的分类和会量角之后,让学生去探究三角形的内角和进而研究多边形的内角和?最后经过反复思考,笔者作大胆的尝试,最终还是选择了这一教学内容。因为我们不能过于迷信我们的教材,不能盯死一套教材,不能过分的依赖教材。正如开头时讲到的,教材是滞后的,生活是现实的,我们教师则应该勇于探索,敢于实践,充分发挥教材的优势,把握教材的体系,做教材的开拓者。
新一轮基础教育课程改革,改变了课程内容难繁偏旧和过于注重书本知识的现状,赋予教师更多的权力,教师不仅仅是课程的实施者,同时还是课程的开发者。而把握教材提出自己的教学目标和教学重难点是对一个教师最基本的要求。新课程背景下的数学教师要转变观念,不能成为教材的奴隶,而要对教材内容进行开发,变教材是学生的世界为世界是学生的教材,与学生共同讨论、探索,在不断的积累中形成开放而充满活力的课堂。
在实验教科书四年级上册数学第二单元《角的度量》的学习过程中,学生已经学会量角,知道了角的分类,于是笔者灵活的处理了教材,在学生对三角形有一定的感性认识,刚学会了量角以及对角的分类有了一定的认识的基础上制定了新的教学目标: 1、在学生已有的认知基础上,让学生经历量一量、拼一拼等数学活动验证三角形内角和是180°,并会应用这一知识解决四边形的内和角。2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点是引导学生用量、撕、拼等方法验证三角形的内角和是180度。教学难点是引导学生通过自主探索来得出任意三角形的内角和等于180度,进而利用这个知识来解决四边形的内角和。多次
试教下来,发现对教学目标的定位是比较明确的,重点放在让学生体验验证三角形的内角和等于180度这一数学探究过程。但对于教学重难点的把握是经过反复修改而形成的。因为,这一内容如果只是让学生知道三角形的内角和那么就没有深度,而本节课的.深度究竟应该挖到哪里呢?事后发现,四年级上学期的学生在教师的引导帮助下,能够借助三角形的内角和等于180度进而得出四边形的内角和等于360度,但是,如果要学生进而得出五边形,六边形的内角和,最终发现所有多边形内角和的计算规律,在这一节课上是实现不了的。所以,本节课的难点定位是学生能够根据三角形的内角和等于180度,知道可以将四边形变成两个三角形,一个三角形的内角和等于180度,那么四边形的内角和等于360度。
肖川认为“对教师而言,上课是与人的交往,而不单纯是劳作;是艺术创造而不仅仅是教授;是生命活动和自我实现的方式,而不是无谓的牺牲和时光的耗费;是自我发现和探索真理的过程,而不是简单地展示结论”。
所以,为了实现教学过程的创新与生成,笔者经过多次的实践,本节课最后的教学过程设计方案如下:从平面图形引入,然后通过长方形来揭示内角概念,通过探究长方形的内角和是多少?自然引入三角形有几个内角,三角形的内角和是多少?你们确定吗?让学生大胆的猜想,学生都能想到三角尺中的两个特殊的三角形的内角和等于180度,然后追问:我们手中的三角尺的内角和是180度,是不是说明三角形的内角和都等于180度?这样通过特殊三角形到一般的三角形,引导学生自主探索三角形的内角和是多少度。学生大多认为通过测量可以来验证,但是活动之后用测量的方法难免有误差,于是老师就追问:有的同学量出来是正好是180度,有的是接近180度?这样你能确定三角形的内角和等于180吗?那么怎么办呢?你有什么其他的好办法呢?接着教师引导“如果三角形的内角和是180度,那么把它的三个内角拼起来,你觉得会拼成什么?”引出了用拼一拼一方法将三角形的三个内角拼成一个平角。而学生对于怎么拼还有疑惑,于是教师就在黑板上演示用撕的方法将三个内角拼在一起,然后再让各小组试试用拼一拼的方法,最后在交流的时候特地找那些量的不准的小组进行展示,所有的小组拼出来的结果都是等于180度,这样就能得出我们想要的结论。练习环节先是知道其中的两个角求第三个角,交流时体现了算法的多样化,然后是让学生用两块完全一样的三角形拼成一个图形,这样的题目比较有思考的空间,也有创意性,因为拼成的图形可以是大三角形,长方形,正方形,平行四边形。如果是看成大三角形,那么这个三角形的内角和还是等于180度,即又巩固和深化了三角形的内角和等于180度,而长方形,正方形的内角和在一开始上课时已经知道是360度,那么现在我们学习了三角形的内角和等于180度之后,现在我们可以将它们的内角和看成什么呢?学生会说看成两个一样的三角形,两个三角形的内角和相加等于360度。而接着追问平行四边形的内角和呢?学生也能自然的说出。最后追问一个任意的四边形的内角和呢?有学生会说,可以看成两个三角形,但这两个三角形的大小形状不同。但是,任意三角形的内角和都等于180度,所以四边形的内角和都可以看成是两个三角形的内角和,进而得出了四边形的同角和,同时发了练习纸引导学生在课外探究五边形、六边形的内角和是多少。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神,顺利的达成了教学目标,解决了教学重难点。
几节课上下来,笔者越来越肯定,教师完全可以做教材的开拓者,只要合理的对教材进行了整改分析,巧妙的设计练习,准确的了解学生的认知起点,反复的琢磨教学过程并进行创新,对学习材料进行思考与选择,就能打破教材的编排次序,让学生重新整合知识,实现知识的优化与提升,最终促进学生创造与发展。
《三角形的内角和》教学反思11
二学期几何里一个重要的知识点——三角形内角和,是在学生认识了三角形的特点和分类的基础上这一节课进一步对三角形内角之间的关系的学习和探究。本课设计的出发点在于运用先进的多媒体手段让学生直观感知三角形内角和的特点。
这节课上完之后,我在课后进行了小结,也听取了经验丰富的教师的分析,收获很大,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:
1.在本次授课中,引入是比较恰当的。我是从学生原有的对图形的认识的感性知识进行引入的,先出示一个长方形,让学生说出它的内角和是多少度,学生用之前学过的知识都知道,长方形有四个直角,那么加起来就是360°,然后又用正方形,由于正方形和长方形有一个同样的特征,所以学生也很容易就能回答出来它的内角和是多少。再将正方形沿着对边剪开,分成两个三角形,这个时候问学生:你们能猜出三角形的内角和是多少吗?这样的引入和从旧知到新知的过渡,非常地自然,学生也较容易进行猜想。
2.利用多媒体手段让学生直观感知三角形内角和的特点。用动画演示撕角拼一拼,折角,让学生可以非常直观地认识三角形内角和的.特点,印象非常深刻,也给学生在进行动手操作时以正确的指引。
3.小组合作,自主探究。整一节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人我讲完整节课而学生只是听。
4.在学生进行猜想之后,让学生开始动手实验,测量三角形的三个内角的度数并填表,这个环节在处理的时候不是很得当,因为量角在学生来说,本来就是一个难点,没有很好的掌握量角的技巧导致没能准确地量角,而且在本节课中,要进行量角实验的三角形个数较多,学生不能很好地进行小组分工,所以在这个地方花费了不少的时间,而结果量出来的度数也不是很精确,虽说在测量中允许有误差,但是这与一开始的教学设计出发点有出入,达不到很好验证猜想的效果。
一节课下来,总的感觉还可以,学生能够掌握本节课的重点和难点,达到预期中的教学效果,但是课堂中的教学常规还不是很规范,虽然使用了多媒体课件进行辅助教学,但是却忽略了传统教学中的优势,不能很好地将两者结合起来运用,这是今后教学中必须引起重视的地方。
《三角形的内角和》教学反思12
《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的内角和是180°,然后质疑:那是不是所有的三角形的内角和都是180°呢?这个问题一抛出去马上激发学生的学习
热情。接着就让学生来验证三角形的内角和。验证过程分两部分来进行,先通过量一量、算一算的方法让学生验证各类三角形的内角和,一是加深对三角形内角和的理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三
个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的'严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。
本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
《三角形的内角和》教学反思13
在“三角形内角和”这一内容的教学时,采用的教学方式是教给学生测量或者是撕拼的方法,然后得出结论,进行应用。虽然可以节省时间,短期内收到较好的效果,特别是要求学生把结论给记住,学生应用结论解决相关问题一般是不会有困难的。但把数学知识的发生过程轻描淡写,缺乏探究过程,这样学数学,学生感觉学得累,很乏味,在他们的感受中,数学渐渐地变成枯燥无味的了。本节课应着眼于学生的能力和学习数学的兴趣,上课一开始,可通过创设动画的问题情境,以较好地激发了学生的学习兴趣,然后给学生提供一些材料,让学生以先独立思考再合作的方式,为学生留有足够的空间去探究出结论。学生通过测量、撕拼、折叠等方法,探究出三角形内角和的结论。方法不是唯一的,对于学生通过独立思考出来的'解决问题的多种策略,教师适时给予鼓励表扬,特别是对学生解决问题的思维方法给予充分的肯定。在这一过程中,学生又出现不同的理解和观点,产生真实的辩论,从而更深刻地理解了“三角形内角和是180度的结论。如此学生收获的不仅仅是数学知识,更多的是对学习数学的兴趣和信心,获得的是解决问题的策略和方法。
而后,通过拓展应用环节,再让学生通过应用练习和发展性练习,既巩固了本节课的知识,又培养了学生思维的灵活性和深刻性,使学生进一步深入理解了“任何三角形内角和都是180度。”这一结论,并大胆猜测推算出长方形和正方形的内角和。
《三角形的内角和》教学反思14
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1.重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2.在动手操作中验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的'方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3.重视问题预设,培养“空间观念”。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
《三角形的内角和》教学反思15
“三角形内角和”是北师大版数学四年级下册第二单元认识图形的一节探索与发现课,使学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围。
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的`对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在导入“研究三角形内角和”时,没有按课前设计的进行,学生直接说出“三角形的内角和是180°”。而我本身却没有顺势进行引导,直接抛出“研究三角形内角和”这一任务,更巧妙的是借此机会鼓励学生,以“验证三角形内角和是不是1800”入手。这一处成为本节课最大的失误。
二、小组合作,自主探究。
“是否任何三角形内角和都是180°”,如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生说一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难。
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是判断题,让学生应用结论检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足。
在教学中,由于我对学生了解的不够充分,没有很好的电动学生发言的积极性,另外的原因是教师本身语言枯燥,过渡语设计的不够精彩,也影响了学生的学习兴趣,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
【《三角形的内角和》教学反思】相关文章:
《三角形的内角和》教学反思03-03
《三角形的内角和》教学反思15篇03-22
《三角形内角和》教学设计04-07
《三角形的内角和》教案05-17
三角形的内角和说课稿07-29
三角形内角和教案汇总7篇05-15
四年级《三角形内角和》教学设计07-02
三角形的内角和数学教学设计07-04
三角形内角和教案集合7篇05-15
四年级《三角形内角和》教学设计7篇07-04