当前位置:范文派>教学范文>教案>《分数的基本性质》教案

《分数的基本性质》教案

时间:2021-01-17 13:17:20 教案 我要投稿

《分数的基本性质》教案

  作为一位杰出的教职工,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。那要怎么写好教案呢?下面是小编收集整理的《分数的基本性质》教案,仅供参考,希望能够帮助到大家。

《分数的基本性质》教案

《分数的基本性质》教案1

  教学前的思考:

  一、一则Flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。

  二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。

  三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。

  教学设计:

  一 故事提供“猜想”素材:Flash动画故事引入.(教师出示课件)

  师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?

  生:高兴!

  师: 老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示Flash动画故事,学生欣赏。同时教师提出欣赏要求,)

  师:(欣赏后)同学们,你知道哪个和尚吃的多吗?

  生1:胖和尚吃的多。

  生2:矮和尚吃的多。

  ……

  师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案.(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)

  二 用事实“验证”,完整性质。

  1.实际操作列等式证实分数大小相等。

  师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  (教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)

  师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?

  生:阴影部分的大小相等。

  师:阴影部分相等说明这三个分数怎样?

  生:三个分数相等。

  (随着学生的回答,老师将板书的三个分数用“=”连接。)

  2.观察课件证实分数大小相等。

  师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?

  师:这三个分数所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接。)

  3.初步概括分数基本性质.

  师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?

  生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)

  师:同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变的?

  (教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)

  师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)

  生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)

  师:你们观察的真仔细!请大家给点掌声好吗?

  (学生掌声起,激情高长,课堂教学充满活力。)

  师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

  师:同学们从左到右仔细观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?谁能用一句话把这个变化规律叙述出来?

  (小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)

  4、完整分数基本性质:

  师:(出示课件)请同学们填空:

  (教师请一位会操作鼠标的同学在课件中填空)

  师:第3题( )里可以填多少个数?第4题呢?

  生:可以填无数个。

  师:( )里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)

  生:不能填零。

  师:为什么不能填零?

  生:分数的分母不能为零。

  (教师对学生的回答进行评价)

  师:所以我们总结的这条规律必须加上一个条件“零除外”

  (教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)

  师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)

  三 深入理解分数基本性质

  1.学生自学,深入理解性质。

  师:请同学们把书翻到108页,自读分数的基本性质。

  师归问:分数的基本性质里哪几个词比较重要?为什么“都”和“相同”很重要?为什么“分数大小不变”也很重要?为什么“零除外”也很重要?

  生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)

  2.学生独立完成做一做1。(完成后小组内互相评价)

  3.找出与

  相等的分数:

  (教师出示课件,请一位同学在课件中连线,教师进行评价)

  4.请同学们自学并完成例2、(教师巡视,个别进行辅导)

  ……

  四 照应Flash动画故事,渗透“形式与实质”的辩证观点

  教师在黑板上出示自制的三个同样大小的圆饼

  师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)

  生:三个和沿吃的一样多。

  师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。

  ……

  五 课堂小结:这节课你有什么收获?(学生板书课题)

  教学后的感悟:

  1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

  2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。

  3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

《分数的基本性质》教案2

  教学目标

  1.使学生对数的整除的有关概念掌握得更加系统、牢固.

  2.进一步弄清各概念之间的联系与区别.

  3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

  4.掌握分数、小数的基本性质.

  教学重点

  通过对主要概念进行整理和复习,深化理解,形成知识网络.

  教学难点

  弄清概念间的联系和区别,理解易混淆的概念.

  教学步骤

  一、铺垫孕伏.

  教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

  在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

  揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

  二、探究新知.

  (一)建立知识网络.【演示课件数的整除】

  1.思考:哪个概念是最基本的概念?并说一说概念的内容.

  反馈练习:

  在123=4 48=0.5 20.l=20 3.20.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.

  教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

  教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

  2.说出与整除关系最密切的概念,并说一说概念的内容.

  反馈练习:下面的说法对不对,为什么?

  因为155=3,所以15是倍数,5是约数. ( )

  因为4.62=2.3,所以4.6是2的倍数,2是4.6的约数. ( )

  明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

  3.教师提问:

  由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

  根据一个数所含约数的个数的不同,还可以得到什么概念?

  互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

  互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

  4.讨论互质数与质数之间有什么区别?

  互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

  5.教师提问:

  如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

  只有什么数才能做质因数?

  什么叫做分解质因数?

  只有什么数才能分解质因数?

  6.教师提问:

  谁还记得,能被2、5、3整除的数各有什么特征?

  由一个数能不能被2整除,又可以得到什么概念?

  (二)比较方法.

  1.练习:求16和24的最大公约数和最小公倍数.

  2.思考:求最大公约数和最小公倍数有什么联系和区别?

  (三)分数、小数的基本性质.

  1.教师提问:

  分数的基本性质是什么?

  小数的基本性质是什么?

《分数的基本性质》教案3

  这节课,戴老师教师教态自然、语言清晰、数学语言表述准确。着重培养了学生通过动手操作的活动来让学生主动探究分数的基本性质,掌握分数的基本性质在生活中的实际应用,同时培养了学生积极参与,团结合作,主动探索,引导观察鈫捬罢夜媛桑发现规律,我觉得这是一堂充满生命活力的课堂,能促进学生全面发展的课堂,体现新课标理念的课堂,从中我得到了一些鲜活的经验和有益的启示。具体概括以下几点?

  一、教学思路清晰,目标明确,重难点突出。

  教师根据教学内容,因材施教地制定了教学思路。这节课以鈥湸瓷枨榫车既胄驴沃傅嘉探索,整个教学思路清晰。这节课戴老师突出培养学生动手操作,主动探究的训练,通过用三张同样大的长形纸折一张的、涂色等活动来探索分数分子、分母的变化规律,从而让学生发现规律,突出重难点的内容,整个教学做到详略得当,重难点把握准确。这样设计符合学生年龄特点和认知规律,体现了以学生为主体的学习过程,培养了学生的学习能力?

  二、创设情境,重视操作活动,发挥主体作用。

  老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。

  三、练习设计具有层次性,开放性。

  由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。

《分数的基本性质》教案4

  (一)激趣引思、提出要求

  同学们,你们听过阿凡提的故事吗?今天老师也带来了一则阿凡提的故事。让我们一一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?

  有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!

  (二)自主探究,发现规律

  1、出示例1的四幅图。

  我们先来看一道题目。分别用分数表示每个图里的涂色部分。

  (1)谁来说第一个?

  全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?

  同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?

  (2)师:这里有个1/2,你能说一个和1/2相等的分数吗?

  2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?

  那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?

  先别急,先来看看有哪些实验要求。

  咱们这个实验的目的上一什么?验证什么?

  咱们实验的方法有哪些呢?

  实验有什么要求?操作有序什么意思呢?要听从小组长的安排

  1、实验目的:验证猜想

  2、方法:折一折、分一分、画一画、算一算......

  3、要求:小组合作,明确分工,操作有序

  我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!

  学生操作,老师巡视指导。

  集体交流结果。

  咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。

  把你的发现先和同桌交流交流。

  生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。

  师:还有谁想说说你的发现?

  生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。

  师:换一组数据来说说自己的发现?

  生:由到,分子、分母都被缩小了3倍,它们的大小不变。

  师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?

  师:为什么要0除外?

  师:这就是咱们今天学习的“分数的基本性质”(板书课题)

  师:谁来说说看,分数的基本性质是什么呢?

  生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。

  我们一齐读一遍。

  师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?除法中商不变的性质你还记得吗?

  同学们想想看,这两个性质之间有什么关系呢?

  根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。

  师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?

  师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。

  (三)巩固练习,强化记忆

  好,那下面咱们就用今天学的知识来做几道题,好不好?

  1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。

  集体交流。

  2、下面我们来填空补缺想理由。(出示练一练第二题)

  他们这样填是根据什么?

  3、出示练习十一第二题

  独立完成,集体订正。

  (四)课堂作业,运用知识

  练习十一第三题

  (五)课堂,认识自己

  今天这节课,你学到了什么?

《分数的基本性质》教案5

  教学目的

  1.使学生理解和掌握分数的基本性质.

  2.培养学生观察、思考、动手操作和自学能力.

  教学过程

  一、导入新课.

  故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

  分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

  到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

  二、新课.

  1.实际操作列等式证实两组分数,每组分数大小相等.

  (1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

  .(板书: )

  (2)教师提问:比较一下阴影部分的大小,结果怎样?

  阴影部分相等,说明这三个分数怎样?

  (随着学生回答老师将三个分数用“=”连接)

  (3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

  (4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

  (随着学生回答老师在三个分数间用“=”连接)

  2.初步概括分数基本性质.

  (1)观察两个等式,每个等式的三个分数什么变了?什么没变?

  (2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

  板书:

  (3)谁能用一句话把这个变化规律叙述出来?

  板书:分数的分子、分母都乘上同一个数,分数大小不变.

  (4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

  板书:

  (5)问:谁能用一句话把这个变化规律叙述出来?

  谁能用一句话把这两个变化规律叙述出来?

  (板书:或除以)

  3.完整分数基本性质.

  填空:

  教师追问:第三题( )里可以填多少个数?第4题呢?

  为什么3、4题( )里可以填无数个数?

  ( )里填任何数都行吗?哪个数不行?(板书:零除外)

  这里为什么必须“零除外”?

  教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

  (板书课题:分数基本性质)

  4.深入理解分数基本性质.

  教师提问:分数的基本性质里哪几个词比较重要?

  为什么“都”和“相同”很重要?

  为什么“分数大小不变”也很重要?

  为什么“零除外”也很重要?

  三、课堂练习.

  1.用直线把相等的分数连接起来.

  2.把下列分数按要求分类.

  和 相等的分数:

  和 相等的分数:

  3.判断下列各题的对错,并说明理由.

  4.填空并说出理由.

  5.集体练习.

  四、照应课前谈话.

  问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

  板书:

  五、课堂小结.

  这节课你有什么收获?

  六、布置作业.

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

《分数的基本性质》教案6

  教学目标 :

  1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2、理解和掌握分数的基本性质。

  3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>

  4、较好实现知识教育与思想教育的有效结合。

  教学重点 :理解和掌握分数的基本性质。

  教学难点 :能熟练、灵活地运用分数的基本性质。

  教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。

  教学过程:

  一、巧设伏笔、导入新课。

  1、出示课件:120÷30的商是多少?

  被除数和除都扩大3倍,商是多少?

  被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

  2、在下面□里填上合适的数。

  1÷2=(1×5)÷(2×□)

  =(1÷□)÷(2÷4)

  ①想一想,你是根据什么填上面的数的?(生口答)

  (课件:商不变的性质)

  ②商不变的性质是什么?(生口答)

  ③除法与分数之间有什么关系?

  生答,师板书:被除数÷除数=被除数/除数

  二、讨论探究,学习新知。

  1、课件出示:1÷2= (怎么写)

  ①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?

  让生合作探讨。

  ②生出示答案:1/2=2/4=4/8……

  有选择填入上数。

  2、引导学生证明它们相等。

  ①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

  (课件演示)

  上述演示让学生感知后,问你发现了什么?(生讨论)

  ②再逆向思考,观察板书和课件。

  问你又发现了什么?(生讨论)

  得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

  3、验证、补充、强调

  ①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

  ②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

  ③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

  ④归纳出上述板书为“分数的基本性质”(课题)。

  4、信息反馈、纠正、巩固。

  ①判断(出示课件)

  A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。

  B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

  C、3/4的分子乘上3,分母除以3,分数的大小不变。

  D、10/24=10÷2/24÷2=10×3/24×3 ( )

  完成后,强调重点,加以巩固。

  ②完成课本108页例2(学生尝试练习)

  强调运用了什么性质?课件:“分数的基本性质”醒目强调。

  三、实践练习,信息综合

  1、练一练

  ①3/5=3×( )/5×( )=9/( )

  ②7/8=( )/48

  ③4÷18=( )/( )=4×5/18×( )=2/( )

  2、练习二十二1—3题。

  四、课堂总结、整体感知。

  (在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

  五、发散巩固、自主选择。

  想一想:(选择一道你喜欢的题做)

  课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

  ②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

《分数的基本性质》教案7

  教学内容:教科书第60~61页,例1、例2、

  练一练,练习十一第1~3题。

  教学目标:

  1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

  2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

  教学重点:让学生在探索中理解分数的基本性质。

  教学过程:

  一、导入新课

  1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

  2、出示例1图。

  你能看图写出哪些分数?你是怎样想的?说出自己的想法。

  二、教学新课

  1、教学例1。

  (1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?

  (2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

  (3)演示验证。

  2、教学例2。

  (1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

  (2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

  (3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

  (4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

  (5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

  (6)为什么要“0”除外呢?

  (7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

  (8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

  3、完成练一练。

  (1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

  (2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

  三、巩固练习

  1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

  2、完成第2题。独立完成,交流想法。

  四、课题总结

  今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

《分数的基本性质》教案8

  教学内容:

  人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。

  设计思路:

  《分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

  教学目标:

  1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。

  教学重点:

  理解和掌握分数的基本性质。

  教学难点:

  应用分数的基本性质解决实际问题。

  教学方法:

  直观演示法、讨论法等。

  学法:

  合作交流、自主探究。

  教学准备:

  每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、PPT课件等。

  教学过程:

  一.创设情景,激发兴趣

  (课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的'性质是什么?(2)分数与除法的关系是什么?

  ( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )

  二.大胆猜想,揭示课题

  学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三 .探索研究,验证猜想

  1. 动手操作,验证性质。

  (1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12

  份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?

  (2)小组合作:①观察、分析、比较在组内交流你的发现。

  ②合作交流,各抒己见。

  123③选代表全班汇报、交流,师相机板书:4812

  123(3)合作讨论: 为什么相等? 4812

  ①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的变化规律,在组内用自己的话说一说。

  2.分组汇报,归纳性质。

  a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答

  b.从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答)

  c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?

  d.综合刚才的探究,你发现什么规律?

  (4)引导学生概括出分数的基本性质,回应猜想。

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)

  33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212

  的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)

  分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x

  四.回归书本,探源获知

  1.浏览课本第75—78页的内容。

  2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)

  3.分数的基本性质与商不变性质的比较。

  (1)小组合作:讨论分数的基本性质与商不变性质的异同。

  (2)小组内交流。

  (3)选代表全班交流、汇报。

  (4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!

  4.自主学习并完成例2,请二名学生说出思路。

  五.巩固深化,拓展思维(PPT演示文稿出示下列题目)

  1.想一想,填一填。

  33×( )988÷( )() 55×( )( )2424÷( )3

  学生口答后,要求说出是怎样想的?

  2.在下面( )内填上合适的数。

  要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  3.思维训练(选择你喜爱的一道题完成)

  3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5

  (2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?

  讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  (3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。

  思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  六.全课小结

  本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)

  七.布置作业

  P77—78练习十四第1、5、8题。

  教学反思

  “分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。

  本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:

  1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!

  2.学生在操作中大胆猜想。

  新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。

  3.学生在自主探索中科学验证。

《分数的基本性质》教案9

  内容:P15、16例1、2 ,练习四第1-3题。

  目标:

  1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

  2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  重点:正确理解与分析运用分数的基本性质。

  过程:

  一、创设情境,导入新课。

  “大圣”分桃:

  话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?

  二、师生共研、发现规律。

  师生共同揭秘“分桃”内幕。

  人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

  1÷2=1/2=2/4=4/8

  从上面这三个分数的相等关系,你发现了什么?

  从左往右看:

  1/2 = 1×2 / 2×2 = 2/4

  从右往左看:

  2/4 = 2÷2 / 4÷2 = 1/2

  1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

  观察分子、分母的变化,同时归纳小结。

  学生试,验证自己提出的观点是否正确。

  小结:

  分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

  三、数学小报,再次验证。

  1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

  2.将折得的小报中数学趣题版用阴影显示出来。

  3.将四张的折叠结果重叠,得出数学趣题版面大小。

  4.针对式子进行口头表述。

  四、理解性质、简单运用。

  例2的教学

  (1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

  请同学们理清题意,然后进行转化。

  (2)反馈。

  (3)质疑

  让学生通过讨论,深化对分数大小不变的要求的理解。

  (4)议一议

  由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

  五、练习巩固、拓展提高。

  1.课堂活动

  2.提取第一题的结果,进行深入思考:

  当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?

  结论:大小不变,分数单位要变。

  六、全课总结:

  这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?

  七、作业:

  练习四第1-3题。

《分数的基本性质》教案10

  教学目的

  1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

  2.培养学生观察、分析、思考和抽象、概括的能力.

  3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

  教学过程

  一、谈话.

  我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

  整数的互化方法.今天我们继续学习分数的有关知识.

  二、导入新课.

  (一)教学例1.

  出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

  1.分别出示每一个圆,让学生说出表示阴影部分的分数.

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2.观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

  (2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

  3.分析、推导出表示阴影部分的分数的大小也相等:

  (1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

  (这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

  4.观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化?

  ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

  (2)观察

  (二)教学例2.

  出示例2:比较 的大小.

  1.出示图:我们在三条同样的数轴上分别表示这三个分数.

  2.观察数轴上三个点的位置,比较三个分数的大小:

  从数轴上可以看出:

  3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

  (1)这三个分数从形式上看不同,但是它们实质上又都相等.

  (教师板书: )

  (2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质.

  1.观察前面两道例题,你们从中发现了什么变化规律?

  “分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

  2.为什么要“零除外”?

  3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

  (板书:“基本性质”)

  4.谁再说一遍什么叫分数的基本性质?

  教师板书字母公式:

  四、应用分数基本性质解决实际问题.

  1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

  (和除法中商不变的性质相类似.)

  (1)商不变的性质是什么?

  (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

  2.分数基本性质的应用:

  我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

  决一些有关分数的问题.

  3.教学例3.

  例3 把 和 化成分母是12而大小不变的分数.

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?

  ( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个“6”是怎么想出来的?

  (这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?

  ( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个“2”是怎么想出来的?

  (这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五、课堂练习.

  1.把下面各分数化成分母是60,而大小不变的分数.

  2.把下面的分数化成分子是1,而大小不变的分数.

  3.在( )里填上适当的数.

  4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  5.请同学们想出与 相等的分数.

  规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

  六、课堂总结.

  今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

  七、课后作业.

  1.指出下面每组中的两个分数是相等的还是不相等的.

  2.在下面的括号里填上适当的数.

《分数的基本性质》教案11

  教学目标

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

  教学重难点约成最简分数

  教学准备:分数卡片口算卡片

  教学过程

  一、自主回顾

  回顾一下对约分的理解情况

  突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

  师:什么是最简分数?

  说一说。

  二、巩固练习

  师分数卡片判断

  1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。

  师:你能写出不同的除法算式吗?

  =()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、快乐学习超市

  超市画面快乐套餐1快乐套餐2

  快乐套餐1:比一比○○0.4

  计算并化简+=-=

  在()填上最简分数20分=()时

  快乐套餐2、3同上。

  (分组练习小组代表汇报整合了练习十一10至14题)

  4、集中练习

  把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

  分母是10的最简分数有几个?

  请你提出一个类似的问题。

  课堂作业

  练习十一第9题,12、13、14题各自选2个

  课后练习:完成练习册上的相应练习。

《分数的基本性质》教案12

  教学目标

  (一)理解和掌握分数的基本性质。

  (二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  (三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)理解和掌握分数的基本性质。

  (二)归纳分数的基本性质,运用性质转化分数。

  教学用具

  教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

  学具:每位同学准备三张相同的长方形纸片。

  教学过程设计

  (一)复习准备

  1.口答:(投影片)

  根据 120÷30=4,不用计算直接说出结果:

  (120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

  2.说一说依据什么可以不用计算直接得出商的?

  3.说出商不变的性质。

  教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

  (二)学习新课

  1.分数基本性质。

  (1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

  教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

  教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

  学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

  教师:请比较这三个分数的大小?

  你根据什么说这三个分数相等?

  学生口答后老师用等号连结上面三个分数。

  (2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

  请同学观察,思考和讨论。投影出思考题:

  如何?

  结果如何?

  变,那么分子,分母同时乘以4,乘以5,乘以6呢?规律是什么?

  学生口答后,教师小结并板书:分数的分子和分母同时乘以相同的数,分数大小不变。(留出“或者除以”的空位。)

  的变化规律是什么?(学生小组讨论后汇报)教师板书:

  教师:试说一说这时分子、分母的变化规律?

  学生口答后老师小结:分数的分子和分母同时除以相同的数,分数大小不变。板书补出“除以”。

  教师:想一想,分数的分子、分母都乘以或除以0可以吗?为什么?(不行。)

  (3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

  学生口述分数基本性质的内容,老师把板书补充完整。

  教师:这就是分数的基本性质,是这节课研究的问题。板书出课题:分数基本性质。

  请学生打开书读两遍。

  教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)

  用学生自己的例题说明后,用投影片再说明:

  口答填空:(投影片)

  2.把一个分数化成大小相等,而分子或分母是指定数的分数。

  分子应怎样变化?谁随着谁变?

  化?谁随着谁变?

  教师:上面两个分数的变化依据是什么?

  (2)口答练习:(学生口答,老师板书。)

  教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

  (三)巩固反馈

  1.口答:(投影片)

  2.在括号里填上“=”或“≠”。(投影)

  3.在( )里填上适当的数。(投影)

  4.判断正误,并说明理由。

  (四)课堂总结与课后作业

  1.分数基本性质。

  2.把分数化成大小相同而分子或分母是指定数的分数的方法。

  3.作业:课本108页练习二十三,1,2,4,5。

  课堂教学设计说明

  分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

  在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

  在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

  新课教学分为两部分。

  第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

  第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

  板书设计

《分数的基本性质》教案13

  教学内容:人教版五年级数学下册57页内容。

  教学目标:

  知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。

  过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。

  情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。

  教学重点:使学生理解和掌握分数的基本性质。

  教学难点:运用分数的基本性质解决相关的问题。

  教学准备:多媒体课件、正方形纸、直尺、彩笔

  教学过程:

  一、铺垫孕伏,温故迁移

  1.比一比:看谁算得又对又快。

  2.说一说:商不变的性质是什么?

  3.想一想:分数与除法有怎样的关系?

  4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?

  二、设疑激趣,探究新知

  (一)故事激趣,引出分数。

  说出自己从故事中听到的分数。

  (二)小组合作,直观感知。

  1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。

  2.画一画:画出折痕所在的直线。

  3.涂一涂:

  (1)给平均分成2份的正方形纸的其中的1份涂上颜色。

  (2)给平均分成4份的正方形纸的其中的2份涂上颜色。

  (3)给平均分成8份的正方形纸的其中的4份涂上颜色。

  4.比一比:比较3张正方形纸涂色部分的大小。

  5.议一议:和同伴说说自己的想法。

  (二)观察比较,探究规律。

  1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。

  2.汇报交流。

  3.启发点拨。

  通过从左往右观察、比较、分析,你发现了什么?

  引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。

  那么,从右往左看呢?

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  4.归纳小结:引导学生概括出分数的基本性质。

  5.启发思考:这里的“相同的数”可以是任何数吗?(补充板书:0除外),你能举例说明吗?

  (三)独立尝试,运用规律。

  1.学生独立思考,完成例2。

  2.反馈交流,订正点拨。

  3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。

  三、达标检测,内化提升(见《达标测试题》)

  四、总结收获,评价激励

  这节课你有什么收获?你对自己的哪些表现比较满意?

  板书设计:

  分数的基本性质

  例1:

  分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

  例2:

《分数的基本性质》教案14

  设计说明

  1.注重情境创设,激发学生的学习兴趣。

  伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。

  2.突出学生的主体地位,在实践操作中掌握新知。

  学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。

  课前准备

  教师准备 PPT课件

  学生准备 若干张同样大小的圆形纸片 彩笔

  教学过程

  ⊙故事引入

  1.教师讲故事。

  师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。

  大毛、二毛、三毛都满意地笑了,妈妈也笑了。

  设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。

  2.探究验证。

  (1)提出猜想。

  师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?

  生:同样多。

  师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!

  (2)验证猜想。

  请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。

  ①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。

  ②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。

  ③剪一剪:把圆形纸片中的涂色部分剪下来。

  ④比一比:把剪下的涂色部分重叠,比一比。

  师:通过比较,结果是怎样的?

  生:同样大。

  设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。

  3.揭示课题。

  师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)

  ⊙探究新知

  1.观察比较,探究规律。

  (1)请同学们观察,比较三个分数的大小。

  师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)

  师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。

  (2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)

  师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?

  (课件出示:比较它们的分子和分母)

  ①从左往右看,是按照什么规律变化的?

  ②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。

  师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)

  师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]

  师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]

  师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)

  (3)教师总结分数的基本性质。(板书)

《分数的基本性质》教案15

  教学目的:

  理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2.理解和掌握分数的基本性质。

  3.较好实现知识教育与思想教育的有效结合。

  教学难点:

  理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

  教学准备:

  板书有关习题的幻灯片。

  教学过程:

  一、复习

  1.出示

  在括号里填上适当的数:

  指名说一说结果,并说一说你是根据什么填的?

  二、课堂练习:

  1.自主练习第4题。

  学生先独立做,教师巡视,并个别指导,集体订正。

  教师板书题目中的线段,指名让学生板演。

  在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)

  怎样找出相等的分数?

  让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

  然后要求学生在书上把这几个相应的点找出来。指名板演。

  2.自主练习第5题。

  先让学生独立做,教师巡视。个别指导。

  指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

  教师根据学生的回答选择几个题目进行板书。

  3.自主练习第6题。

  先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

  集体订正。指名说一说自己的计算过程和结果。

  教师根据学生的回答选择几个题目进行板书。

  4.自主练习第7题。

  学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

  集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

  5.自主练习第8题。

  学生先独立做。

  集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?

【《分数的基本性质》教案】相关文章:

1.《分数的基本性质》教学反思

2.分数的基本性质教学反思

3.分数的基本性质教学设计

4.《分数的基本性质》的说课稿范文

5.数学分数基本性质说课稿

6.【必备】分数的基本性质说课稿三篇

7.五年级分数的基本性质教学设计

8.五年级数学《分数基本性质》说课稿