初中数学教案
在教学工作者开展教学活动前,总不可避免地需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么你有了解过教案吗?下面是小编精心整理的初中数学教案,希望能够帮助到大家。
初中数学教案1
一、内容和内容解析
(一)内容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析
(一)教学目标
1.理解不等式的概念
2.理解不等式的解与解集的意义,理解它们的区别与联系
3.了解解不等式的概念
4.用数轴来表示简单不等式的解集
(二)目标解析
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的'解集.
四、教学支持条件分析
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计
(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知
问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
1.从时间方面虑:
2.从行程方面:<>50 3.从速度方面考虑:x>50÷
设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.
(三)紧扣问题概念辨析
1.不等式
设问1:什么是不等式?
设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.
2.不等式的解
设问1:什么是不等式的解?设问
2:不等式的解是唯一的吗?由学生自学再讨论.
老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式
3.不等式的解集
设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问
2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.
老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.
4.解不等式
设问1:什么是解不等式?由学生回答.
老师强调:解不等式是一个过程.
设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.
(四)数形结合,深化认识
问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题
2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.
设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.
(五)归纳小结,反思
提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题
1、什么是不等式?
<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它与不等式的解有什么区别与联系?
4、用数轴表示不等式的解集要注意哪些方面?
设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.
(六)布置作业,课外反馈
教科书第119页第1题,第120页第2,3题.
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
六、目标检测设计1.填空
下列式子中属于不等式的有___________________________
①x +7>
②②x≥ y + 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.
2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数
③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.
初中数学教案2
一、主题分析与设计
本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事
3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪刀
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容:
①供火车行驶的铁轨上;
②游泳池中的泳道隔栏;
③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图————度量————填表————猜想
学生活动二:画图————剪图————叠合
让学生根据活动得出的'数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究————小组讨论————成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b(已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1、(抢答)课本P13练一练1、2及习题7。2 1、5
2、(讨论解答)课本P13习题7。2 2、3、4
(五)课堂总结:这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)
⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
(六)作业
学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)
六、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。
②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。
③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧
初中数学教案3
一、教学目标:
1.知识目标:
①能准确理解绝对值的几何意义和代数意义。
②能准确熟练地求一个有理数的绝对值。
③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。
2.能力目标:
①初步培养学生观察、分析、归纳和概括的思维能力。
②初步培养学生由抽象到具体再到抽象的思维能力。
3.情感目标:
①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。
②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。
二、教学重点和难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。
三、教学方法
启发引导式、讨论式和谈话法
四、教学过程
(一)复习提问
问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?
(二)新授
1.引入
结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。
2.数a的绝对值的意义
①几何意义
一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.
举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)
强调:表示0的点与原点的距离是0,所以|0|=0.
指出:表示“距离”的数是非负数,所以绝对值是一个非负数。
②代数意义
把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
用字母a表示数,则绝对值的代数意义可以表示为:
指出:绝对值的代数定义可以作为求一个数的绝对值的.方法。
3.例题精讲
例1.求8,-8,,-的绝对值。
按教材方法讲解。
例2.计算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一个数的绝对值等于2,求这个数。
解:∵|2|=2,|-2|=2
∴这个数是2或-2.
五、巩固练习
练习一:教材P641、2,P66习题2.4A组1、2.
练习二:
1.绝对值小于4的整数是____.
2.绝对值最小的数是____.
3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。
六、归纳小结
本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。
七、布置作业
教材P66习题2.4A组3、4、5.
初中数学教案4
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解:
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的`图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注:
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点A(—5,m)在反比例函数图象上,所以,
点A的坐标为。
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0 一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下: 一、在备课方面 在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。 二、在教学过程方面 在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的.影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。 三、工作中存在的问题 1)、教材挖掘不深入。 2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。 3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导 4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。 四、今后努力的方向 1)、加强学习,学习新教学模式下新的教学思想。 2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。 3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。 4)、加强转差培优力度。 5)、加强教学反思,加大教学投入。 一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。 一、教学案例的特点 1、案例与论文的区别 从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。 从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。 2、案例与教案、教学设计的区别 教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。 3、案例与教学实录的区别 案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。 4、教学案例的特点是 ——真实性:案例必须是在课堂教学中真实发生的事件; ——典型性:必须是包括特殊情境和典型案例问题的故事; ——浓缩性:必须多角度地呈现问题,提供足够的信息; ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。 二、数学案例的结构要素 从文章结构上看,数学案例一般包含以下几个基本的元素。 (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。 (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。 (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。 (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的'了解。 (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。 三、初中数学教学案例主题的选择 新课程理念下的初中数学教学案例,可从以下六方面选择主题: (1)体现让学生动手实践、自主探究、合作交流的教学方式; (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验; (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验; (4)体现数学与信息技术整合的教学方法; (5)体现教师在教学过程中的组织者、引导者与合作者的作用; (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。 教学目标 1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步; 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; 4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。 教学建议 1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。 2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解: (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性. (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式. 等都不是代数式. 3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。 如:说出代数式7(a-3)的意义。 分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。 4.书写代数式的注意事项: (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面. 如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数, #FormatImgID_0# .数字与数字相乘一般仍用“×”号. (2)代数式中有除法运算时,一般按照分数的写法来写. (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来. 5.对本节例题的分析: 例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍. 例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已. 6.教法建议 (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。 (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。 (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。 (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。 (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。 7.教学重点、难点: 重点:用字母表示数的意义 难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。 教学设计示例 课堂教学过程设计 一、从学生原有的认知结构提出问题 1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们? (通过启发、归纳最后师生共同得出用字母表示数的五种运算律) (1)加法交换律 a+b=b+a; (2)乘法交换律 a·b=b·a; (3)加法结合律 (a+b)+c=a+(b+c); (4)乘法结合律 (ab)c=a(bc); (5)乘法分配律 a(b+c)=ab+ac 指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”; (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数 2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少? 3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗? 4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少? (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米) 此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容. 三、讲授新课 1代数式 单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义 2举例说明 例1 填空: (1)每包书有12册,n包书有__________册; (2)温度由t℃下降到2℃后是_________℃; (3)棱长是a厘米的正方体的.体积是_____立方厘米; (4)产量由m千克增长10%,就达到_______千克 (此例题用投影给出,学生口答完成) 解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m 例2 说出下列代数式的意义: 解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积; (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方 说明:(1)本题应由教师示范来完成; (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等 例3 用代数式表示: (1)m与n的和除以10的商; (2)m与5n的差的平方; (3)x的2倍与y的和; (4)ν的立方与t的3倍的积 分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面 四、课堂练习 1填空:(投影) (1)n箱苹果重p千克,每箱重_____千克; (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米; (3)底为a,高为h的三角形面积是______; (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____ 2说出下列代数式的意义:(投影) 3用代数式表示:(投影) (1)x与y的和; (2)x的平方与y的立方的差; (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和 五、师生共同小结 首先,提出如下问题: 1本节课学习了哪些内容?2用字母表示数的意义是什么? 3什么叫代数式? 教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号 六、作业 1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长 2张强比王华大3岁,当张强a岁时,王华的年龄是多少? 3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少? 4a千克大米的售价是6元,1千克大米售多少元? 5圆的半径是R厘米,它的面积是多少? 6用代数式表示: (1)长为a,宽为b米的长方形的周长; (2)宽为b米,长是宽的2倍的长方形的周长; (3)长是a米,宽是长的1/3 的长方形的周长; (4)宽为b米,长比宽多2米的长方形的周长 (一)教材分析 1、知识结构 2、重点、难点分析 重点: 找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础. 难点: 找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果那么”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点. (二)教学建议 1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假. 2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解: (1)假命题可分为两类情况: ①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的`命题. ②题设有多种情形,其中至少有一种情形的结论是错误的. 例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形: 第一种情形是两个内错角都等于90°,这时两直线平行; 第二种情形是两个内错角不都等于90°,这时两直线不平行. 整体说来,这是错误的命题. (2)是否是命题: 命题的定义包括两层涵义: ①命题必须是一个完整的句子; ②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成. 另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题. (3)命题的组成 每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果,那么”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论. 有些命题,没有写成“如果,那么”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果那么”的形式. 另外命题的题设(条件)部分,有时也可用“已知”或者“若”等形式表述;命题的结论部分,有时也可用“求证”或“则”等形式表述. 教学目标: 1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。 (2)能熟练进行有理数的减法法则。 2、过程与方法 通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。 重点、难点 1、重点:有理数减法法则及其应用。 2、难点:有理数减法法则的应用符号的.改变。 教学过程: 一、创设情景,导入新课 1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)= —3+(+5)= 2、-(-2)= -[-(+23)]=,+[-(-2)]= 3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少? 导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题) 二、合作交流,解读探究 1(-2)-(-10)=8=(-2)+8 2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米? 3、通过以上列式,你能发现减法运算与加法运算的关系吗? (学生分组讨论,大胆发言,总结有理数的减法法则) 减去一个数等于加上这个数的相反数 教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗? 三、应用迁移,巩固提高 1、P.24例1 计算: (1) 0-(-3.18)(2)(-10)-(-6)(3)- 解:(1)0-(-3.18)=0+3.18=3.18 (2)(-10)-(-6)=(-10)+6=-4 (3)-=+=1 2、课内练习:P.241、2、3 3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。 四、总结反思 (1) 有理数减法法则:减去一个数,等于加上这个数的相反数。 (2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。 五、作业 P.27习题1.4A组1、2、5、6 备选题 填空:比2小-9的数是 。 а比а+2小 。 若а小于0,е是非负数,则2а-3е 0。 问题描述: 初中数学教学案例 初中的,随便那个年级.20xx字.案例和反思 1个回答 分类:数学 20xx-11-30 问题解答: 我来补答 2.3 平行线的性质 一、教材分析: 本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分. 二、教学目标: 知识与技能:掌握平行线的性质,能应用性质解决相关问题. 数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程. 解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神. 情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的'热情和勇于探索、锲而不舍的精神. 三、教学重、难点: 重点:平行线的性质 难点:“性质1”的探究过程 四、教学方法: “引导发现法”与“动像探索法” 五、教具、学具: 教具:多媒体课件 学具:三角板、量角器. 六、教学媒体:大屏幕、实物投影 七、教学过程: (一)创设情境,设疑激思: 1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸. 2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗? 学生活动: 思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行; 教师:首先肯定学生的回答,然后提出问题. 问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢? 引出课题——平行线的性质. (二)数形结合,探究性质 1.画图探究,归纳猜想 任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图). 问题一:指出图中的同位角,并度量这些角,把结果填入下表: 第一组 第二组 第三组 第四组 同位角 ∠1 ∠5 角的度数 数量关系 学生活动:画图——度量——填表——猜想 结论:两直线平行,同位角相等. 问题二:再画出一条截线d,看你的猜想结论是否仍然成立? 学生:探究、讨论,最后得出结论:仍然成立. 2.教师用《几何画板》课件验证猜想 3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等) (三)引申思考,培养创新 问题三:请判断内错角、同旁内角各有什么关系? 学生活动:独立探究——小组讨论——成果展示. 教师活动:引导学生说理. 因为a‖b 因为a‖b 所以∠1=∠2 所以∠1=∠2 又 ∠1=∠3 又 ∠1+∠4=180° 所以∠2=∠3 所以∠2+∠4=180° 语言叙述: 性质2 两条直线被第三条直线所截,内错角相等. (两直线平行,内错角相等) 性质3 两条直线被第三条直线所截,同旁内角互补. (两直线平行,同旁内角互补) (四)实际应用,优势互补 1.(抢答) (1)如图,平行线AB、CD被直线AE所截 ①若∠1 = 110°,则∠2 = °.理由:. ②若∠1 = 110°,则∠3 = °.理由:. ③若∠1 = 110°,则∠4 = °.理由:. (2)如图,由AB‖CD,可得( ) (A)∠1=∠2 (B)∠2=∠3 (C)∠1=∠4 (D)∠3=∠4 (3)如图,AB‖CD‖EF, 那么∠BAC+∠ACE+∠CEF=( ) (A) 180°(B)270° (C)360° (D)540° (4)谁问谁答:如图,直线a‖b, 如:∠1=54°时,∠2= . 学生提问,并找出回答问题的同学. 2.(讨论解答) 如图是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,求梯形另外两角分别是多少度? (五)概括存储(小结) 1.平行线的性质1、2、3; 2.用“运动”的观点观察数学问题; 3.用数形结合的方法来解决问题. (六)作业 第69页 2、4、7. 八、教学反思: ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣. ②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境. ③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值. 教学目标: (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯 重点难点: 能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。 教学过程: 一、试一试 1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中, 2.x的值是否可以任意取?有限定范围吗? 3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式, 对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式. 二、提出问题 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答: 1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销 售约多少件商品? [(10-8-x);(100+100x)] 4.x的.值是否可以任意取?如果不能任意取,请求出它的范围, [x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。 [y=(10-8-x) (100+100x)(0≤x≤2)] 将函数关系式y=x(20-2x)(0 <x <10=化为: y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2) 三、观察;概括 1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答; (1)函数关系式(1)和(2)的自变量各有几个? (各有1个) (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式) (3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的) (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。 2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项. 四、课堂练习 1.(口答)下列函数中,哪些是二次函数? (1)y=5x+1 (2)y=4x2-1 (3)y=2x3-3x2 (4)y=5x4-3x+1 2.P3练习第1,2题。 五、小结 1.请叙述二次函数的定义. 2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。 六、作业:略 教学目标 (一)知识与能力 1.通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。2.通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。 (二)过程与方法 1.创设情境,通过实例引导学生考虑多个不等式联合的解法。2.通过例题总结解一元一次不等式组的方法,并总结一元一次不等式组的解与一元一次不等式的解之间的关系。 (三)情感、态度与价值观 1.通过数轴的表示不等式组的解,让学生加深对数形结合的作用的理解,使他们逐步熟悉和掌握这一重要的思想方法。2.在对例题的讲解中,使学生认识一元一次不等式组的解集即每个不等式解集的公共部分,从而渗透“交集”的思想。 3.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美 教学重、难点 重点:掌握一元一次不等式组的解法,会用数轴表示一元一次不等式组解集 的情况。难点 :1.弄清一元一次不等式的解集与一元一次不等式组的解集之间的关系。2.灵活运用一元一次不等式组的知识解决问题。 教学过程 一.设置情景,引入课题 学生活动:请学生观看购物街转转盘游戏.(在看之前先让学生看一看游戏规则:转轮上平均分布着5、10、15一直到100共20个数字。每位选手最多有两次机会。选手转动转轮的数字之和,最大且不超过100者为胜出,可以获得相应的奖品。选手每次必须把转轮转动1圈才有效.) 设第三位选手第二次转的数字为x,他要胜出应满足什么条件? 预设学生 1x?10?75,预设学生2 x?10?教师提出问题:这两个条件只需满足一个还是缺一不可? 预设学生:同时具备??x?10?75 x?10?100?教师活动: 1、讲解联立符号的作用,并引入课题.2、给出定义:由几个含有同一未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组.【设计意图】从一个学生感兴趣的游戏入手.问题的'提出具有一定的现实性和探究性,目的是激发学生探究新知的欲望,在教师的引导下,将生活中的问题转化为数学问题,从而引出本课题.学生活动 用心找一找:下列不等式组中哪些是一元一次不等式组? ?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?预设学生1:(2)(3)(4)(5)预设学生2:(2)(4)(5)预设学生3:(2)(4) 【设计意图】教师组织学生分组讨论,明析一元一次不等式组的定义.使学生进一步明确“几个含有同一个未知数的一元一次不等式组成.” 二、探索过程 问题一:??x?10?75这两个不等式的解分别是什么呢? x?10?100??x?65 ?x?90?问题二:怎么表示不等式组的解呢? 什么是不等式组的解呢? 【设计意图】通过这两个问题的探讨,让学生在解不等式的过程中得出不等式组的解法和不等式组的解的表示方法.文字语言:大于65小于或等于90的数.图形语言: O***0 数学式子:65<x≤90 学生活动:探究不等式组的解 问题:求下列不等式组的解,并找出其中的规律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7学生预设1:通过数轴,能求出不等式组的解 学生预设2:找不出其中的规律 【设计意图】让学生利用数轴寻找不等式组的解,并表示出来,引导学生找出其中的规律,培养学生善于现问题、总结规律的能力 三、练习巩固,拓展提高 学生活动:1.写出下列不等式组的解 (1)不等式组??x??5的解在数轴上表示为____________则不等式组的解为 x??2??x??5的解在数轴上表示为_______________则不等式组的解?x??2(2)不等式组?为 (3)不等式组??x??1的解为 x?2??x??1的解为 x?2?(4)不等式组 ?2.选择题:(1)不等式组??x?2的解是()x?2??2 ?2 C.无解 ?2(2)不等式组??x??2的负整数解是()x??3?A.–2,0,-1 B.-2 C.–2,-1 D.不能确定 【设计意图】让学生及时巩固,准确找出不等式组的解,在找不等式组的解的过程中引入整数解.四、合作小结,课外探索 学生活动: 1每位同学写一个以x为未知数的一元一次不等式; 2、同桌的两个不等式组在一起叫做什么?三位同学的不等式组在一起呢? 3、每位同学把你所写的不等式解出来; 4、同桌所组成的不等式组的解是什么? 【设计意图】通过问题串,在生生、师生互动的情况下,复习一元一次不等式组的定义和解.增强了学生之间的合作交流.五、布置作业 3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品? 【设计意图】通过实际问题的解决,有利于学生体会到数学来源于生活,并能有效地复习巩固本堂课所学的知识和方法.【板书设计】 一元一次不等式组 ?x?10?75??x?10?100?x?65 文字语言:大于??x?9065小于或等于90的数.图形语言: O***0数学式子:65<x≤90 求下列不等式组的解,并找出其中的规律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)规律:大大取大,小小取小; 大小小大中间找 大大小小为 一、素质教育目标 (一)知识教学点 1.掌握的三要素,能正确画出. 2.能将已知数在上表示出来,能说出上已知点所表示的数. (二)能力训练点 1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识. 2.对学生渗透数形结合的思想方法. (三)德育渗透点 使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点. (四)美育渗透点 通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受. 二、学法引导 1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法. 2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习. 三、重点、难点、疑点及解决办法 1.重点:正确掌握画法和用上的点表示有理数. 2.难点:有理数和上的点的对应关系。 四、课时安排 1课时 五、教具学具准备 电脑、投影仪、自制胶片. 六、师生互动活动设计 师生同步画,学生概括三要素,师出示投影,生动手动脑练习 七、教学步骤 (一)创设情境,引入新课 师:大家知识温度计的用途是什么? 生:温度计可以测量温度 (出示投影1) 三个温度计.其中一个温度计的`液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度. 师:三个温度计所表示的温度是多少? 生:2℃,-5℃,0℃. 我们能否用类似温度计的图形表示有理数呢? 这种表示数的图形就是今天我们要学的内容—(板书课题). 【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识. (二)探索新知,讲授新课 1.的画法 与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下: 第一步:画直线定原点原点表示0(相当于温度计上的0℃). 第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负). 第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度). 【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法. 让学生观察画好的直线,思考以下问题: (出示投影1) (1)原点表示什么数? (2)原点右方表示什么数?原点左方表示什么数? (3)表示+2的点在什么位置?表示-1的点在什么位置? (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数? 根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。 学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。 一、目的要求 1、使学生初步理解一次函数与正比例函数的概念。 2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。 二、内容分析 1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。 2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的`图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。 3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。 三、教学过程 复习提问: 1、什么是函数? 2、函数有哪几种表示方法? 3、举出几个函数的例子。 新课讲解: 可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考: (1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。) (2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。) (3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。) (4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。) 由以上的层层设问,最后给出一次函数的定义。 一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。 对这个定义,要注意: (1)x是变量,k,b是常数; (2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。) 由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。 在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。 写成式子是(一定) 需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。 其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。 课堂练习: 教科书13、4节练习第1题. 1.初中数学教案模板 1.课题 填写课题名称(初中代数类课题) 2.教学目标 (1)知识与技能: 通过本节课的学习,掌握......知识,提高学生解决实际问题的能力; (2)过程与方法: 通过......(讨论、发现、探究)的过程,提高......(分析、归纳、比较和概括)的能力; (3)情感态度与价值观: 通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。 3.教学重难点 (1)教学重点:本节课的知识重点 (2)教学难点:易错点、难以理解的知识点 4.教学方法(一般从中选择3个就可以了) (1)讨论法 (2)情景教学法 (3)问答法 (4)发现法 (5)讲授法 5.教学过程 (1)导入 简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题) (2)新授课程(一般分为三个小步骤) ①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的解法和步骤)。 ②归纳总结该课题中的.重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。 ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。 (3)课堂小结 教师提问,学生回答本节课的收获。 (4)作业提高 布置作业(尽量与实际生活相联系,有所创新)。 6.教学板书 2.初中数学教案格式 课程编码:______________________________________ 总学时 / 周学时: / 开课时间: 年 月 日 第 周至第 周 授课年级、专业、班级:___________________________ 使用教材:_______________________________________ 授课教师:_______________________________________ 1.章节名称 2.教学目的 3.课时安排 4.教学重点、难点 5.教学过程(包括教学内容、教师活动、学生活动、教学方法等) 6.复习巩固与作业要求 7.教学环境及教具准备 8.教学参考资料 9.教学后记 3.初中数学教案范文 教学目的 1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。 2.使学生会列一元一次方程解决一些简单的应用题。 3.会判断一个数是不是某个方程的解。 重点、难点 1.重点:会列一元一次方程解决一些简单的应用题。 2.难点:弄清题意,找出“相等关系”。 教学过程 一、复习提问 一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢? 解:设小红能买到工本笔记本,那么根据题意,得1.2x=6 因为1.2×5=6,所以小红能买到5本笔记本。 二、新授 问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评) 算术法:(328-64)÷44=264÷44=6(辆) 列方程:设需要租用x辆客车,可得44x+64=328 解这个方程,就能得到所求的结果。 问:你会解这个方程吗?试试看? 问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?” 通过分析,列出方程:13+x=(45+x) 问:你会解这个方程吗?你能否从小敏同学的解法中得到启发? 把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16, 因为左边=右边,所以x=3就是这个方程的解。 这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。 问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题? 同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办? 三、巩固练习 教科书第3页练习1、2。 四、小结 本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。 五、作业 教科书第3页,习题6.1第1、3题。 【初中数学教案】相关文章: 初中数学教案05-28 初中数学教案模板10-07 初中数学教案设计11-28 (精品)初中数学教案模板3篇11-03 幼儿的数学教案08-22 小学数学教案10-24 小学数学教案07-20 (精选)小学数学教案07-25 小学数学教案【精选】08-30初中数学教案5
初中数学教案6
初中数学教案7
初中数学教案8
初中数学教案9
初中数学教案10
初中数学教案11
初中数学教案12
初中数学教案13
初中数学教案14
初中数学教案15