当前位置:范文派>教学范文>教学反思>《乘法分配律》教学反思

《乘法分配律》教学反思

时间:2024-11-08 17:24:25 教学反思 我要投稿

《乘法分配律》教学反思

  作为一名优秀的人民教师,教学是我们的工作之一,在写教学反思的时候可以反思自己的教学失误,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的《乘法分配律》教学反思,欢迎大家分享。

《乘法分配律》教学反思

《乘法分配律》教学反思1

  ①1355+5587=55(13+87)=5513+5587

  ②8(125+9)=8125+9

  ③(100-7)25=10025+725

  ④9947=(100-1)47=10047-1

  ⑤35201=35(201-1)

  ⑥79125=125(80-1)=12580+1251

  ⑦79125=125(80-1)=12580-1

  ⑧1252532=1258+425

  ⑨88125=808125

  ⑩24335=(245)33=10033

  学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的'和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

  3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解

  如:12588;10189你能有几种方法?12588①竖式计算②125811③125(80+8)④(100+25)88等等。10189①竖式计算②(100+1)89③101(100-1)④101(80+9)⑤101(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的

  4、多练

  针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。

  对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。

  只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。

《乘法分配律》教学反思2

  记得曾经在教孩子们乘法分配律的时候,总是遇到很多问题,对于乘法分配律的应用不是很好,吐槽了很久,现在在教二年级的孩子的.时候,我发现其实在二年级已经接触了这方面的知识,只是没有进行归纳而已。

  二年级的课本上有这样一种题型,如:

  (1)6x9=5x9+9=7x9—9=

  (2)9x4=9x3+9=

  9x5—9=

  (3)8x9=7x9+9=9x9—9=

  先计算,你发现了什么?

  我一看到这题,我就想到乘法分配律,但是在二年级刚接触乘法,不可能就跟他们讲乘法分配律。我在上练习课的时候我特意把这题拿出来讲了,我想如果这里学生题解好了,对以后学习乘法分配律是有帮助的。在课堂上,我先让学生自己完成,第一题的第2,3个算式,他们是按照运算顺序来计算的,先算乘法,再算加法或减法,这个没有难度,而且他们根据第一题,后面的两题都不要做,直接写出了结果,每一题中的3个算式的结果是一样的。我就问他们,为什么会出现这样情况?学生就答不上来。我就举了个示范,6x9是6个9相加,5x9+9是5个9相加再加1个9,5个9加1个9是6个9,6个9相加就是6x9,所以5x9+9=6x9=54。学习了乘法的意义,对于这个他们能理解,只是想不到而已,那么7x9—9=,可以交给孩子们完成,第(2)(3)题我也是让学生来说一说。另外我还补充了一题,6x7—14,我发现竟然有孩子会想到14就是2个7,6个7减去2个7就是4个7,就是4x7=28。特别棒!

《乘法分配律》教学反思3

  关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

  首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

  其次,我在学生解决完例题的问题后,还让学生提了减法的'问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

  最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的.特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

  不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

《乘法分配律》教学反思4

  乘法分配律是教学的难点也是重点。这节课采用从生活中的问题入手,利用学生感兴趣的具体情境展开。这节课我力图将教学生学会知识,变为指导学生会学知识,将重视结论的记忆变为重视学生获取结论的体验和感悟,将模仿式的学习变为探究式的学习。学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。这样不仅让学生获得了数学基础知识和基本技能,而且更能培养学生主动探究、发现知识的能力。回顾整个教学过程,这节课的亮点体现在以下几个方面:

  一、从身边引入熟悉的生活问题,激趣探究

  我们在教学中要为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。在教学时,我先创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。我利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

  二、为学生提供了自己独立探究的机会

  数学教学应该是数学教学的活动。传统的教学活动往往只重视结论的记忆,而这节课我把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现,去探索。尤其是在学生初步感悟到两种算法相等关系的基础上,继续为学生创造一个思考的情景。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的'认识。

  三、为学生的学习方式的转变创设了条件

  模仿学习,学生“知其然,而不知其所以然”,知识容易遗忘,而且不能灵活应用。改变学生的学习方式,让学生进行探索性的学习,不能是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

《乘法分配律》教学反思5

  义务教育课程标准实验教科书(北京师范大学出版社)五年级下册数学第81~82页《分数混合运算(二)》中,关于“整数的运算律在分数的运算中同样适用”这一教学内容,在课堂教学中,为了充分发挥学生学习的主体性和积极性,让学生在学习新知识的过程中能把新旧知识结合起来,我在课堂教学中,主要做到如下几点:

  一、提出简单问题,让学生运用已学知识加以解决

  在复习中,出示整数乘法的简算练习:

  25×17×4 125×32×25 53×69+47×69 101×85

  通过复习,引导学生得出已学习过的整数乘法运算定律,并板书:乘法交换律:a×b=b×a

  乘法结合律:a×b×c=a×(b×c)

  乘法分配律:(a+b)×c=a×b+b×c

  二、利用数学相关信息,引导学生主动参与数学学习活动,提高学生运算能力

  《义务教育数学课程标准》指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。”据此,我在导入新课后出示如下尝试题让学生练习:

  56×17×35 59×14+49×14

  因为学生在复习中已经熟悉了整数乘法运算定律,所以在尝试练习中大部分学生都能大胆运用整数乘法运算定律来解决尝试题,但也有一小部分学生运用四则混合运算顺序来算出答案。我根据练习的实际情况,每道题各让4名学生在黑板上板演(其中2名学生用简算、2名学生按运算顺序算)。然后让学生观察、比较、讨论异同,引导学生加以概括,得到“乘法的运算定律在分数的运算中同样适用”这一结论。此时,我再适当引导,让学生明白:在计算中,我们学习过的加法运算律、乘法运算律等“整数的运算律在分数的运算中同样适用”这一教学重点;接着,再引导学生概括得出:连减的性质、连除的`性质等“整数的运算性质在分数的运算中同样适用”这一延伸的知识内容。

  三、因势利导、适时调控,努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动

  数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”在新课教学以后,我趁热打铁,在巩固练习中出示如下练习题:

  823-(23+47)517×932×3415

  (58+712)×48 86×8485

  上述四道题,前三道题大部分学生都能根据已学知识用运算律来解答,但对于86×8485,很多学生都认为不能用运算律来简算,在解答过程中都用已学过的分数乘法的计算法则算出答案。于是,我让学生讨论,看谁有办法用简算的办法算出这道题的答案,鼓励学生学会独立思考。通过几分钟的讨论,相当一部分学生都确定这道题可用乘法分配律进行简算,只不过在简算时要先把86×8485改写成(85+1)×8485,然后再用乘法分配律即可计算出答案。

《乘法分配律》教学反思6

  乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。

  一、抓住重点。让学生理解乘法分配律的意义。

  在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。

  我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。

  二、考虑学生的学习情况,尊重他们的主观感受。

  在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的.。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。

  三、练习中注意乘法分配律的变式。

  乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1) 和74×20+74.一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。

  今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45__5+65__5和(45+65)__5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45__5+65__5=(45+65)__5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。

《乘法分配律》教学反思7

  本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。

  在充分感知的基础上引导学生比较这几组等式,发现有什么规律?

  这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的`方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。

  如:书上第55页的第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。

《乘法分配律》教学反思8

  乘法分配律是所有运算律中形式变化较为复杂,且跨越加法和乘法两级运算的定律,对学生的记忆、理解与运用都提出了较高的要求。教学中,教师需要在探析错因、读法纠正、变式训练上做足功夫,巧制策略。学生在正式接触乘法分配律之前,学生陆续掌握了加法和乘法的交换律和结合律,并能熟练使用这些定律进行简单的运算。照常理推测,同为等式恒等变换,借助已有的经验,学生对于乘法分配律应该很容易接受。然而,实际情况却不容乐观,学生在运用乘法分配律进行简算时出错率较高。为此,教师应巧制策略,帮助学生克服困难。

  如何帮学生建立数学模型,展现乘法分配律的性质,是教学的根本,也是学生理解的前提。要让学生对乘法分配律有深刻准确的记忆和理解,用最符合学生心理特征的方式进行阐述才是上策。

  为此,我改进了教学方式——切换读法,化难为易。

  [例题]植树节那天,学校组织二(1)班的学生植树,上午植树4小时,下午植树2小时,平均每小时植树25棵,问:植树节那天,学生一共植树多少棵?

  步骤1:学生列式多为“25×4+25×2”和“25×(4+2)”两种式子。

  步骤2:简述各算式的算理:25×4+25×2表示先分别求出半天的'植树数,再求一天的植树总数;25×(4+2)表示先求植树总时长,再求植树总数。

  步骤3:引导学生从数字计算的角度去理解:25×4+25×2表示两个积的和,25×(4+2)表示两个数的积。接着用一句话揭示它们的共同点:4个25加上2个25等于6个25,6就是4与2的和。以实例为对象,换成通俗的说法,完美呈现了算式的内涵,深化了学生的理解。

  步骤4:针对代数式表示的乘法分配律“a×c+b×c=(a+b)×c”,让学生尝试用通俗方式解读,即a个c加上b个c等于(a+b)个c。

  实践证明,渗入思维的读法比机械复读教学效果要好。

《乘法分配律》教学反思9

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。

  一、创设师生竞赛,激发学习欲望。

  上课教师先出示:

  (1)8×(125+11)

  (2)(100+1)×23

  (3 )648×5+352×5

  老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。

  结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。

  这样的导入让学生充满了求知的欲望,激发了学习的热情。

  二、设计思考问题,学生自主探究。

  出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。

  讨论:

  1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?

  2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。

  生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

  整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  三、练习有坡度,前后有呼应。

  在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的`延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的'思维能力。

  总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。

《乘法分配律》教学反思10

  教学乘法分配律之后,发现学生的正确率偏低,特别是在简算时该选用乘法结合律还是乘法分配律搞不清楚。针对这种情况,在教学中应该注意些什么呢?

  一、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

  教学中通过解决“济青高速公路全长多少千米”这一问题,结合具体的生活情景,得到了(110+90)x2=110x2+90x2”这一结果,教学中只注重了等式的外形特点,即两个数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解两个算式是相等的,还要从乘法意义的角度理解,即左边表示200个2,右边也表示200个2。所以(110+90)x2=110x2+90x2

  二、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的.特征?应用运算定律可以使计算简便吗?为什么要这样算?

  三、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8)等。101×89①竖式计算;②(100+1)×89;③101×(80+9)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行简算,乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

  四、多练。

  针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如68×25+68+68×74,32×125×25等

《乘法分配律》教学反思11

  这是我对自己上的有关乘法分配律的一课的教学反思,我让她们每次上完课都写一写反思,我想这样她才能真正从实习中有所收获。她的教学反思如下:

  乘法分配律不仅是本章的难点也是四年级学习的重点和难点。它是学生学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,它的重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。因此在教学过程中,怎样引导学生成为重中之重。我的教学思路大体为以下几点:

  第一:在开始的课上,与学生一起回忆了乘法交换律与乘法结合律,做到温故而知新,不至于学生了解乘法分配律时与前两个运算定律相混。

  第二:通过询问学生关于校服的问题引入需要解决的问题,在此环节中,我询问了学生们现在的校服是什么样子的',接着呈现了,事先准备好的班级同学穿校服的照片,这样,学生们就会体会到,这堂课与他们息息相关,然后我又问他们想拥有什么样的校服,接着又呈现了搜索到的几张关于校服的个性图片,于是探讨乘法分配律之旅,轰轰烈烈的开始了。

  第二:教材中此出问题的主题图是关于植树的问题,但考虑到学生的理解能力有限,我将题目改成校服上衣价钱,校服裤子价钱与总价钱的问题,这样一来,更贴近学生生活。

  第三:让学生列示计算的同时请两名同学上黑板做题,这样就节省了一些时间,但仍有不足。

  不足及改进:

  第一:学生在黑板上书写很是不规范,占去了黑板的很大空间,导致我在询问其他同学答题步骤及板书时无处可写,黑板书写有些许乱。

  第二:在两名同学书写完下去之后,我接着就询问了其他同学的不同做法,于是学生只要有一点计算步骤不同的就举手回答,导致回答不完,但各种方法又相似,黑板罗列太多,学生分不清主次。我想如果在来那名同学书写完后,先不让他们下去,而是留在讲台上解释自己的先算什么后算什么,这样下面的同学也就晓得自己的解题步骤到底属于哪一种,从而也可以节省部分时间。

  第三:在解释乘法分配律意义方面不清楚,几种理解方法过于着急地解释给学生,导致学生听得的迷迷糊糊。在这方面,我应该更加清晰地理清自己的思路,该怎样循序渐进的向学生解释这种运算方法的意义。如先理解在题意中先算什么后算什么,再脱离情境观察数的特点,先算的谁和谁的积又算谁和谁的积,最后再怎样,自然而然,学生会发现有共同的数,进而引导理解30个45加上20个45等于50个45。

  总之乘法分配律确实并不是很好理解,再加上老师不太能抓住重点,虽然课前我一再给她讲这地方那地方如何引导和如何讲,但是她还是被学生给带偏了,讲解的不透彻,再加上不会维持学生听课,所以学生掌握的不是很好。事后我又讲了练习课加以巩固,但是先入为主,并且也不像例题讲的那么详细,还是有几个孩子比较糊涂。所以单元测试中乘法分配律出错最多。

《乘法分配律》教学反思12

  乘法分配律是小学阶段学生比较难理解与叙述的运算定律,但的确又非常重要、运用广泛。在本节教学过程的设计上我采用了让孩子通过“联系实际、感知建模;分类整理,生成模型;发现规律,举例验证;表示规律,建构模型;概括规律,完善模型;应用规律,感受模型”的探索过程,完成本节的教学任务。

  在教学过程中,以突破乘法分配律的教学重点和难点为切入点,对本节课知识的学习起到了举足轻重的作用。根据自己的教学教训,在平常的教学中,总是发现学生在学习完乘法分配律之后容易出现(a+b)×c=a×c+b的.现象仔细研究其原因,其实是学生学的记的只是乘法分配律的外在形式,对公式只不过是表面肤浅的忘记,而没有真正理解乘法分配律内在的数学意义。因此,我就打破通过观察 发现 猜想 验证 概括的传统教学思路,除了在外在形式上认识规律(教材意图),又从乘法的意义入手,使学生进一步从算式意义方面得出了(a+b)×c=a×b+b×c这样确凿无疑的结论。让学生对乘法分配律的理解不再只是停留在外在的“形”,而是又进入“质”的深化。这种教学建立在学生认知规律的基础之上,实现了有效的建立模型突破了本节的第一个难点。从课后作业可以看出,这种教学效果明显好于以前。

  在突破本节第二个难点:乘法分配律容易跟乘法结合律混淆的现象时。敢于挑战自我,不再泛泛地讲两个规律的区别与联系,而采用反式教学写出25×(4×8)=25×4+25×8的现象,让学生既懂得乘法结合律和分配律的区别,又找到了乘法分配律概念的重点。

  在本节课的练习设计上,力求有针对性、有坡度的知识延伸,出示扩展型的练习,对分配律的概念加以升华。

  这些方面,只是我对自己原来的教学在反思与对比中觉得是对我而言较为进步的一点点。但是,在实际的课堂操作中,整个教学过程也出现了许多不尽人意的地方。

  比如:课堂上由于紧强导致只顾自己思路,而忘了对学生的回答或知识的恰当与否做出及时评定。还有,恐怕在规定时间内完不成任务,而把“总结”与“拓展”放错了位置;学生参与的积极性没有预想中那么高,可能与我相对缺乏激励性语言有关等等问题。

  深入思考,觉得还是自己的业务不够熟练,驾驭课堂能力低下而造成的。因此,我想:今后要从以下几方面努力:

  一、深入钻研,在挖掘教材上下功夫。

  二、多听课,学习别人长处,多查阅资料学习,提高自己的业务水平。

  最重要的是更新教学理念,在教学思路的“创新”上狠下功夫,让学生看到的天天都是“新”老师,甚至忘记“传统”形象,这是我最高的追求目标。

《乘法分配律》教学反思13

  乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是四年级学习的重点,也是难点之一。也是一节比较抽象的概念课,教学时我根据教学内容的特点,为学生提供了多种探究方法,激发了学生的自主意识。

  上课时,我以轻松愉快的闲聊方式出示我们身边最熟悉的教学资源,以教室地面引出长方形面积的计算,两种方法解决问题,得出算式:(8+6)×2=8×2+6×2,从上面的观察与分析中,你能发现什么规律?通过观察算式,寻找规律。让学生在讨论中初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。从而让学生知道乘法分配律给大家计算带来的便利。从而感受数学的美。

  这堂课由具体到抽象,大多需要学生体验得来,上下来感觉很好,学生很投入,似乎都掌握了,可在练习时还是发现了一些问题。如:学生在学习时知道“分别”的意思,也提醒大家注意,但在实际运用中,还是出现了漏乘的现象。针对这一现象我认为在练习课时要加以改进。注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。

  乘法分配律在乘法的运算定律中是一个比较难理解的定律,因此在上课前我作了充分的准备。因为学生在三年级时已经学过求长方形周长的两种通过一节课的学习,学生对乘法分配律的大致规律能理解,也能灵活运用,但是要求用语言来归纳或用字母表示乘法分配律的规律,有部分学生就感到很为难了。感觉他们只能意会不能言传般。课本中关于乘法分配律只有一个植树的例题,但是练习中有关乘法分配律的运用却灵活而多变,学生们应用起来有些不知所措,针对这种现状,我把乘法分配律的运用进行了归类,分别取个名字,让学生能针对不同的题目能灵活应用。

  乘法分配律大致上有这样三类

  一、平均分配法。如:(125+50)*8=125*8+50*8.即125和50要进行平均分配,都要和8相乘。不能只把其中一个数字与8相乘,这样不公平,称不上是平均分配法,学生印象很深刻,开始还有部分学生只选择一个数与8相乘,归纳方法后学生都能正确应用了。

  二、提取公因数法。如:25*40+25*60=25*(40+60)解题关键:找准两个乘法式子中公有的因数,提取出公因数后,剩下的另一个数字该相加还是该相减,看符号就能确定了。

  三:拆分法。如:102*45=(100+2)*45=100*45+2*45这类题的关键在于观察那个数字最接近整百数,将它拆分成整百数加一个数或者整百数减去一个数,再应用惩罚的分配率进行简算。有了归类,学生再见到题目就能依据数字或运算符号的特征熟练进行乘法分配律的简算了。

  以这个为切入点,从而比较顺利地引入新课,正好那天是植树节所以我又创让“打比方”成为数学课堂的闪光点。

  凡是教过小学数学乘法运算律的教师都会体会到“乘法分配律”是乘法运算律中最难掌握的。学生在做练习题中错误最多。所以课前我对教材进行了身队深度的剖析和思考。最后想出了用打比方突破课堂难点。虽然我们的“比方”有时看来似乎有点不恰当,但是这种比方对开发学生的想象力,推理能力以及拓展思路竟达到了意想不到的效果。我是这样做的:

  我由解决问题引出乘法分配律的等式,但我没有急于给学生灌注这叫乘法分配率,而是写下了这样一个式子;{姐姐+我}×妈妈=姐姐×妈妈+我×妈妈然后提问:“谁能解释为什么我这样写吗?思维活跃的学生马上就会回答:“因为妈妈是你和姐姐共有的,所以你和姐姐都有资格和妈妈在一起。”......学生们的学习兴趣一下被调动起来了,他们明白了数学原来也是通俗易懂的。然后我再让他们阅读教材,给这个看似“不恰当”的比方定性为“乘法分配率”。归纳整合为字母算式:(a+b)×c=a×c+b×c,这时我再此让学生展开联想,让他们学着老金刚怒目在自己身边和生活中进行举例,学生很快举出(上衣+裤子)×人=上衣×人+裤子×人,(铅笔+圆珠笔)×本子=铅笔×本子+圆珠笔×本子等例子等不是十分贴切,但却富有情趣,孩子在编例子的同时,其实已把握了乘法分配律的特征,学生就不会出现(a+b)×c=a×c+b的错误,在生动活泼的“打比方”中,既带给了学生体验学习的快乐,又让我们枯燥深奥的数学概念成为形象而具体的理解形成,这种教法我在教“乘法交换律”时也用到过,我在结尾时把它总结为“左右搬家”然后讲了个铺子搬家的故事,学生们在津津乐道的故事中,在形象贴切的“打比方”中学懂了数学知识,收到了良好的效果,真正使数学课堂贴近生活。

  设了这样一个情境,“一共有25个小组参加植树 乘法分配律在乘法的运算定律中是一个比较难乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的'。乘法分配律也是学习这几个定律中的难点。对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。

  以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,提出问题:共有多少名同学参加了这次植树活动?通过两种方法和算式的比较,使学生初步感知乘法分配律。

  展示知识的发生过程,引导学生积极主动探究。先让学生根据问题,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式,让学生观察,初步感知“乘法分配律”。然后要求学生照样子说出几组这样的等式,引导学生再观察,让学生说明自己发现的规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

  最后让学生比较乘法交换律和结合律与分配率的最大区别,前者只在连乘的同一级运算中运用,后者是在两级运算中运用,所以,看清题目是一级运算还是两级运算对决定算法非常重要。这节课虽然成功引导学生发现了定律,但教完之后,在练习过程中还有部分学生掌握不好,在后一阶段依然要加强练习,边练习边总结算法,使学生达到熟能生巧的程度。

《乘法分配律》教学反思14

  新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的.定律。因此在教学中我设计了一些学生熟悉的问题,让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。

  1、分组比赛,激发学习兴趣。

  为了激发学生的学习兴趣,调动学生探究的积极性,首先设计两道题(4+2)×25 4×25+2×25,把学生分成两组进行比赛。通过比赛让学生发现这两道题结果是相等的,它们可以用一个等号连接起来,但第二题做起来比较快而且比较简单。可他们之间有什么联系和规律不急着让学生进行探究而把悬念留着,让学生通过下一环节来发现。

  2.分组讨论,发现规律。

  在学习完例题后,让学生分组讨论比较8×6+2×6(8+2)×6 27×46+73×46(27+73)×46每组两道算式,发现蕴藏在题目中的规律。

  3、判断、辨析,加深理解。

  在学生通过发现问题、举例验证、建立模型、总结规律后,为了加深学生对乘法分配律的理解,我针对平时学生练习中的错误,搜集了一些具有代表性的错例,如10×5+5×11和10×(5+11),(5×6)×2和5×2+6×2,(13+9)×4和13×4+9等式子,让学生进行判断、辨析,并说出错误的原因然后改正。这样通过辨析让学生对于乘法分配律的理解更清晰,更到位。

《乘法分配律》教学反思15

  1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。

  乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的'练习,加深学生对乘法结合律与乘法分配律的理解。

  如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。

【《乘法分配律》教学反思】相关文章:

《乘法分配律》教学反思08-04

乘法分配律教学反思05-15

《乘法分配律》教学反思15篇09-10

乘法分配律教学反思(15篇)02-19

乘法分配律教学反思汇编15篇09-08

《乘法分配律》教学反思通用【15篇】09-21

乘法分配律教学设计12-22

乘法分配律教学设计06-03

《乘法分配律》教学设计05-20