当前位置:范文派>教学范文>教案>二次根式教案

二次根式教案

时间:2024-08-22 17:51:32 教案 我要投稿

二次根式教案七篇

  作为一名教师,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么你有了解过教案吗?下面是小编精心整理的二次根式教案7篇,希望对大家有所帮助。

二次根式教案七篇

二次根式教案 篇1

  一、教学目标

  1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

  2。使学生掌握化简一个二次根式成最简二次根式的方法。

  3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

  二、教学重点和难点

  1。重点:能够把所给的二次根式,化成最简二次根式。

  2。难点:正确运用化一个二次根式成为最简二次根式的方法。

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?

  了。这样会给解决实际问题带来方便。

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的'因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

  总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

  1。被开方数的因数是整数,因式是整式。

  2。被开方数中不含能开得尽方的因数或因式。

  例1 指出下列根式中的最简二次根式,并说明为什么。

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

  例2 把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

  例3 把下列各式化简成最简二次根式:

  说明:

  1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

  2。要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件。

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式。

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

  (三)小结

  1。满足什么条件的根式是最简二次根式。

  2。把一个二次根式化成最简二次根式的主要方法。

  (四)练习

  1。指出下列各式中的最简二次根式:

  2。把下列各式化成最简二次根式:

  六、作业

  教材P。187习题11。4;A组1;B组1。

  七、板书设计

二次根式教案 篇2

  【 学习目标 】

  1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

  2、过程与方法:进一步体会分类讨论的数学思想。

  3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

  【 学习重难点 】

  1、重点:准确理解二次根式的概念,并能进行简单的计算。

  2、难点:准确理解二次根式的双重非负性。

  【 学习内容 】课本第2— 3页

  【 学习流程 】

  一、 课前准备(预习学案见附件1)

  学生在家中认真阅读理解课本中相关内容的知识,并根据自己的'理解完成预习学案。

  二、 课堂教学

  (一)合作学习阶段。

  教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

  (二)集体讲授阶段。(15分钟左右)

  1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

  2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

  3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

  (三)当堂检测阶段

  为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

  (注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

  三、 课后作业(课后作业见附件2)

  教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

  四、板书设计

  课题:二次根式(1)

  二次根式概念 例题 例题

  二次根式性质

  反思:

二次根式教案 篇3

  课题:二次根式

  教学目标 1、知识与技能

  理解a(a≥0)是一个非负数, (a≥0)

  2、过程与方法

  (1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想

  方法

  (2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助

  交流合作,分析问题,总结反思

  3、情感、态度与价值观

  体验成功的乐趣,锻炼克服困难的意志,培养严谨

  求实的'科学态度

  教学重难点 教学重点:二次根式的概念

  教学难点:二次根式中根号下必须为非负数

  教学过程

  一、课前回顾

  (2分钟)

  学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?

  二次根式中字母的取值范围:

  ①被开方数大于等于零;

  ②分母中有字母时,要保证分母不为零。

  ③多个条件组合时,应用不等式组求解

  一、情境引入(3分钟)

  由生活中的实例引入投影的概念,引起学生的学习兴趣

  已知下列各正方形的面积,求其边长。

  二、探究1(10分钟)

  练习1:

  计算下列各式:

  三、探究2(10分钟)

  可以发现它们有如下规律:

  一般的,二次根式有下列性质:

  练习2:

  典型例题 例1:计算:

  例2:计算:

  达标测试(5分钟)

  课堂测试,检验学习结果

  1、判断题

  2、若 ,则x的取值范围为 ( A )

  (A) x≤1 (B) x≥1

  (C) 0≤x≤1 (D)一切有理数

  3、计算

  4、化简

  5、已知a,b,c为△ABC的三边长,化简:

  这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

  应用提高(5分钟)

  能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。

  (1)用二次根式表示点P到原点O的距离;

  (2)如果 求点P到原点O的距离

  体验收获 今天我们学习了哪些知识

  二次根式的两条性质。

  布置作业 教材8页习题第3、4题。

二次根式教案 篇4

  活动1、提出问题

  一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

  问题:10+20是什么运算?

  活动2、探究活动

  下列3个小题怎样计算?

  问题:1)-还能继续往下合并吗?

  2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?

  二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

  活动3

  练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

  创设问题情景,引起学生思考。

  学生回答:这个运动场要准备(10+20)平方米的'草皮。

  教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

  我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

  教师引导验证:

  ①设=,类比合并同类项或面积法;

  ②学生思考,得出先化简,再合并的解题思路

  ③先化简,再合并

  学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

  教师巡视、指导,学生完成、交流,师生评价。

  提醒学生注意先化简成最简二次根式后再判断。

二次根式教案 篇5

  教学目的

  1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

  2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

  教学重点

  最简二次根式的定义。

  教学难点

  一个二次根式化成最简二次根式的方法。

  教学过程

  一、复习引入

  1.把下列各根式化简,并说出化简的根据:

  2.引导学生观察考虑:

  化简前后的根式,被开方数有什么不同?

  化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的.因数或因式,被移到根号外。

  3.启发学生回答:

  二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

  二、讲解新课

  1.总结学生回答的内容后,给出最简二次根式定义:

  满足下列两个条件的二次根式叫做最简二次根式:

  (1)被开方数的因数是整数,因式是整式;

  (2)被开方数中不含能开得尽的因数或因式。

  最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

  2.练习:

  下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

  3.例题:

  例1 把下列各式化成最简二次根式:

  例2 把下列各式化成最简二次根式:

  4.总结

  把二次根式化成最简二次根式的根据是什么?应用了什么方法?

  当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

  当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

  此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

  三、巩固练习

  1.把下列各式化成最简二次根式:

  2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

  四、小结

  本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。

  五、布置作业

  下列各式化成最简二次根式:

二次根式教案 篇6

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的.学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

二次根式教案 篇7

  【1】二次根式的加减教案

  教材分析:

  本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

  学生分析:

  本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

  设计理念:

  新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

  教学目标知识与技能目标:

  会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

  过程与方法目标:

  通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的'过程,发展学生的抽象概括能力。

  情感态度与价值观:

  通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.

  重点、难点:重点:

  合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

  难点:

  二次根式加减法的实际应用。

  关键问题 :

  了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

  教学方法:.

  1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

  2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

  3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

  【2】二次根式的加减教案

  教学目标:

  1.知识目标:二次根式的加减法运算

  2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

  3.情感态度:培养学生善于思考,一丝不苟的科学精神。

  重难点分析:

  重点:能熟练进行二次根式的加减运算。

  难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

  教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

  运用教具:小黑板等。

  教学过程:

问题与情景

师生活动

设计目的

活动一:

情景引入,导学展示

1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点?

2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

引出二次根式加减法则。

3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。

例1.计算:

(1) ;

(2) - ;

例2. 计算:

1)

2)

例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)?

活动二:分层练习,合作互助

1.下列计算是否正确?为什么?

(1)

(2) ;

(3) 。

2.计算:

(1) ;

(2)

(3)

(4)

3.(见课本16页)

补充:

活动三:分层检测,反馈小结

教材17页习题:

A层、 B层:2、3.

C层1、2.

小结:

这节课你学到了什么知识?你有什么收获?

作业:课堂练习册第5、6页。

自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。

此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。

老师提示:

1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。

A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。

点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理;

3)运算法则的运用是否正确

先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。

小结时教师要关注:

1)学生是否抓住本课的重点;

2)对于常见错误的认识。

把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。

学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。

二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的'应用意识和能力。

小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。

培养学生的计算的准确性,以培养学生科学的精神。

对课堂的问题及时反馈,使学生熟练掌握新知识。

每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。

【二次根式教案】相关文章:

二次根式教案05-15

【热门】二次根式教案4篇06-07

二次根式教案汇编10篇05-10

二次根式教案合集五篇07-29

二次根式教案模板八篇08-19

实用的二次根式教案3篇05-27

二次根式教学设计10-19

《二次根式》教学反思02-07

二次根式教案模板汇编7篇10-08

二次根式教案范文合集6篇10-11