- 二次函数数学教案 推荐度:
- 相关推荐
《二次函数》教案
作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的《二次函数》教案,欢迎大家分享。
《二次函数》教案1
【知识与技能】
1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.
【过程与方法】
经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.
【情感态度】
体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.
【教学重点】
二次函数的.概念.
【教学难点】
在实际问题中,会写简单变量之间的二次函数关系式教学过程.
一、情境导入,初步认识
1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(2)与相邻于围墙面的每一面墙的长度x()的关系式是S=-2x2+100x,(0 2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有. 二、思考探究,获取新知 二次函数的概念及一般形式 在上述学生回答后,教师给出二次函数的定义:一般地,形如=ax2+bx+c(a, b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项. 注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出. 一、教学目标 1.知识与技能目标: ⑴。使学生理解并掌握二次例函数的概念 ⑵。能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式 ⑶。能根据实际问题中的条件确定二次例函数的解析式,体会函数的模型思想 2.过程与方法目标; 通过探究----感悟----练习,采用探究、讨论等方法进行。 3.情感态度与价值观: 通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育 二、教学重、难点 1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式 2.难点:理解二次例函数的'概念。 三、教学过程 1、知识回顾 ⑴。一元二次方程的一般形式是什么? ⑵。回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的 2、合作学习,探索新知 : 问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,那么y与x的关系可表示为? 教学目标: 1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念; 2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性; 3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。 教学重点:二次函数的意义;会画二次函数图象。 教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。 教学过程设计: 一. 创设情景、建模引入 我们已学习了正比例函数及一次函数,现在来看看下面几个例子: 1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式 答:S=πR2. ① 2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的'关系 答:S=L(30-L)=30L-L2 ② 分析:①②两个关系式中S与R、L之间是否存在函数关系? S是否是R、L的一次函数? 由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢? 答:二次函数。 这一节课我们将研究二次函数的有关知识。(板书课题) 二. 归纳抽象、形成概念 一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) , 那么,y叫做x的二次函数. 注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数. 练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。 2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。 (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。) (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。) 由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。 (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。) 三. 尝试模仿、巩固提高 让我们先从最简单的二次函数y=ax2入手展开研究 1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢? 请同学们画出函数y=x2的图象。 (学生分别画图,教师巡视了解情况。) 〖大纲要求〗 1. 理解二次函数的概念; 2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象; 3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想; 4. 会用待定系数法求二次函数的解析式; 5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。 内容 (1)二次函数及其图象 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax2+bx+c(a≠0)的顶点是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 20.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( ) (A)2米 (B)3米 (C)4米 (D)5米 三.解答下列各题(21题6分,22----25每题4分,26-----28每题6分,共40分) 21.已知:直线y=x+k过点A(4,-3)。(1)求k的值;(2)判断点B(-2,-6)是否在这条直线上;(3)指出这条直线不过哪个象限。 22.已知抛物线经过A(0,3),B(4,6)两点,对称轴为x=, (1) 求这条抛物线的解析式; (2) 试证明这条抛物线与X轴的两个交点中,必有一点C,使得对于x轴上任意一点D都有AC+BC≤AD+BD。 23.已知:金属棒的长1是温度t的一次函数,现有一根金属棒,在O℃时长度为200cm,温度提高1℃,它就伸长0.002cm。 (1) 求这根金属棒长度l与温度t的函数关系式; (2) 当温度为100℃时,求这根金属棒的长度; (3) 当这根金属棒加热后长度伸长到201.6cm时,求这时金属棒的温度。 24.已知x1,x2,是关于x的方程x2-3x+m=0的两个不同的实数根,设s=x12+x22 (1) 求S关于m的解析式;并求m的取值范围; (2) 当函数值s=7时,求x13+8x2的值; 25.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,求a的值。 26、如图,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求: (1) 四边形CGEF的面积S关于x的函数表达式和X的取值范围; (2) 当x为何值时,S的数值是x的4倍。 27、国家对某种产品的税收标准原定每销售100元需缴税8元(即税率为8%),台洲经济开发区某工厂计划销售这种产品m吨,每吨2000元。国家为了减轻工人负担,将税收调整为每100元缴税(8-x)元(即税率为(8-x)%),这样工厂扩大了生产,实际销售比原计划增加2x%。 (1) 写出调整后税款y(元)与x的函数关系式,指出x的取值范围; (2) 要使调整后税款等于原计划税款(销售m吨,税率为8%)的78%,求x的值. 28、已知抛物线y=x2+(2-m)x-2m(m≠2)与y轴的交点为A,与x轴的交点为B,C(B点在C点左边) (1) 写出A,B,C三点的坐标; (2) 设m=a2-2a+4试问是否存在实数a,使△ABC为Rt△?若存在,求出a的值,若不存在,请说明理由; (3) 设m=a2-2a+4,当∠BAC最大时,求实数a的值。 习题2: 一.填空(20分) 1.二次函数=2(x - )2 +1图象的对称轴是 。 2.函数y= 的自变量的取值范围是 。 3.若一次函数y=(m-3)x+m+1的图象过一、二、四象限,则的取值范围是 。 4.已知关于的二次函数图象顶点(1,-1),且图象过点(0,-3),则这个二次函数解析式为 。 5.若y与x2成反比例,位于第四象限的一点P(a,b)在这个函数图象上,且a,b是方程x2-x -12=0的两根,则这个函数的关系式 。 6.已知点P(1,a)在反比例函数y= (k≠0)的图象上,其中a=m2+2m+3(m为实数),则这个函数图象在第 象限。 7. x,y满足等式x= ,把y写成x的函数 ,其中自变量x的取值范围是 。 8.二次函数y=ax2+bx+c+(a 0)的图象如图,则点P(2a-3,b+2) 在坐标系中位于第 象限 9.二次函数y=(x-1)2+(x-3)2,当x= 时,达到最小值 。 10.抛物线y=x2-(2m-1)x- 6m与x轴交于(x1,0)和(x2,0)两点,已知x1x2=x1+x2+49,要使抛物线经过原点,应将它向右平移 个单位。 二.选择题(30分) 11.抛物线y=x2+6x+8与y轴交点坐标( ) (A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0) 12.抛物线y=- (x+1)2+3的顶点坐标( ) (A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3) 13.如图,如果函数y=kx+b的图象在第一、二、三象限,那么函数y=kx2+bx-1的图象大致是( ) 14.函数y= 的自变量x的取值范围是( ) (A)x 2 (B)x<2 x="">- 2且x 1 (D)x 2且x –1 15.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是( ) (A)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2 16.已知抛物线=x2+2mx+m -7与x轴的两个交点在点(1,0)两旁,则关于x的'方程 x2+(m+1)x+m2+5=0的根的情况是( ) (A)有两个正根 (B)有两个负数根 (C)有一正根和一个负根 (D)无实根 17.函数y=- x的图象与图象y=x+1的交点在( ) (A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限 18.如果以y轴为对称轴的抛物线y=ax2+bx+c的图象,如图, 则代数式b+c-a与0的关系( ) (A)b+c-a=0 (B)b+c-a>0 (C)b+c-a<0 (D)不能确定 19.已知:二直线y=- x +6和y=x - 2,它们与y轴所围成的三角形的面积为( ) (A)6 (B)10 (C)20 (D)12 20.某学生从家里去学校,开始时匀速跑步前进,跑累了后,再匀速步行余下的路程,初中数学教案《数学教案-二次函数》。下图所示图中,横轴表示该生从家里出发的时间t,纵轴表示离学校的路程s,则路程s与时间t之间的函数关系的图象大致是( ) 三.解答题(21~23每题5分,24~28每题7分,共50分) 21.已知抛物线y=ax2+bx+c(a 0)与x轴的两交点的横坐标分别是-1和3,与y轴交点的纵坐标是- ; (1)确定抛物线的解析式; (2)用配方法确定抛物线的开口方向,对称轴和顶点坐标。 22、如图抛物线与直线 都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=—1,与x轴交于点C,且∠ABC=90°求: (1)直线AB的解析式; (2)抛物线的解析式。 23、某商场销售一批名脾衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价1元, 商场平均每天可多售出2件: (1)若商场平均每天要盈利1200元,每件衬衫要降价多少元, (2)每件衬衫降价多少元时,商场平均每天盈利最多? 24、已知:二次函数 和 的图象都经过x轴上两个不同的点M、N,求a、b的值。 25、如图,已知⊿ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A的坐标为{—1,0),求 (1)B,C,D三点的坐标; (2)抛物线 经过B,C,D三点,求它的解析式; (3)过点D作DE∥AB交过B,C,D三点的抛物线于E,求DE的长。 26 某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电不超100度 时,按每度0.57元计费:每月用电超过100度时.其中的100度仍按原标准收费,超过部分按每度0.50元计费。 (1)设月用电x度时,应交电费y元,当x≤100和x>100时,分别写出y关于x的函数 关系式; (1)求证;不论m取何值,抛物线与x轴必有两个交点,并且有一个交点是A(2,0); (2)设抛物线与x轴的另一个交点为B,AB的长为d,求d与m之间的函数关系式; (3)设d=10,P(a,b)为抛物线上一点: ①当⊿ABP是直角三角形时,求b的值; ②当⊿ABP是锐角三角形,钝角三角形时,分别写出b的取值范围(第2题不要求写出过程) 28、已知二次函数的图象 与x轴的交点为A,B(点B在点A的右边),与y轴的交点为C; (1)若⊿ABC为Rt⊿,求m的值; (1)在⊿ABC中,若AC=BC,求sin∠ACB的值; (3)设⊿ABC的面积为S,求当m为何值时,s有最小值.并求这个最小值。 一、教材分析 1.教材的地位和作用 (1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。 (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。 (3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。 2.课标要求: ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。 ④会根据二次函数的性质解决简单的实际问题。 3.学情分析: (1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。 (2)学生的分析、理解能力较学习新课时有明显提高。 (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。 (4)学生能力差异较大,两极分化明显。 4.教学目标 认知目标 (1)掌握二次函数y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。 能力目标 提高学生对知识的整合能力和分析能力。 情感目标 制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。 5.教学重点与难点: 重点:(1)掌握二次函数y=图像与系数符号之间的关系。 (2)各类形式的二次函数解析式的求解方法和思路。 (3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。 难点:(1)已知二次函数的解析式说出函数性质 (2)运用数形结合思想,选用恰当的数学关系式解决几何问题. 二、教学方法: 1.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。 2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的'内在联系,让学生形成一个清晰、系统、完整的知识网络。 3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水*开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。 三、学法指导: 1.学法引导 “授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。 2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。 3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.” 4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。 四、教学过程: 1、教学环节设计: 根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点. 本节课的教学设计环节: 创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。 自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。 运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。 安排三个层次的练习。 (一)从定义出发的简单题目。 (二)典型例题分析,通过反馈使学生掌握重点内容。 (三)综合应用能力提高。 既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。 (四)方法与小结 由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。 2、作业设计:(见课件) 3、板书设计:(见课件) 五、评价分析: 本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。 教学目标: 会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。 重点难点: 重点;用待定系数法求函数的`解析式、运用配方法确定二次函数的特征。 难点:会运用二次函数知识解决有关综合问题。 教学过程: 一、例题精析,强化练习,剖析知识点 用待定系数法确定二次函数解析式. 例:根据下列条件,求出二次函数的解析式。 (1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。 (2)抛物线顶点P(-1,-8),且过点A(0,-6)。 (3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。 (4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。 学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。 教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0) (2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0) 当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。 当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。 当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2) 强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。 (1)若m为定值,求此二次函数的解析式; (2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。 二、知识点串联,综合应用 例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交 一、教材分析: 《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。 本节教学时间安排1课时 二、教学目标: 知识技能: 1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根. 3.能够利用二次函数的.图象求一元二次方程的近似根。 数学思考: 1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神. 2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验. 3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。 解决问题: 1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。 2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。 情感态度: 1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。 2.通过学生共同观察和讨论,培养大家的合作交流意识。 三、教学重点、难点: 教学重点: 1.体会方程与函数之间的联系。 2.能够利用二次函数的图象求一元二次方程的近似根。 教学难点: 1.探索方程与函数之间关系的过程。 2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。 四、教学方法:启发引导 合作交流 五:教具、学具:课件 六、教学过程: [活动1] 检查预习 引出课题 预习作业: 1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0. 2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解. 师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。 教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。 设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。 [活动2] 创设情境 探究新知 问题 1. 课本P94 问题. 2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m? 3. 结合预习题1,完成课本P94 观察中的题目。 师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。 二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 教师重点关注: 1.学生能否把实际问题准确地转化为数学问题; 2.学生在思考问题时能否注重数形结合思想的应用; 3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。 设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。 [活动3] 例题学习 巩固提高 问题 例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1). 师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。 教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。 设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。 [活动4] 练习反馈 巩固新知 教学目标: 利用数形结合的数学思想分析问题解决问题。 利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。 在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。 教学重点和难点: 运用数形结合的思想方法进行解二次函数,这是重点也是难点。 教学过程: (一)引入: 分组复习旧知。 探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息? 可引导学生从几个方面进行讨论: (1)如何画图 (2)顶点、图象与坐标轴的交点 (3)所形成的三角形以及四边形的面积 (4)对称轴 从上面的问题导入今天的'课题二次函数中的图象与性质。 (二)新授: 1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。 再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。 再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。 2、让同学讨论:从已知条件如何求二次函数的解析式。 例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。 (三)提高练习 根据我们学校人人皆知的船模特色项目设计了这样一个情境: 让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。 让学生在练习中体会二次函数的图象与性质在解题中的作用。 (四)让学生讨论小结(略) (五)作业布置 1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。 (1)求二次函数的解析式; (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。 2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。 3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。 (1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域; (2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米) 教学目标 1·从具体函数的图象中认识二次函数的基本性质,了解二次函数与二次方程的相互关系· 2·探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念·能够利用二次函数的图象求一元二次方程的近似根· 3·通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,服务于生活的辩证观点· 教学重点 二次函数的.最大值,最小值及增减性的理解和求法· 教学难点 二次函数的性质的应用· 《22·2二次函数与一元二次方程》同步练习 三、解答题 7·(1)请在坐标系中画出二次函数y=x2—2x的大致图象; (2)根据方程的根与函数图象的关系,将方程x2—2x=1的根在图上近似地表示出来(描点); (3)观察图象,直接写出方程x2—2x=1的根(精确到0·1)· 《22·2二次函数与一元二次方程》练习题 16·(杭州中考)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t—5t2(0≤t≤4)· (1)当t=3时,求足球距离地面的高度; (2)当足球距离地面的高度为10米时,求t; (3)若存在实数t1,t2(t1≠t2),当t=t1或t2时,足球距离地面的高度都为m(米),求m的取值范围· 教学目标: (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法; (2)培养学生的归纳、总结能力; (3)通过两圆外公切线长的求法向学生渗透“转化”思想。 教学重点: 理解两圆相切长等有关概念,两圆外公切线的求法。 教学难点: 两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。 教学活动设计 (一)实际问题(引入) 很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践) 两圆的公切线概念 1、概念: 教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义: 和两圆都相切的直线,叫做两圆的公切线。 (1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。 (2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。 (3)公切线的长:公切线上两个切点的距离叫做公切线的长。 2、理解概念: (1)公切线的长与切线的长有何区别与联系? (2)公切线的长与公切线又有何区别与联系? (1)公切线的长与切线的长的概念有类似的.地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。 (2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。 (三)两圆的位置与公切线条数的关系 组织学生观察、概念、概括,培养学生的学习能力。添写教材P143练习第2题表。 (四)应用、反思、总结 例1 、已知:⊙O 1 、⊙O 2的半径分别为2cm和7cm,圆心距O 1 O 2 =13cm,AB是⊙O 1 、⊙O 2的外公切线,切点分别是A、B。求:公切线的长AB。 分析:首先想到切线性质,故连结O 1 A、O 2 B,得直角梯形AO 1 O 2 B。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤) 解:连结O 1 A、O 2 B,作O 1 A⊥AB,O 2 B⊥AB。 过O 1作O 1 C⊥O 2 B,垂足为C,则四边形O 1 ABC为矩形, 于是有 O 1 C⊥C O 2,O 1 C= AB,O 1 A=CB。 在Rt△O 2 CO 1和。 O 1 O 2 =13,O 2 C= O 2 B- O 1 A=5 AB= O 1 C= (cm)。 反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。 例2* 、如图,已知⊙O 1 、⊙O 2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长。 分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解。证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP。因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解。 解:过点P作两圆的公切线CD ∵ AB是⊙O 1和⊙O 2的切线,A、B为切点 ∴∠CPA=∠BAP ∠CPB=∠ABP 又∵∠BAP+∠CPA+∠CPB+∠ABP=180° ∴ 2∠CPA+2∠CPB=180° ∴∠CPA+∠CPB=90°即∠APB=90° 在Rt△APB中,AB 2 =AP 2 +BP 2 说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。 (五)巩固练习 1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( ) (A)直角三角形(B)等腰三角形(C)等边三角形(D)以上答案都不对。 此题考察外公切线与外公切线长之间的差别,答案(D) 2、外公切线是指 (A)和两圆都祖切的直线(B)两切点间的距离 (C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线 直接运用外公切线的定义判断。答案:(D) 3、教材P141练习(略) (六)小结(组织学生进行) 知识:两圆的公切线、外公切线、内公切线及公切线的长概念; 能力:归纳、概括能力和求外公切线长的能力; 思想:“转化”思想。 (七)作业:P151习题10,11。 一、由实际问题探索二次函数 某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. (1) 问题中有哪些变量?其中哪些是自变量?哪些因变量 (2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? (3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式. 果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产 量 y=(100+z)(6005x)=-5x2+100x+ 60000. 二、想一想 在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多? 我们可以列表 表示橙子的总产量随橙子树的增加而变化情况.你能根据 表格中的数据作出猜测吗 ?自己试一试. x/棵 y/个 三.做一做 银行的储蓄利率是随时间的'变化而变化的。也就是说,利率是一个变量.在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的.设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利 息自动按一年定期储蓄转存. 如 果存款额是100元,那么请你写出两年后的本息和y(元)的表 达式(不考虑利息税). 四、二次函数的定义 一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function) 注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为 零。 例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数.我们以前学过的正方形面积A与边长a的关系A=a2, 圆面积s与半径r的 关系s=Try2等也都是二次函数的例子. 随堂练习 1.下列函数中(x,t是自变量),哪些是二次 函数? y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t 2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝. (1)写出y与x之间的关系表达式; (2)当圆的半径分别增加lcm、 ㎝、2㎝时,圆的面积增加多少? 五、课时小结 1. 经历探索和表 示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。 2.用尝试求值的方法解决种多少棵橙子树,可以使果园橙子的总产量最多。 六、活动与探究 若 是二次函数,求m的值. 七、作业 习题2.1 1.物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t , 填 表表示物体在前5s下落的高度: t/s 1 2 3 4 5 h/m ⒉某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。 (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示? (2) 如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么? 一、教材分析 本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。 二、学情分析 本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。 三、教学目标 (一)知识与能力目标 1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程; 2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。 (二)过程与方法目标 通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。 (三)情感态度与价值观目标 1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法; 2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。 四、教学重难点 1.重点 通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。 2.难点 二次函数y=ax2+bx+c(a≠0)的图像的性质。 五、教学策略与 设计说明 本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。 六、教学过程 教学环节(注明每个环节预设的时间) (一)提出问题(约1分钟) 教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何? 学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。 目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。 (二)探究新知 1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟) 教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。 学生活动:讨论解决 目的:激发兴趣 2.配方求解顶点坐标和对称轴(约5分钟) 教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42) =0.5(x2-12x+36-36+42) =0.5(x-6)2+3 教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。 学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。 目的:即加深对本课知识的认知有增强了配方法的应用意识。 3.画出该二次函数图像(约5分钟) 教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。 学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。 目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。 4.探究y=-2x2-4x+1的函数图像特点(约3分钟) 教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。 学生活动:学生独立完成。 目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。 5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟) 教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。 学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。 目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。 6.简单应用(约11分钟) 教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。 教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。 学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。 目的.:巩固新知 课堂小结(2分钟) 1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题? 2. 你对本节课有什么感想或疑惑? 布置作业(1分钟) 1. 教科书习题22.1第6,7两题; 2. 《课时练》本节内容。 板书设计 提出问题 画函数图像 学生板演练习 例题配方过程 到顶点式的配方过程 一般式相关知识点 教学反思 在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。 我认为优点主要包括: 1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。 2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。 3.板书字体端正,格式清晰明了,突出重点、难点。 4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。 所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在: 1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极; 2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻; 3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。 4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。 重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。 【知识与技能】 1.会用描点法画二次函数y=ax2+bx+c的图象. 2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性. 3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值. 【过程与方法】 1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的.过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性. 2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想. 【情感态度】 进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识. 【教学重点】 ①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质. 【教学难点】 能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象. 一、情境导入,初步认识 请同学们完成下列问题. 1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式. 2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标. 3.画y=-2x2+6x-1的图象. 4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象. 5.二次函数y=-2x2+6x-1的y随x的增减性如何? 【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程. 二、思考探究,获取新知 探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步? 学生回答、教师点评: 一般分为三步: 1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标. 2.列表,描点,连线画出对称轴右边的部分图象. 3.利用对称点,画出对称轴左边的部分图象. 探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗? 目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点: 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 过程: 一、试一试 1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中, AB长x(m)123456789 BC长(m)12 面积y(m2)48 2.x的值是否可以任意取?有限定范围吗? 3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式. 二、提出问题 某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并 回答: 1.商品的.利润与售价、进价以及销售量之间有什么关系? 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元? 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? 4.x的值是否可以任意取?如果不能任意取,请求出它的范围, 5.若设该商品每天的利润为y元,求y与x的函数关系式。 将函数关系式y=x(20-2x)(0 <x <10=化为: y=-2x2+20x (0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y =-100x2+100x+20D (0≤x≤2)……………………(2) 三、观察;概括 1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式 ) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点 ? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项. 四、课堂练习 1.(口答)下列函数中,哪些是二次函数? (1)y= 5x+1 (2)y=4x2-1 (3)y=2x3-3x2 (4)y=5x4-3x+1 2.P3练习第1,2题。 五、小结 1.请叙述二次函数的定义. 2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。 通过学生的讨论,使学生更清楚以下事实: (1)分解因式与整式的乘法是一种互逆关系; (2)分解因式的结果要以积的形式表示; (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数; (4)必须分解到每个多项式不能再分解为止。 活动5:应用新知 例题学习: P166例1、例2(略) 在教师的引导下,学生应用提公因式法共同完成例题。 让学生进一步理解提公因式法进行因式分解。 活动6:课堂练习 1.P167练习; 2. 看谁连得准 x2-y2 (x+1)2 9-25 x 2 y(x -y) x 2+2x+1 (3-5 x)(3+5 x) xy-y2 (x+y)(x-y) 3.下列哪些变形是因式分解,为什么? (1)(a+3)(a -3)= a 2-9 (2)a 2-4=( a +2)( a -2) (3)a 2-b2+1=( a +b)( a -b)+1 (4)2πR+2πr=2π(R+r) 学生自主完成练习。 通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。 活动7:课堂小结 从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理? 学生发言。 通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的`互逆关系,加深对类比的数学思想的理解。 活动8:课后作业 课本P170习题的第1、4大题。 学生自主完成 通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。 板书设计(需要一直留在黑板上主板书) 15.4.1提公因式法 例题 1.因式分解的定义 2.提公因式法 【《二次函数》教案】相关文章: 二次函数数学教案09-30 二次函数说课稿07-23 二次函数的概念说课稿11-26 关于二次函数说课稿范文06-09 函数概念教案11-26 函数的性质教案08-31 二次根式教案3篇02-09 【精华】二次根式教案4篇10-05 二次根式教案七篇11-01 龟兔第二次赛跑大班教案08-25《二次函数》教案2
《二次函数》教案3
《二次函数》教案4
《二次函数》教案5
《二次函数》教案6
《二次函数》教案7
《二次函数》教案8
《二次函数》教案9
《二次函数》教案10
《二次函数》教案11
《二次函数》教案12
《二次函数》教案13
《二次函数》教案14
《二次函数》教案15