当前位置:范文派>教学范文>教案>小数的意义教案

小数的意义教案

时间:2023-03-06 14:08:35 教案 我要投稿

小数的意义教案(集合15篇)

  作为一位杰出的老师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么什么样的教案才是好的呢?下面是小编整理的小数的意义教案,希望对大家有所帮助。

小数的意义教案(集合15篇)

小数的意义教案1

  [教材分析]

  这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。

  [教学内容]

  义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。

  [教学目标]

  1.使学生经历实际测量等活动,了解小数的产生过程。

  2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。

  3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。

  [教学重点、难点]

  理解小数的意义

  [课前准备]

  课件,课前调查的数据资料

  [教学过程]

  (一)创设情境

  1.感受生活中整数和分数的运用。

  (1)课件出示。

  一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一

  (2)师:看来在我们的生活中,整数的`应用是非常普遍和广泛的。当我们

  得不到正好的整数结果时,可以用分数来表示。

  2.感受生活中小数的运用,质疑反思,体会小数的产生。

  (1)学生介绍课前搜集到的数据信息

  (2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?

  (3)抓住现实信息引发思考

  提问:生活中,我们在哪些时候会常常用到小数?

  让学生自己动手测量桌子的长度或数学书封面的长和宽

  3.揭示课题:

  看来小数的存在也有它一定的价值,这节课我们就来研究小数的产生及意义。

  (设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)

  (二)研究改写方法,探究小数的意义

  1.1米

  初步探究一位小数的改写。

  (1)出示线段图。

  (2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?

  ①(学生预设:把1米平均分成10份,每份是米。)

  ②也可以用小数来表示,每一份是0.1米。

  ③其中的两份用小数可以怎样表示,你怎么想?

  (学生预设:把1米平均分成10份,每两份是米,小数是0.2米)

  ④图中还有哪部分表示0.1?(请学生指图)

  (3)理解0.2并感知0.1与0.2有什么关系

  ①哪部分表示0.2?想一想对0.2你还能说些什么?

  ②0.2与0.1有什么关系?

  (0.1+0.1=0.2,0.2是两个0.1…)

  ③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。

  ④对比:米与0.1米,米与0.2米…有怎样的关系?

  ⑤观察米=0.1米,米=0.2米,…你发现了什么?

  ⑥提问:一位小数表示什么?

  2.在迁移辨析中理解两位小数的改写。

  (1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?

  (2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。

  (根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)

  师:同学们你们观察上面这些算式,你们有什么发现?

  (学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)

  (3)练习:说出小数的意义

  课件呈现:0.6、0.09、0.12、0.86、0.1

  (设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)

  3.深入、灵活理解三位小数的改写

  (1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?

  (2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?

  (3)课件出示三组数据。

  第一组:1/100023/100026/1000

  第二组:3/100043/100089/1000

  第三组:9/100065/10008/1000

  (4)提出要求:请小组合作自选一组分数,一边改写一边讨论。

  4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。

  5.拓展:请同学们想一想四位小数表示多少?五位小数呢?

  (设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)

  (四)认识小数的计数单位和进率。

  1.回顾整数的计数单位

  师:回忆一下,我们都已经学习了哪些计数单位?

  (个、十、百、千、万、十万、百万、千万、亿)

  2.说说它们之间有什么关系?

  3.1个一是10个(),是100个(),是1000个(),是10000个()…

  4.提问:所以小数的计数单位应该是什么?

  5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。

  6.依照这一体系,你能说说小数的计数单位间的进率吗?

  (五)巩固练习

  1.填数(数学书第51页“做一做”)

  2.比一比(数学书第55页练习九第1题)

  3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。

  (六)畅谈收获

  通过这节课的学习,你有哪些收获?还想了解什么?

  (设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)

  [板书设计]

  小数的产生和意义

  1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米

  2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米

  3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米

  一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几

  小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……

  每相邻两个计数单位之间的进率为10。

小数的意义教案2

  教学目标

  1.使学生理解小数除法的意义.

  2.初步学会较容易的除法是整数的小数除法的计算方法.

  教学重点

  使学生学会除数是整数的小数除法的计算方法.

  教学难点

  理解商的小数点要和被除数的小数点对齐的`道理.

  教学过程

  一、铺垫

  (一)列式计算:一筒奶粉500克,3筒奶粉多少克?

  教师板书:500×3=1500(克)

  (二)变式:

  1.3筒奶粉1500克,一筒奶粉多少克?

  2.一筒奶粉500克,几筒奶粉1500克?

  教师板书:1500÷3=500(克)

  1500÷500=3(筒)

  (三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  二、探究新知

  (一)理解小数除法的意义.

  1.课件演示:小数除法的意义

  2.小结:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  3.练习:根据小数除法的意义,写出下面两个除法算式的商.

  1.8×0.5=0.9

  0.9÷0.5= 0.9÷1.8=

  (二)教学小数除法的计算方法.

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

  1.理解题意,并列式:21.45÷15

  2.小组讨论,理解算理,尝试计算.

  3.课件演示:除数是整数的小数除法(例1)

  4.练习:68.8÷4 85.44÷16

  5.总结计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐.

  三、全课小结

  这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?

  四、课堂练习

  (一)计算下面各题.

  42.84÷7 67.5÷15 289.8÷18

  (二)只列式不计算.

  1.两数的积是201.6,一个因数是72,另一个因数是多少?

  2.把86.4平均分成24份,每份是多少?

  3.64.6是17的多少倍?

  (三)判断下面各题是否正确.

  五、布置作业

  (一)计算下面各题.

  101.7÷9 79.2÷6 716.8÷7

  (二)一台拖拉机5小时耕5.55公顷地,平均每小时耕地多少公顷?

  六、板书设计

  小数除法的意义

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

小数的意义教案3

  【教学内容】

  人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

  【教学目标】

  1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

  2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

  3、培养学生探究发现、类推迁移的数学学习能力。

  【教学重点】

  在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  【教学难点】

  理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

  【教学准备】

  米尺、多媒体课件、立方体教具。

  【教学过程】

  一、【课前铺垫、创设情景】

  教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

  二、【新课讲授】

  1、认识一位小数

  今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

  (出示米尺课件)学生仔细观察,回答问题。

  教学例1。

  教师提问:一起来数数,把1米平均分成了多少份?

  学生一起数,得出结论(10份)。

  提问:因为1米=10分米,所以这一份是多长?

  学生观察后回答:1分米

  小结:我们把1米平均分成了10份,每一份是1分米。

  提问:1分米是1米的几分之几?()

  (1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

  教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

  想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

  由此得出:米=0.1米

  (2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

  提问:谁能说说0.3米表示什么意思?

  同样,可以得出:米=0.3米

  (3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

  提问:谁能再来解释一下0.7米表示什么意思?

  同理,可以写成:米=0.7米

  (4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

  教师旨在引导,学生观察发现

  师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

  师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

  师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

  学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

  出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

  一起数数0.3米是由几个米组成的?(3个)

  提问:那0.3里面有()个0.1?

  这一段又是多长?(0.7米)

  再来数数几个米组成0.7米?(7个)

  提问:那0.7里面有()个0.1?

  进一步强化训练:0.9里面有()个0.1?(9个)

  请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

  提问:1里面有()个?(10个)

  也就是说:1里面有10个0.1

  提问:谁能告诉我1.2里面有()个0.1?(12个)

  师:你是怎么想的?

  教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

  师:这句话太重要了,谁能把它再说一遍!

  点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

  反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

  2、认识两位小数

  小小的米尺,大大的学问。

  师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

  1厘米是1米的几分之几米呢?(米)

  出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

  小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

  提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

  请大家翻开课本32面,把你的答案写在书上。

  教师根据学生的回答,课件逐一出示答案。

  师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

  师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

  师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

  师:那你发现了什么?

  学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

  师:分母是100的`分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

  师:谁能把这句非常重要的话像老师这样说一说!

  点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

  反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

  3、认识三位小数

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

  学生分组讨论交流,小组选派代表发言。

  发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

  提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

  学生总结发现:

  分母是1000的分数,可以用三位小数来表示。

  三位小数的计数单位是千分之一,写作:0.001

  点击出示发现!你们个个都是自学小能手!老师为你们点赞!

  4、概括:小数的意义

  师:通过刚才的学习,我们知道了:

  分母是10的分数,可以用一位小数来表示

  分母是100的分数,可以用两位小数来表示

  分母是1000的分数,可以用三位小数来表示

  谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

  学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

  师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

  这就是小数的意义,请大家齐读一遍。

  学生齐读意义,教师板书课题~小数的意义

  师:同学们可真棒!自己总结出了小数的意义!

  5、总结:小数的计数单位

  师:通过刚才的学习,我们也知道了:

  一位小数的计数单位是十分之一,写作:0.1

  两位小数的计数单位是百分之一,写作:0.01

  三位小数的计数单位是千分之一,写作:0.001

  师:谁能尝试着把它们用一句话来总结一下?

  学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

  师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

  师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

  6、小数相邻单位间的进率

  (过渡)学习的过程就是不断地克服困难,战胜自我的过程。

  师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

  教师出示正方体变形课件,逐步引导学生观察分析:

  1里面()个0.1

  0.1里面()个0.01

  0.01里面有()个0.001

  提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

  学生讨论发言。

  小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

  师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

  学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

  请大家齐读一遍。

  三、【巩固提升、练习反馈】

  1.完成教材第33页“做一做”。(可以一题两问)

  2.判断:争当合格小裁判(说出判断理由)

  四、【课堂小结】

  提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

  小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

  五、拓展延伸

  板书设计

  小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

  小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

  小数的进率:每相邻两个计数单位之间的进率是10。

小数的意义教案4

  教学目标:

  1、初步理解小数与分数之间的内在联系,明确一位小数用十分之几来表示,两位小数用百分之几来表示,三位小数用千分之几来表示。掌握相邻两个计数单位间的进率。

  2、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。

  教学重点:

  理解和掌握小数的意义。

  教学难点:

  理解小数的意义。

  教学过程:

  一、导入课题

  三年级我们已经初步认识了小数,今天我们继续研究小数的意义。板书课题。

  二、小数的.意义

  板书0.1 0.01猜猜第三个写什么?0.001你们很会推理。

  像0.1,小数点后面只有一位数,就是一位小数。老师先写了一个一位小数,又写了一个两位小数,最后写了一个...?

  板书一位小数两位小数三位小数

  1、一位小数

  这节课咱们要认识小数的意义,就从0.1开始研究。把一个正方形看做1,0.1该怎样表示呢?请你试着画一画、涂一涂,在自己的正方形纸上表示出0.1。

  出示学生作品:有错的,有对的。

  到底哪位同学的意见是正确的呢?我们能用原来的知识来说明其中的道理吗?

  学生:把正方形纸看成一元,0.1元就是一角,一元里面有10个一角,所以应该把正方形纸平均分成10份,其中的一份就是0.1。

  大家的意见统一了,谁来说说0.1究竟表示什么?

  小结:把1平均分成10份,其中的一份是十分之一,也就是0.1。

  板书:=0.1

  那这样的2份、3份、5份呢?板书:=0.2 =0.3 =0.5

  同学们观察一下,刚才我们看到的这些小数都是...?一位小数

  师:你能说一说一位小数表示的意思了吗?

  小结:一位小数表示十分之几。

  一份,也就是十分之一,叫做一位小数的计数单位,写作0.01

  板书:计数单位:十分之一写作:0.1

  0.2里面有几个0.1?0.3呢?0.5呢?

  出示课件:涂色部分是多少?(0.9)0.9里面有几个0.1?

  再添上1个0.1是多少?(10个0.1)

  课件演示:10个0.1是1,1里面有10个0.1。

  2、两位小数。

  (1)第二个小数0.01表示什么意思?还是那张纸,看做1,如果想表示0.01,想一想你会怎么做呢?

  课件展示:正方形用来表示1,0.01就表示百分之一。

  涂色部分是0.01,空白部分呢?0.99表示什么?

  0.99里面有几个0.01?

  请你在自己的方格纸上涂出自己喜欢的两位小数,想一想它表示什么,里面有几个0.01?

  (2)学生自由活动,点名回答。

  (3)两位小数有什么特点?

  小结:两位小数表示百分之几,计数单位是百分之一,写作:0.01。

  出示课件:涂色部分表示多少?(0.09)里面有几个0.01?再添上1个0.01是多少?演示,板书:10个0.01是0.1,0.1里面有10个0.01

  3、认识三位小数。

  (1)根据一位小数和两位小数的特点,你能总结三位小数的特点吗?

  让学生自己归纳出三位小数。三位小数可以表示为千分之几,计数单位是千分之一,写作:0.01。

  4、一位小数、两位小数、三位小数计数单位之间的关系可以用一幅图表示。

  课件演示:一个正方体平均分成10份,其中一份是十分之一,也就是0.1;继续平均分成10份,其中一份占正方体的百分之一,也就是0.01;还能平均分成10份,一份占正方体的千分之一,也就是0.001。

  5、数轴上认识小数

  出示课件:我们在正方形和正方体上找到了小数,数轴上的小数你能找到吗?

  (1)、课件演示:0.1;9.1数轴下面的数字变了,小数就发生了变化。

  (2)、在数轴上找到3.14,3.141

  三:知识眼延伸

  3.14这个小数,小数点后面还有很多的数,这是我们六年级要学习的圆周率。

  课件:

  1、介绍圆周率

  2、介绍0.618

  四:课堂总结:

  如果这节课满分是1,你会为自己的表现打多少分呢?

小数的意义教案5

  一、复习

  用分数表示下面的数。

  1角=( )元 1分米=( )米 2角=( )元

  1厘米=( )米 1分=( )元 1毫米=( )米

  二、教学例1:

  1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

  指名回答问题。注意学生回答问题时要完整。

  橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。

  2、教学小数的读法:

  你能读出下面的小数吗?鼓励学生大胆尝试。

  0.05 读作: 零点零五 0.48 读作: 零点四八

  引导学生总结读整数部分为0的小数的方法:

  从左往右依次读出各位上的数。

  3、初步感受两位小数的含义。

  想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

  小组讨论交流。

  汇报:0.3元是1元的十分之三。

  思路: 1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100 ;0.05元是5分,是5个1/100 ,也就是1元的 5/100。

  根据上面的思路,让学生说明0.48元是1元的48/100 。

  引导学生看到0.05和0.48都是两位小数,都表示百分之几。

  4、“试一试”

  A、理解:1厘米是 1/100米, 1/100米可以写成0.01米。

  B、用米为单位的分数和小数分别表示4厘米与9厘米。

  学生回答并说名理由。

  比较:这三个分数都是什么样的分数?(百分之几的分数)

  这三个小数呢?(两位小数)

  我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

  三、数形结合,建立小数的概念。

  1、出示例2:把什么看作“1”?(正方形)

  看着图形将1/10和1/100 写成小数。学生自主填空后回答。

  提问:0.1表示什么?0.01又表示什么?

  2、试一试:学生自主练习,进一步体验小数的意义。

  3、思考:

  观察前面出现的小数与分数的关系,你有什么发现?和小组内的`同学交流一下自己的观点。

  结论:分母是10、100、……的分数可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几……

  4、想一想:

  1/1000写成小数是多少?29/1000 呢?你能写一写、读一读吗?

  B、 进一步体会读法:0.001 读作 : 零点零零一

  0.029 读作 : 零点零二九

  强调:小数部分的零要一个一个的读,不能只读一个零。

  我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?学生回答。

  5、练一练:

  学生自主填空,交流时注意让学生根据小数的意义进行说明。

  四、巩固练习:

  练习五的1—5题。

  练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。

  注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。

小数的意义教案6

  【教学内容】

  【教学目标】

  【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

  难点:用“四舍五入”法按要求求出小数近似数。

  【教学过程】

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做期末复习第8题(1)、(2)、(3)。

  (1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.121

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么是小数的`性质?

  2、做期末复习第9题,第1竖行两题。

  (1)学生在书上做,指名板演,集体订正。

  (2)让学生说一说怎样比较两个小数的大小。

  3、做期末复习第10题。

  (1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做期末复习第8题(4)、(5)。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  4、做期末复习第9题剩下的两题。

  (1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (2)学生练习,集体订正。

  (3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  5、做期末复习第11题。

  学生在书上做,并说明理由。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“”、“”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

小数的意义教案7

  教学目的

  1.使学生知道小数的产生过程,理解分数与小数的联系.

  2.使学生明确小数的计数单位,认识小数并理解小数的意义.

  3.培养学生的观察能力、分析能力、抽象概括和迁移能力.

  教学重点

  使学生通过分数与小数的联系从而理解小数的意义.

  教学难点

  使学生真正理解小数的意义.

  教学步骤

  一、设疑激趣.

  1.我们都学过那些数?举例说明,数学教案-小数的意义。(整数、分数)

  2.你还见过那些数?(小数)

  3.你在那里见过?(学生举例,教师可以适当出示:如出租车的计价牌、商场的价签等。)

  4.你对小数还有那些了解?你想知道有关小数的那些知识?

  (教师可以根据学生的回答,有选择的进行板书:小数的意义,产生,与整数、分数的关系等)

  二、探究新知.

  1.教学小数的产生.

  ①口算:10÷10=1÷10=

  100÷10=1÷100=

  1000÷10=1÷1000=

  教师提问:你能说说两组题有什么特点吗?

  ②学生活动:分组测量课桌的长与宽.(利用直尺)

  教师提问:从测量结果中,你发现了什么?

  教师小结:在进行计算和测量时,往往得不到整数的结果.除了可以用分数的

  形式表示以外,还可以用另一种新的数来表示,这就是小数.

  2.教学小数的意义.

  (1)认识一位小数.

  ①根据图意,填出对应的分数.

  ()米()米()米()米

  ②教师出示:把1米平均分成10份,每份是()分米,是()米;

  这样的3份是()分米,是()米.

  ③教师指出:1分米=米,也可以写成0.1米.

  3分米=米,也可以写成0.3米.

  ④教师提问:你能将刚才填写的另外两个分数改写成小数吗?

  (米=0.5米;米=0.9米)

  ⑤教师小结:你发现分数与小数的联系了吗?

  (分母是10的分数,可以写成一位小数,小学数学教案《数学教案-小数的意义》。一位小数表示十分之几。)

  ⑥教师提问:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  (2)认识两位小数.

  猜一猜:你能猜一猜两位小数与什么样的分数有关系吗?

  ①教师出示:把1米平均分成100份,每份长()厘米,是()米;这样的'7份是()厘米,是()米.

  ②引导学生观察米尺,结合教师出示的习题然后进行分组讨论.

  (指名回答并板书:1厘米=米=0.01米;7厘米=米=0.07米.)

  ③教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几.

  (3)认识三位小数.

  教师提问:把1米平均分成1000份,每份长是多少?

  学生在尺上找出1毫米后,教师出示1厘米的放大图,引导学生从图中找出1毫米的,并说明理由,

  使学生明确:1米是千分之一米,还可以写成0.001米.

  (板书:1毫米,米,0.001米)

  教师提问:8毫米是千分之几米?写成小数是多少呢?13毫米呢?

  (板书:8毫米,米,0.008米13毫米,米,0.013米)

  教师提问:分母是1000的分数可以写成几位小数?(板书:三位小数)

  教师说明:照这样分下去,还可得到米写成0.0001米……

  (板书:米,0.0001米)

  (4)抽象、概括小数的意义.

  教师提问:把1米看成一个整体,如把一个整体平均分成10份、100份、1000份……

  这样的一份或几份可以用分母是多少的分数表示?

  教师讲解:①这些分数的分数单位是(、 、)

  ②把分数写成小数时,可以仿照整数的写法,写在整数个位的右面,用圆点隔开.

  学生讨论:什么叫小数?

  教师补充并概括:分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数.

  3.教学例1.

  教师出示:1角是元,用小数表示是()元.

  2分是元,用小数表示是()元.

  2角5分是元,用小数表示是()元.

  牛奶每袋8角5分,用“元”作单位是()元.

  组织学生讨论,并指名说一说每道题都是怎样想的?

  教师提问:你发现分数与小数之间有什么关系吗?

  (分母是10的分数可以写成一位小数,分母是100的分数可以写成两位小数,分母是1000的分数可以写成三位小数……)

  三、巩固练习.

  1、0.3里面有()个十分之一.

  0.05里面有()个百分之一.

  0.009里面有()个千分之一.

  2、把下图中图色的部分用分数和小数表示出来.

  数学教案-小数的意义

小数的意义教案8

  教学目标

  1.进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题.

  2.提高学生计算能力和估算能力.

  3.培养学生认真计算、自觉检验的好习惯.

  教学重点

  正确、熟练地计算较复杂的小数乘法.

  教学难点

  根据小数乘法的意义正确判断积与被乘数的大小关系.

  教学过程()

  一、检查复习

  (一)口算

  0.9×6 7×0.08 1.87×0 0.3×0.6

  0.24×2 1.4×0.3 1.6×5 4×0.25

  60×0.5 7.8×1

  (二)说出下面各算式表示的意义

  2.4×0.8 1.36×4 2.58×0.2

  二、指导探索

  (一)教学例3 0.056×0.15

  1.学生独立计算,指名板演.

  2.指名说一说计算过程.

  教师提问:乘得的积的`小数位数不够时,该怎么办?

  3.指导学生验算方法

  教师提问:怎样检验小数乘法计算是否正确?

  (运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

  (二)教学例4

  一个奶牛场八月份产奶18.5吨.九月份的产量是八月份的2.4倍.九月份产奶多少吨?

  1.独立解答.

  2.教师提问:

  (1)你是根据什么列式的?(一倍数×倍数=几倍数)

  (2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

  3.比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

  4.练习:不计算,说明下面各算式中积与被乘数的关系.

  10.8×0.9 2.4×1.8 50×0.36 0.48×0.75

  讨论:在什么情况下,积小于第一个因数?

  在什么情况下,积等于第一个因数?

  在什么情况下,积大于第一个因数?

  5.小结:当第二个因数比1小时,积比第一个因数(零除外)小;

  当第二个因数等于1时,积等于第一个因数(零除外);

  当第二个因数比1大时,积比第一个因数(零除外)大;

  6.练习:不计算,判断下面各题的结果是否正确.

  0.72×0.15=1.08 0.36×1.8=0.648

  三、质疑小结

  (一)今天你都有什么收获?

  (二)对于今天的学习还有什么问题?

  四、反馈调节

  (一)计算

  0.37×2.9 0.56×0.08 0.072×0.15

  0.18×8.45 4.5×0.002 3.7×0.016

  (二)判断对错.

  1.0.6时等于6分.( )

  2.一个数的1.02倍比原来的数要大.( )

  3.两个因数的小数位数的和是4,积的小数位数也一定是4.( )

  (三)工地有水泥24.5吨,沙子的重量是水泥的2.5倍,石子的重量是沙子的4倍,石子有多少吨?

  五、课后作业

  (一)计算

  82×0.9 3.4×1.26 0.039+1.75

  2.07×53 20.14-6.87 10-5.29

  6.52+72.98 0.36×0.25 0.015×2.04

  (二)食品店运来350瓶鲜牛奶,运来酸奶的瓶数是鲜牛奶瓶数的1.8倍.食品店运来多少瓶酸奶?

  六、板书设计

  小数乘法

  教学设计点评

  教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。

小数的意义教案9

  教学内容:

  人教版小学数学四年级下册第4单元第32页。

  教学目标

  1.理解和掌握小数的意义。

  2.理解整数、小数、分数之间的联系。

  教学重点:理解和掌握小数的意义。

  教学难点:认识小数的计数单位。

  教学过程

  一、展示生活中的小数

  师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗? (学生回答)

  我们一起来看,教室里有几个同学在进行测量。但是,他们测量的一边长1米,但是另一边不够1米,用米做单位,不够1米那应该怎么办呢?这时候,就可以用小数来表示了。

  二、创设情境,导入新课:

  这些数都是什么数?

  生:小数。

  师:小数是怎么产生的呢?

  在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

  揭示课题:小数的意义。

  关于小数你想知道些什么?今天我们继续来学习课本中的新知识:“小数的意义”。

  三、探究新知:

  1.提出探究问题,引出小数的性质。

  我们把1米平均分成10份,每份用分数表示是多少米?

  每份用分数表示是米?

  1-1. 反馈交流。请学生结合图说明自己的想法。

  师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。

  师:0.1米是怎样得到的?谁来说一说。

  生:把1米平均分成10份,每份用分数表示是米,用小数表示就是0.1米。

  箭头指向30的地方怎么表示? 0.3米是怎样得到的?

  我们可以看出把整数1平均分成10份,每一份是0.1, 3份是0.3,用分数表:。

  0.3的计数单位是0.1,的计数单位是。所以0.3表示3个0.1

  同理得出:指向7的箭头,用分数和小数分别怎么表示?

  把整数1平均分成10份,每一份是0.1, 7份是0.7,用分数表:。0.7表示7个0.1

  1-2.抽象概括:小数是分数的另一种表示形式。分母是10的分数可以用一位小数表示。一位小数的计数单位是十分之一,也写作0.1。

  2-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成100份,也用小数来表示吗?

  师:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  师:刚才0.01米是怎样得到的?谁来说一说。

  生:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  箭头指向4的地方怎么表示?0.04米是怎样得到的?

  我们可以看出把整数1平均分成100份,每一份是0.01, 4份是0.04,用分数表:。0.04的计数单位是0.01,的计数单位是。所以0.04表示4个0.01

  同理得出:指向8箭头,用分数和小数分别怎么表示?

  把整数1平均分成100份,每一份是0.01, 8份是0.08,用分数表:。0.08表示8个0.01

  2-2.抽象概括::小数是分数的另一种表示形式。分母是100的分数可以用两位小数表示。两位小数的计数单位是百分之一,也写作0.01。

  3-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成1000份,也用小数来表示吗?

  师:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  师:刚才0.001米是怎样得到的?谁来说一说。

  生:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  箭头指向6的地方怎么表示? 0.006米是怎样得到的'?

  我们可以看出把整数1平均分成1000份,每一份是0.001, 6份是0.006,用分数表:。0.006的计数单位是0.001,的计数单位是。所以0.006表示6个0.001

  3-2.抽象概括:小数是分数的另一种表示形式。分母是1000的分数可以用三位小数表示。三位小数的计数单位是千分之一,也写作0.001。

  刚才我们分的是一米,用整数“1”来表示,平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。

  5、各部分名称:

  (以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1,3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一;小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 。

  归纳:每相邻两个计数单位之间的进率是10。

  课堂小结:

  今天你有什么收获?

  1.小数的计数单位是十分之一、百分之-一、 千分之一......分别写作0.1、0.01、 0.001......。

  2.小数中, 每相邻两个计数单位间的进率是10。

  3.十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。

小数的意义教案10

  教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

  教学目的:

  1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2、培养学生的迁移类推的能力。

  教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  教学难点:培养学生的迁移类推的能力。

  教学过程

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

  让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67+2.5=6.03+8.47=8.41-0.75=

  让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、学习新知

  1、学习例1。

  (1)通过旧知识引出新课.

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什么要用加法算?

  引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

  (1)为什么要把小数点对齐?

  (2)整数加法应该怎样算?

  然后让学生计算,算完后接着讨论:

  (3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

  2.让学生做第76页做一做中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

  4.学习例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:例2的条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

  可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

  然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的'处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

  6、小结。

  教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

  7、做第78页最上面做一做中的题目。

  订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习十八的第1-2题。

  1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

  板书设计:小数的加法和减法

  例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

  4.075千克,两个小队一共采集了多少千克?

  3.735+4.075=7.81(千克)

  答:一共采集了7.81千克。

  例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

  7.81-3.735=4.075(千克)

  答:第二小队采集了4.075千克。

小数的意义教案11

  一、再现旧知,回顾整理

  课件出示:请把下列各数分类。相信你一定很棒。

  0 7.523 6.8 69 101 1.25 384 0.001

  教师根据学生口答板书:

  整数: 0 69 101 384

  小数:7.523 6.8 1.25 0.001

  教师谈话:今天这节课我们重点复习小数的有关知识。

  二、小组交流,自我梳理。

  回想一下,你学过小数的哪些知识?与之相应的整数之间有什么联系?并请举例说明。

  学生分小组讨论交流。

  教师在学生整理知识时要参与其中,给予必要的方法指导,引导学生相互学习。

  三、全班交流,构建成网。

  1、班内交流,根据学生交流教师相机整理板书:

  整数 小数

  意义

  (0和自然数的统称…… )←----------→(表示一个数的`…… )

  计数单位

  (……千、百、十、个)←------------→(十分之一、百分之一……)

  读写法

  (从高位…… )←------------→(整数部分……)

  比较大小

  (先比较最高位……)←------------→(先比较整数部分……)

  运算定律

  (a+b=b+a…… )←------------→(a+b=b+a…… )

  加减法

  (相同数位对齐……)←------------→ (小数点对齐……)

  (后来板书)教师小结。

  2、教师谈话:小数意义与整数有着这样密切的联系,那么小数的加减法与整数有什么样的联系呢?

  ①课件出示:用竖式计算

  2.85+1.08 2.7+1.85 21.09—4.89 13—8.87

  独立计算,班内交流,交流时让学生说一说计算小数加减法要注意什么?(完成上面的板书)

  ②课件出示:先认真分析每道题目的数据特征,然后独立计算,交流时说一说为什么这样算。

  12.25+36+7.75 13.05+12.38—4.05

  5.6—0.71—0.29 19.65—(3.98+6.65)

  四、练习应用,巩固提高。

  (一) 填空

  1、由7个0.1、3个0.001和5个1组成的数是( ),读作( )。

  2、一个数缩小100倍是0.8,这个数是( )

  3、将下列各数按顺序排列。

  ①0.58 0.85 0.085 0.058 0.8 0.805

  ( )<( )<( ) <( )<( )<( )

  ②0.91米 1.0米 10.1米 87厘米 0.69米 9分米

  ( )>( )> ( ) >( )>( )>( )

  4、把一个4位小数保留三位小数后是5.690,这个小数最小是( ),最大是( )。

  5、96.4的小数点向左移动一位,再向右移动三位,结果是( )

  (二)火眼金睛辨对错。

  1、4.60和4.6大小相等,精确度也相等。( )

  2、小数都比整数小。( )

  3、10个百分之一是一个千分之一。( )

  4、0.9595保留三位小数是0.960。( )

  5、把0.96的小数点去掉,原数就扩大了1000倍。( )

  (三)选一选。

  1、把48.5 的小数点移到最高位数字的左边,这个数缩小到它的( )

  ①1/10②1/100③1/1000

  2、下列各数中去掉“0”而大小不变的是( )

  ① 2430 ②2.043 ③2.430

  3、6.5时是6时( )分

  ① 5 ②50 ③30

  4、大于0.2而小于0.3的小数有( )

  ①只有0.29 ②没有 ③无数个

  5、一个数十位、十分位和千分位上都是8, 其余各位上都是0,这个数写作( )

  ① 18.808 ②80.808 ③8.088

  (四)动脑思考。

  □0.□9,在□里填数,使其符合下列要求。

  ①使这个数最大,这个数是( )

  ②使这个数最小,这个数是( )

  ③使这个数最接近31,这个数是( )

  板书设计 :

  小数的意义和性质

  整数: 0 69 101 384

  小数:7.523 6.8 1.25 0.001

  课后反思:

小数的意义教案12

  教学目标

  1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

  2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

  3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

  教学过程

  第1课时

  一、创设情境,复习引入

  1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

  (学生举例回答,师订正。)

  (根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)

  教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

  学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

  2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

  [设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

  二、结合情境,探究新知

  1.学习小数的读写。

  谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

  (1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。

  (2)全班交流订正。

  (3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

  谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

  下面我们先来研究一下0.25千克中的0.25表示什么意思?

  2.学习两位小数的意义。

  谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

  (1)出示一张正方形纸片。

  谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

  (师板书:0.1——1/10 0.01——1/100)

  (2)在正方形纸片上表示出0.25。

  谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  (小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

  板书:0.25 25/100

  (3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

  板书:0.05 5/100

  0.10 10/100

  (4)小组讨论:这些小数有什么共同特点?

  (全班交流。教师引导学生概括出两位小数表示的意义)

  3.学习三位小数的意义。

  (1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

  (2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

  (3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

  (4)引导学生概括出三位小数表示的意义

  4.总结小数的意义和计数单位。

  (1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  (学生寻找生活中的小数,并结合实际说出它们的意义。)

  (2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

  (集体交流,师引导学生总结出小数的'意义。)

  [设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

  三、情境练习,巩固提高

  1.出示自主练习第一题。

  学生分别用分数和小数表示图中的阴影部分。

  2.自主练习第3题。

  学生独立读题,再说一说小数和分数之间的联系。

  [设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  课后反思

  兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。

  同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。

  数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。

小数的意义教案13

  学习内容:

  小数的意义和产生,课本32-33页内容。

  学习目标:

  1、我能通过观察知道小数的产生。

  2、我能通过分析明白小数的意义。

  3、我知道小数的计算单位及单位间的进率。

  学习重难点:

  小数的意义和计算单位及进率

  学习过程:

  课前谈话

  孩子们们,平时喜欢猜谜语吗?(喜欢)

  老师这里有一个谜语,大家想猜一猜吗?(可以)

  请竖起你的小耳朵,认真听,看谁能猜中?

  生来公平,拿在手中,要问长短,它最分明。打一度量器具。

  生猜尺子。

  师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!

  咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!

  一、教学小数的产生:

  首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--

  课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!

  师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子

  师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。

  师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。

  教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。

  在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。

  点击出示“你知道吗?”课件展示小数的历史。

  这节课就让我深入研究一下小数的意义。(板书课题)齐读课题。

  设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。

  二、探究小数的意义:

  1、认识一位小数

  师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。

  师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书

  师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的很好孩子,板书

  师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书

  师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。

  师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。

  师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?

  生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。

  生2:我发现,分母是10的分数可以写成一位小数。

  师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的分数。

  设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。

  2、认识两位小数

  师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?

  师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,

  找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01

  师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的想法?小数可以写为?说说你的想法孩子,说的不错!

  6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?

  师:这组分数的共同特点是怎样的'?这些小数又有什么共同点吗?

  生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。

  设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。

  3、认识三位小数

  同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)

  师:孩子,那这样的12份呢?师板书。123份呢?师板书。

  师:指板书,从这里你们又发现了什么?

  生1:我发现分母是1000的分数可以写成三位小数。

  生2:三位小数表示千分之几。

  师:说的非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师:请同学们想一想四位小数表示什么?五位小数呢?

  生:四位小数表示万分之几,五位小数表示十万分之几。

  师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?

  生1,:我认为分母是10,100,1000等的分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......

  设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。

  如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!

  4、学习小数单位

  孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;

  那么两位小数的计数单位是多少呢?请思考!

  师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。

  师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。

  师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,

  师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。

  5、学习单位进率

  以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?

  那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.

  三:巩固练习

  学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。

  1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。

  2、做一做,填空。

  0.3里面有()个0.1

  0.09里面有()个0.01。

  0.35里面有()个0.01.

  0.006里面有()个0.001。

  0.136里面有()个0.001.

  4个()是0.004.

  3、练一练

  四、课堂总结

  同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?

  同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!

小数的意义教案14

  教材分析

  本单元内容包括小数的意义和读写法,小数的性质和小数的大小比较,小数点位置移动引起小数大小的变化,小数和复名数的相互改写、求一个小数的近似数和把较大的数改写成用“万”、“亿”作单位的数。

  小数的意义是本单元的一个重点。这里教材把认数范围扩展到三位小数,加强了小数与分数的联系,使学生明确小数表示的书分母是10、100、10000……的分数,了解小数的记数单位以及单位间的进率,从而清楚地了解小数为什么可以仿照整数的写法。小数的性质也很重要。学生知道小数末尾添0、去0不改变小数的大小,就加深了对小数的理解。它还是小数四则计算的基础。应用它可以对小数进行化简,也可以根据具体运算的需要,在小数末尾添上0或者把整数改写成小数的形式。小数大小的比较也有助于加深学生对小数意义的理解。小数的性质已经涉及到小数大小的比较问题,但只是说明在什么情况下两个小数相等的。小数点位置的移动引起小数大小的变化是小数的又一性质。它是进行小数乘除法计算的`基础,同时也是学习小数和复名数相互改写的基础。小数和复名数的相互改写以及求小数的近似数在实际中有广泛的应用,其中把较大的数改写成用“万”、“亿”作单位的数是本单元所学的几部分知识的综合应用。

  学情分析

  这部分内容是学生在学生熟练地掌握了整数的四则运算,以及在四年级上学期学习了分数的初步认识的基础上进行教学的。这部分内容是学生系统学习小数的开始。通过这部分内容的学习,使学生进一步理解小数的意义和性质,为今后学习小数的四则运算打好基础。学生在学习小数和复名数的相互改写时,需要综合运用前面学过的计量单位和进率、小数的性质、小数点位置的移动引起小数大小的变化等知识,因此要求学生逐一扎实地学习。求一个数的近似数和把一个数改写成用“万”、“亿”作单位的数容易混淆,需注意区别。

  教学要求

  1、使学生理解小数的意义,认识小数的记数单位,会读、写小数,会比较小数的大小。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  3、使学生会进行小数和十进复名数的相互改写。

  4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。

  教学重点:小数的意义和小数点移动引起小数大小变化的规律。

  教学难点:小数和复名数的相互改写。

  教学关键:正确理解小数的意义及小数和复名数的相互改写。

小数的意义教案15

  教学目标:

  1.借助具体情景操作认识平角和周角,使学生建立平角、周角概念。

  2.通过操作活动,知道周角、平角形成过程及与各种角的关系,把钝角范围补充完整。

  3.能正确画平角和周角,找出生活中的平角、周角。发展学生空间观念。

  教学重点:

  平角、周角的特征。

  教学难点:

  知道平角、周角形成过程并会叙述。

  教学准备:

  活动角、纸扇、一张纸。

  教学过程:

  一、激发兴趣导入

  1、 ①师:老师想考考同学们的记忆力,拿出一张白纸,在黑板上演示,像老师这样对折一次,再对折一次。指着角问同学:这是什么角?你是怎么知道的?

  生回答:1、量角器量的 2、三角板对比的

  板书:直角等于90度

  ②师:比90度角小的角是什么角? 生回答后,板书 :锐角 小于90度

  ③师:比90度角大的角是什么角? 生回答后,板书 :钝角 大于90度

  2. 今天老师又给你们带来两位新朋友,今天我们继续学习角并板书:平角、周角(彩笔)。

  快来打声招呼吧!

  3.读一读,平角、周角。你知道什么?生回答:角的度数! 边在哪边?今天我带同学们一起走进平角周角。

  二、探究新知

  1.学习平角

  你们想当魔术师吗?

  举起纸,这是90度角,翻过来,指着角,这是什么角?你是怎么知道的?

  板书:画上直角符号,让同学们也画上直角符号。

  变!这就是平角,听!平角大声跟同学们说:我是平角,我愿意跟同学们交朋友。同学们,你们也变,认真看平角,讨论:你发现了什么?快说给同学们听,一定要认真听,互相补充。

  学生展示,板书:一平角=2直角=180度。两条边在第一次折痕上引导学生说,角的两条边在一条直线上,这样的角就叫做平角。

  让学生拿出活动角,转动时,注意角的一边不动,另一边绕着角的顶点旋转成平角。让学生指出平角的顶点和两条边,板书:画平角。让学生也跟着画平角,齐读两遍平角的特征。

  2.学习周角

  我还会变呢,翻动平角纸,这又是什么角?说理由。画上符号,要求学生也画上两个直角符号,变!这就是周角,听!同学们好 我是周角,我愿意和同学们交朋友!

  讨论:和同桌说说你的发现!生按顺序展示后,教师板书:1周角=4直角=2平角=360

  定义:有四个直角组成一个新的角,这样的.角叫做周角。

  让学生试着用活动角转动周角,画周角,然后,指出周角的顶点和两条边。

  齐读周角的特征,再齐读平角和周角的特征。

  三、进一步感受平角、周角。

  1.伸出一条胳膊。旋转平角、周角。同桌互相转,展示转。学生评价。

  四、补充钝角范围

  师:老师有个问题,180度,360度都比90度大,但他们不叫钝角,再平角上展示活动角,活动角的一条边,在0度90度区域形成的角是锐角,在90度180度形成的区域形成的角是钝角,请学生说一说钝角比谁大?比谁小?

  生回答后, 板书:而小于180度。

  五、让学生寻找生活中的周角、平角。

  互相说,展示说,评价。

  六、巩固练习.

  1.游戏,用纸扇摆角,同桌说角,老师摆角,考同学说角

  2.判断:⑴平角是一条直线,⑵周角是一条射线,⑶一个周角等于四个平角,

  3.抢答题:⑴从小到大排序:直角、钝角、平角、锐角、周角,⑵从大到小排序:直角、钝角、平角、锐角、周角。

  4.再出一个难一点的题:(要求说清理由)

  1=752=? 3=? 4=?

  七、总结

  你们知道了平角、周角,现在让你扮演角色,平角、周角,做个自我介绍吧!

  板书设计:

  角

  锐角 直角 钝角 平角 周角

  比90角小 比90角大 1平角=2直角=180

【小数的意义教案】相关文章:

尿酸多少正常03-03

50岁突然不来月经正常吗01-11

更年期如何保持月经正常01-13

绝经后半年又来例假正常吗01-19

儿子妈妈关系不正常怎么办02-24

开公司需要多少钱02-17

还阳卧害了多少人02-23

乳胶床垫克重多少合适02-25

儿童每日需要摄入多少肉类补充营养?03-01

减肥茶一盒多少钱02-21