当前位置:范文派>教学范文>教案>《方程》教案

《方程》教案

时间:2023-03-30 16:10:35 教案 我要投稿

《方程》教案范文

  作为一名无私奉献的老师,时常要开展教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们该怎么去写教案呢?以下是小编收集整理的《方程》教案范文,欢迎大家分享。

《方程》教案范文

《方程》教案范文1

  一、教学目标

  (一)。及时巩固所学知识;

  (二)。培养学生观察能力,提高他们分析问题和解决问题的能力;

  (三)。使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  主要为习题处理,由浅入深,使学生把所学知识系统化。

  主要由学生完成,老师引导。

  习题3。1中,1。2。3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的正确把握。

  主要针对学生比较难懂的应用题来讲解;

  习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?

  分析:设获得一等奖的.学生有X人,由已知条件得:

  X×200+(22—X)×50=1400

  本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22—X。

  习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?

  分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,

  那么:10X+6=12X—6

  所以找到等式就是列出方程的重要一步。

  习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?

  分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式

  12000+800X=20800

  总之,找出他们之间存在的相等关系就是解决问题的关键。

  通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。

  四、课堂总结

  通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。

  五、作业布置

  习题3。1第7、8题。

《方程》教案范文2

  一 、教学目标

  (一)基础知识目标:

  1。理解方程的概念,掌握如何判断方程。

  2。理解用字母表示数的好处。

  (二)能力目标

  体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

  (三)情感目标

  增强用数学的意识,激发学习数学的热情。

  二、教学重点

  知道什么是方程、一元一次方程,找相等关系列方程。

  三、教学难点

  如何找相等关系列方程

  四、教学过程

  (一)创设情景,引入新课

  由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题。

  (二)提出问题

  章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

  你会用算术方法解决这个实际问题么?不妨试一下。

  如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

  根据题意画出示意图。

  由图可以用含x的'式子表示关于路程的数量,

  王家庄距青山 千米,王家庄距秀水 千米,

  由时间表可以得出关于路程的数量,

  从王家庄到青山行车 小时,王家庄到秀水 小时,

  汽车匀速行驶,各路段车速相等,于是列出方程:

  = (1)

  各表示的意义是什么?

  以后我们将学习如何解出x,从而得到结果。

  例1 某数的3倍减2等于某数与4的和,求某数。

  例2 环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

  五、课堂小结

  用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

  六、作业布置

  习题3。1 第1,2两题

《方程》教案范文3

  教学内容:

  教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

  教学目标:

  1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

  2、通过小组合作,进一步培养学生探索的意识,发展思维能力。

  3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

  教学过程:

  一、练习与应用

  1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

  2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

  二、探索与实践

  1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

  2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的.两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

  三、与反思

  在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

  四、阅读“你知道吗”可以再查找资料,详细了解。

  五、课堂这节课我们复习了哪些内容?你有了哪些收获?

《方程》教案范文4

  教学目标:

  1、能说出什么叫一元一次方程;

  2、知道“元”和“次”的含义;

  3、熟练掌握最简一元一次方程的解法及理论依据;

  能力目标:

  1、培养学生准确运算的能力;

  2、培养学生观察、分析和概括的能力;

  3、通过解方程的 教学,了 解化归的数学思想.

  德育目标:

  1、 渗透由特殊到一般的辩证唯物主义思想;

  2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习 惯和责任感;

  3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

  重点:

  1、一元一次方程的概念;

  2、最简方程 的解法;

  难点:正确地解最简方程 。

  教学方法:引导发现法

  教学过程

  一、 旧知识的复习:

  1.什么叫等式?等式具有哪些性质?

  2.什么叫方程?方程的解?解方程?

  二、新知识的教学:

  观察下列方程: …

  想一想:这些方程有什么共同特点?(学生思考后回答)

  特点:

  (1)只含有一个未知数;

  (2)未知数的次数都是一次。

  (板书课题,学生总结定义)

  定义:只含有一个未知 数并且未知数的次数都是一次的方程叫做一元一次方程。

  强调:“元”指什么?(未知数的个数)

  “次”指什么?(方程中含有未知数项的最高次数)

  想一想:

  (1)你认为最简单 的一元一次方程是什么样的?

  (学生举例说明后总结出最简方 程)

  最简方程:我们把形如 (其中 是未知数)的方

  程称为最简方程。

  强调:为什么 ?

  (2)怎样求最简方程 (其中 是未知数)的解?

  三、解下列方程

  ① ②

  ③ ④

  (学生探讨求解过程及理论依据后板 书解题过程)

  解:① 根据等式的基本性质2,在方程两边同除以3,

  未知数系数化 为1,得

  ②③④解法略

  强调:检验解的方法。

  想一想:

  解最简方程 (其中 是未知数)时的主要思路是什么?解题的关键步骤是什么?

  (引导学生思考后回答)

  主要思路:把最简方程的未知数的系数化为1,变形为 的形 式;

  解题的关键步骤:根据等式的基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的.倒数),使未知数的系数化为1,得到最简方程的解 。

  强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?( )

  ②最简方程一定有唯一的一个解。

  四、巩固练习

  1. 通过练习,请你总结一下,解方程 ( 是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

  2.检测:

  3.课堂小结:

  五、本节学习的主要内容

  1、一元一次方程定义;

  2、最简方程 (其中 是未知数);

  3、解最简方程的主要思路和解题的关键步骤及依据。

  六、课堂作业

  A、解下列方程:

  (1) (2)

  (3) (4)

  B、如果关于 的方程 是一元一次方程,求 的值;

  C、解关于 的方程:

  (1) (2)

《方程》教案范文5

  一、素质教育目标

  (一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题.

  (二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力.

  二、教学重点、难点

  1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题.

  2.教学难点:根据数与数字关系找等量关系.

  三、教学步骤

  (一)明确目标

  (二)整体感知:

  (三)重点、难点的学习和目标完成过程

  1.复习提问

  (1)列方程解应用问题的步骤?

  ①审题,②设未知数,③列方程,④解方程,⑤答.

  (2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数).

  2.例1 两个连续奇数的积是323,求这两个数.

  分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法) .设较小的奇数为x,则另一奇数为x+2, 设较小的奇数为x-1,则另一奇数为x+1; 设较小的奇数为2x-1,则另一个奇数2x+1.

  以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法.

  解法(一)

  设较小奇数为x,另一个为x+2,

  据题意,得x(x+2)=323.

  整理后,得x2+2x-323=0.

  解这个方程,得x1=17,x2=-19.

  由x=17得x+2=19,由x=-19得x+2=-17,

  答:这两个奇数是17,19或者-19,-17.

  解法(二)

  设较小的奇数为x-1,则较大的奇数为x+1.

  据题意,得(x-1)(x+1)=323.

  整理后,得x2=324.

  解这个方程,得x1=18,x2=-18.

  当x=18时,18-1=17,18+1=19.

  当x=-18时,-18-1=-19,-18+1=-17.

  答:两个奇数分别为17,19;或者-19,-17.

  解法(三)

  设较小的奇数为2x-1,则另一个奇数为2x+1.

  据题意,得(2x-1)(2x+1)=323.

  整理后,得4x2= 324.

  解得,2x=18,或2x=-18.

  当2x=18时,2x-1=18-1=17;2x+1=18+1=19.

  当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17

  答:两个奇数分别为17,19;-19,-17.

  引导学生观察、比较、分析解决下面三个问题:

  1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?

  2.解题中的x出现了负值,为什么不舍去?

  答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数.3.选出三种方法中最简单的一种.

  练习

  1.两个连续整数的积是210,求这两个数.

  2.三个连续奇数的和是321,求这三个数.

  3.已知两个数的`和是12,积为23,求这两个数.

  学生板书,练习,回答,评价,深刻体会方程的思想方法.例2 有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数.

  分析:数与数字的关系是:

  两位数=十位数字×10+个位数字.

  三位数=百位数字×100+十位数字×10+个位数字.

  解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x.

  据题意,得10(x-2)+x=3x(x-2),

  整理,得3x2-17x+20=0,

  当x=4时,x-2=2,10(x-2)+x=24.

  答:这个两位数是24.

  练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.(35,53)

  2.一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数.

  教师引导,启发,学生笔答,板书,评价,体会.

  (四)总结,扩展

  1奇数的表示方法为 2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数.

  数与数字的关系

  两位数=(十位数字×10)+个位数字.

  三位数=(百位数字×100)+(十位数字×10)+个位数字.

  ……

  2.通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途.

  四、布置作业

  教材P.42中A1、2、

《方程》教案范文6

  教材分析

  本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。

  学情分析

  1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。

  2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。

  3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。

  教学目标

  知识与技能:

  1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

  2、能根据具体问题的`实际意义,检验结果是否合理。

  过程与方法:

  1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

  2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

  情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

  教学重点和难点

  重点:利用增长率问题中的数量关系,列出方程解决问题

  难点:理清增长率问题中的数量关系

《方程》教案范文7

  教学要求:

  使学生掌握相遇问题应用题的相等关系,含用方程分析解答相遇时求其中一个速度的应用题。

  教学过程:

  一、复习准备

  1、解下列方程

  (0.9+x)×3=3.6

  0.32×5+5x=4.6

  2、出示准备题

  (1)全体学生审题后列式解答(用两种方法解答)

  (2)解题后口述解题思路:

  (58+54)×1.5 (先算速度和,在求两地路程)

  58×1.5+54×1.5 (先分别算出两车相遇时行的路程,再求总路程)

  二、学习例6:

  1、审题:

  (1)与准备题比较不同在哪里?

  (2)如果设乙车每小时行X千米,列方程解你会么?

  2、解答后反馈:

  (1)你是如何解答的?

  (58+x)×1.5=168

  (2)还能列出怎样的方程?

  58×1.5+1.5x=168

  1.5x=168-87

  (2)比较这两个方程在思路上有什么不同?

  3、与这两种方程相应的算术解法是怎样的?

  4、师小结:用方程解这类应用题一般根据速度和×相遇的时间=两地的路程这个等量关系来列出方程。

  三、巩固学习

  1、独立练习:练1练第1、2两题。

  全体学生解答后同坐两人互相说说解答的方法步骤。

  2、出示试一试。

  (1)弄清问题和要求要求。(怎样解方便就怎样解

  (2)解答后讨论:与例6有比较有什么不同?

  你是如何解答的`?能否求速度和?

  (3)你能列出与这两个方程相应的算术解法吗?

  1、独立作业。

  (1)练一练第三题,学生独立完成

  (2)反馈:与例6比较有什么不同?解题方法呢?

  师指出:运动物体行驶的方向不同,行驶的结果也不同,一种是相遇,而另一种则是相离,但计算方法相同。

  四、课堂总结

  今天这节课我们学习用方程解什么应用题?这类应用题有有哪几种情况?

  列方程解这类应用题应注意什么?

  五、布置作业

  作业本[59]

《方程》教案范文8

  教学内容

  由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.

  教学目标

  掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.

  通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.

  重难点关键

  1.重点:用“倍数关系”建立数学模型

  2.难点与关键:用“倍数关系”建立数学模型

  教学过程 一、复习引入

  (学生活动)

  问题1:列方程解应用题

  下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):星期一二三四五甲12元12。5元12。9元12。45元12。75元乙13。5元13。3元13。9元13。4元13。75元某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?

  老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

  解:设这人持有的甲、乙股票各x、y张.

  则 解得

  答:(略)

  二、探索新知

  上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的'数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.

  (学生活动)

  问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3。31万台,求二月份、三月份生产电视机平均增长的百分率是多少?

  老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.

  解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3。31

  去括号:1+1+x+1+2x+x2=3。31

  整理,得:x2+3x—0。31=0

  解得:x=10%

  答:(略)

《方程》教案范文9

  教学目标

  1.知识与能力目标

  (1)二元一次方程和一次函数的关系。

  (2)二元一次方程组的图象解法。

  (3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

  2.情感态度价值观目标

  通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

  教材分析

  前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

  教学重点

  1、二元一次方程和一次函数的关系。

  2、能根据一次函数的图象求二元一次方程组的近似解。

  教学难点

  方程和函数之间的对应关系即数形结合的意识和能力。

  教学方法

  学生操作——————自主探索的方法

  学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

  教学过程

  一. 故事引入

  迪卡儿的故事——————蜘蛛给予的启示

  十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的.机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?

  在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

  这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。

  二. 尝试探疑

  1、Y=x+1

  你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

  学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

  2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?

  以方程x—y=—1的解为坐标的点在不在函数y=x+1 的图象上?方程x—y=—1与函数y=x+1有何关系?

  学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x—y=—1。

  然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

  3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?

  方程组y=x+1的解是什么?二者有何关系?

  y=4x—2

  学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组

  y=x+1 的解。

  Y=4x—2

  教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

  三. 方程与函数关系的应用

  解方程组 x—2y=—2

  2x—y=2

  学生会很快的用消元法解出来。

  老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

  一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

  1。把两个方程都化成函数表达式的形式。

  2。画出两个函数的图象。

  3。画出交点坐标,交点坐标即为方程组的解。

  问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2。1 y=2。1

  y=1。9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

  老师提问:你能说一下用图象法解方程组的不足吗?

  学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

  教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。

  [点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

  四. 引申

  方程组 x+y=2

  x+y=5 解的情况如何?你能从函数的角度解释一下吗?

  学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

  [点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

  五. 课后小结

  本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

  六. 作业

  1。用作图象法解方程组2x+y=4

  2x—3y=12

  2。如图,直线L、L相交于点 A,试求出A点坐标。

《方程》教案范文10

  一、出示学习目标:

  1.继续感受用一元二次方程解决实际问题的过程;

  2.通过自学探究掌握裁边分割问题。

  二、自学指导:(阅读课本P47页,思考下列问题)

  1.阅读探究3并进行填空;

  2.完成P48的思考并掌握裁边分割问题的特点;

  3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。

  探究3:要设计一本书的封面,封面长27c,宽21c,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的`彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1c)?

  分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7

  设上、下边衬的宽均为9xc,左、右边衬的宽均为7xc,则:

  由中下层学生口答书中填空,老师再给予补充。

  思考:如果换一种设法,是否可以更简单?

  设正中央的长方形长为9ac,宽为7ac,依题意得

  9a·7a=(可让上层学生在自学时,先上来板演)

  2.P48-49第8、9题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正

  9.如图,要设计一幅宽20,长30的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)

  注意点:要善于利用图形的平移把问题简单化!

  三、当堂训练:

  1.如图,在一幅长90c,宽40c的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?

  (只要求设元、列方程)

  2.要设计一个等腰梯形的花坛,上底长100,下底长180。上下底相距80,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少

《方程》教案范文11

  教学内容:课本第123页例5及“做一做”,练习三十的第5~8题。

  教学目的:使学生初步学会列方程解三步应用题。

  教学过程:

  一、复习。

  出示复习题:“一列快车从天津开出,平均每小时行79千米;同时有一列慢车从济南开出,平均每小时行40千米。经过3小时两车相遇,天津到济南的铁路长多少千米?”

  学生读题。找出已知条件,教师画出线段图:

  学生独立列式计算,用两种方法解答,并说己是怎样解答的。

  解法一:用两车的速度和×相遇时间

  (79+40)×3

  解法二:把两车相遇时各自走的路程加起来

  79×3+40×3

  着重订正第二种解法,问:

  “谁能说一说第二种解法的思路?

  二、新授。

  1、引入新课:我们把这道题改成已知两地之间的

  路程、相遇时间及其中一辆车的速度,求其中另一辆的速度,又该怎样解答。

  2、教学例5。

  出示例5:天津到济南的铁路长357千米,一列快车从天津开出,同时有一列慢车从济南开出,两车相向而行,经过3小时相遇。快车平均每小时行79千米,慢车平均每小时行多少千米?

  问:这道题与复习题相比较有什么不同和相同的地方?

  引导学生根据复习题的线段图画出例5的`线段图:

  问:看这个线段图,你能找出哪些数量之间的相等关系?(引导学生得出:相遇时两车所行路程的和正好是两地间铁路的长度。)

  学生独立列式计算。

  板书:79×3+3x=357(设慢车平均每小时行x千米。)

  三、巩固练习。

  1、教科书第123页上的”做一做“。

  学生独立解答,试着列出两种方程,

  如8x+23×10=430,430-8x=23×10

  订正以后,把”共重430千克“改为”梨比苹果多30千克“再让学生解答。

  2、练习三十的第5~7题。学生独立完成。

  课后:

《方程》教案范文12

  一、 教学目标

  (一)。使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  (二)。培养学生观察能力,提高他们分析问题和解决问题的能力;

  3。使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的 ,因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。

  像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。

  由教科书中天平的图形,由它可以发现什么规律?

  我们可发现,如果在平衡的天平两边都加(或减)同样的量,天平还保持平衡。

  等式就像平衡的天平,它具有与上面的事实同样的性质。

  由此,我们得出等式的性质1

  等式两边加(或减)同一个数(或式子),结果仍相等。

  用字母表示:a=b,那么a±c=b±c

  等式的性质2

  等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  用字母表示:

  如果a=b,那么ac=bc

  如果 a=b,(c≠0),那么 =

  通过例题来对等式的.性质进行巩固。

  例:利用等式的性质解下列方程。

  (1)x+7=26; (2)—5x=20; (3)— x—5=4

  分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。

  解:(1)两边减7,得

  x+7—7=26—7

  于是

  x=19

  (2)两边同时除以—5,得

  =

  于是

  x=—4

  (3)两边加5,得

  —

  化简,得

  两边同乘—3,得

  x=—27

  一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。

  让学生检验上题是否正确。

  (四)课堂练习

  利用等式的性质解下列方程并检验。

  (1)x—5=2; (2)0。3x=45; (3)2— x=3; (4)5x+4=0

  教师引导学生做,做好师生互动。

  四、课后总结

  1。本节课学习了哪些内容?

  2。利用等式的性质解方程方法和步骤是什么?

  3。在运用上述方法和步骤时应注意什么?

  五、作业布置;

  习题3。1,3,4,5题

《方程》教案范文13

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1、教学重点:椭圆的定义及其标准方程

  2、教学难点:椭圆标准方程的推导

  (三)三维目标

  1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

  3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的'归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

  6、例题讲解:通过例题规范学生的解题过程。

  7、巩固练习:以多种题型巩固本节课的教学内容。

  8、归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

  9、课后作业:面对不同层次的学生,设计了必做题与选做题。

  10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

《方程》教案范文14

  教学内容:

  教科书P12练习二第9~15题

  教学目标:

  1.渗透数学中的语感训练,使学生能熟练找出问题中相等关系的量,根据其数量关系列出方程。

  2.使学生掌握应用等式的性质解两步解的方程。

  3.注重联系生活实际,获得成功体验。

  教学重点:

  学生能熟练根据其数量关系列出方程。

  教学难点:

  注重联系生活实际,获得成功体验。

  教学过程:

  一、 复习导入

  找出下列句中的.数量关系

  松树和杨树一共56棵

  学校的建筑面积是总面积的一半

  底楼高3.4米,其余三层平均每层高2.8米,这幢楼高多少米?

  小亮现在的身高比出生时的3倍高0.04米

  三瓶墨水的价钱比一个文件夹便宜2.8元

  二、巩固练习

  1.练习二第9题

  指名板演,其余生独立完成在自备本上后集体校对。

  说说注意点和解两步方程的步骤。

  2. 练习二第10题

  先要求学生只列出方程,校对所列方程根据的等量关系后再解方程。

  3. 练习二第11题

  生理解题意,找出数量关系,独立列方程解答,集体交流。

  4. 练习二第12题

  生理解题意,并独立完成在自备本上。校对,说说题目的意思,注意要求两问。

  5. 练习二第13题

  生理解题意,让学生找准对应的量,提醒学生有2问。集体交流。

  6. 练习二第14题

  生独立完成后校对,其中12题的物品有“文件夹”和“墨水”,各一个与12瓶,总价25.10元。

  7. 练习二第15题

  学生利用公式独立列式计算,集体交流时让学生说说是怎样计算的?

  三、总结

  师:今天在解方程的过程中,你有哪些进步?

  四、作业

  补充习题

《方程》教案范文15

  一、 教学目标

  1、能分析应用题中的数量关系,并找出等量关系.

  2、能用列一元二次方程的方法解应用题.

  3、培养学生化实际问题为数学问题的能力及分析问题、解决问题的能力.

  二、 教学重难点

  教学重点:能分析应用题中的数量间的关系,列出一元二次方程解应用题.

  教学难点:例2涉及比例、平均增长率与多年的增长量之间的关系.

  三、 教学过程

  (一)引入新课

  设问:已知一个数是另一个数的2倍少3,它们的积是135,求这两个数.

  (由学生自己设未知数,列出方程).

  问:所列方程是几元几次方程?由此引出课题.

  (二)新课教学

  1、对于上述问题,设其中一个数为x,则另一个数是2x-3,根据题意列出方程:

  135,整理得:

  这是一个关于x的一元二次方程.下面先复习一下列一元一次方程解应用题的一般步骤:

  (1) 分析题意,找出等量关系,分析题中的数量及其关系,用字母表示问题里的未知数;

  (2) 用字母的一次式表示有关的量;

  (3) 根据等量关系列出方程;

  (4) 解方程,求出未知数的值;

  (5) 检查求得的值是否正确和符合实际情形,并写出答案.

  列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤一样,只不过所列的方程是一元二次方程而非一元一次方程而已.

  2、例题讲解

  例1 在长方形钢片上冲去一个小长方形,制成一个四周宽相等的长方形框(如图11—1).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm ,求这个长方形框的框边宽.

  分析:

  (1)复习有关面积公式:矩形;正方形;梯形;

  三角形;圆.

  (2)全面积= 原面积 – 截去的面积 30

  (3)设矩形框的框边宽为xcm,那么被冲去的矩形的长为(30—2x)cm,宽为(20-2x)cm,根据题意,得 .

  注意:方程的解要符合应用题的'实际意义,不符合的应舍去.

  例2 某城市按该市的“九五”国民经济发展规划要求,1997年的社会总产值要比1995年增长21%,求平均每年增长的百分率.

  分析:(1)什么是增长率?增长率是增长数与原来的基数的百分比,可用下列公式表示:

  增长率=

  何谓平均每年增长率?平均每年增长率是在假定每年增长的百分数相同的前提下所求出的每年增长的百分数.(并不是每年增长率的平均数)

  有关增长率的基本等量关系有:

  ①增长后的量=原来的量 (1+增长率),

  减少后的量=原来的量 (1--减少率),

  ②连续n次以相同的增长率增长后的量=原来的量 (1+增长率) ;

  连续n次以相同的减少率减少后的量=原来的量 (1+减少率) .

  (2)本例中如果设平均每年增长的百分率为x,1995年的社会总产值为1,那么

  1996年的社会总产值= ;

  1997年的社会总产值= = .

  根据已知,1997年的社会总产值= ,于是就可以列出方程:

  3、巩固练习

  p.152练习及想一想

  补充:将进货单价为40元的商品按50元售出时,就能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定

  为多少?这时应进货多少?

  (三)课堂小结

  善于将实际问题转化为数学问题,要深刻理解题意中的已知条件,严格审题,注意解方程中的巧算和方程两根的取舍问题.

【《方程》教案】相关文章:

五年级《方程》教案03-07

方程教学反思03-28

分式方程说课稿11-27

解方程教学反思02-25

简易方程教学反思03-19

方程意义教学反思02-17

方程的意义教学反思03-10

《方程的意义》教学反思09-25

方程的意义教学设计04-06

解方程教学设计04-06