当前位置:范文派>教学范文>教案>分数乘法教案

分数乘法教案

时间:2023-04-04 12:24:55 教案 我要投稿

关于分数乘法教案锦集5篇

  在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是保证教学取得成功、提高教学质量的基本条件。那么你有了解过教案吗?以下是小编收集整理的分数乘法教案5篇,欢迎阅读与收藏。

关于分数乘法教案锦集5篇

分数乘法教案 篇1

  教学目标

  使学生理解分数乘分数的法则适用于分数和整数相乘,提高分数乘法计算的熟练程度。

  教学重难点

  用分数乘分数的法则计算分数和整数相乘。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 引入新课

  二、教学新课

  三、巩固练习。

  四、课堂小结

  五、作业

  1、在分数乘法里,我们学过哪几种情况的计算?

  2、把下面的数改写成分母是1的假分数。(口答)

  36813

  3、把下面的乘法算式改写成分数乘分数的形式。

  2/11×36×

  上面两题都是什么数和什么数相乘?

  怎样改写成分数乘分数的形式?

  为什么可以这样改写?这就把分数和整数相乘改写成了怎样的数相乘?

  1、统一法则

  由于整数可以看成分母是1的'分数,所以分数和整数相乘就可以改写成分数乘分数,按分数乘分数的法则来计算。这就是说,分数乘分数的计算法则,也适用于分数和整数相乘。

  2、引导计算

  把这里的两道分数和整数相乘的题按分数乘分数的法则计算出结果。

  说说为什么?

  3、教学约分方法

  分数乘法计算时,为了简便,还可以直接约分。

  看课本10页上的计算。

  说说是怎样直接约分的?

  1、练一练上下练习

  2、练习二7说出错误和改正的方法。

  3、练习二8

  前2题:每组里哪几题可以直接约分,那些不能,并说明理由。

  后2题:说说有什么不同的地方,并口算出结果。

  4、练习二9口算

  5、练习二11自己练习,说说想法

  练习二10

  板书约分、计算过程。

  课后感受

  由于前面的基础较好,学生学起来挺轻松,但计算方面还有待加强。

分数乘法教案 篇2

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“

  个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果

  3.比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

  生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为

  提出质疑:3个

  相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个

  相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

  (二)分数乘整数的计算方法

  1.不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,

  的计算过程用式子该如何表示?预设:

  生1:按照加法计算

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

  2.归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

  二、巩固练习,强化新知

  1.例1“做一做”第1题

  师:说出你的思考过程。

  2.例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的

  是多少。”

  (3)出示第2小题学生自练。引导说出:“12×

  表示求12 L的

  是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的'关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的

  ,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的

  是多少。”

  2.比较两种意义

  出示:一袋面包重

  千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

  五、联系实际,灵活运用

  1.算式

  可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了

  ,用去了多少吨?

  (2)一堆煤有

  吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3.拓展练习

  1只树袋熊一天大约吃

  kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2.谁会用含有字母的式子表示分数乘整数的计算方法?

  【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

分数乘法教案 篇3

  教学目标

  1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  2、培养学生大胆猜测,勇于实践的思维品质。

  教学重点:

  会进行分数的混合运算,运用运算定律进行简便计算。

  教学难点:

  灵活运用运算定律进行简便计算。

  教具准备:

  多媒体课件。

  教学过程:

  一、导入新课(激发兴趣,明确目标)

  1、运算定律。

  我们在四年级时学习过乘法的运算定律,同学们还记得吗?

  (学生回答,教师板书运算定律)

  乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc

  2、这些运算定律有什么用处?你能举例说明吗?

  2574 0.36101

  (学生口述自己是怎样应用乘法的'运算定律简算上面各题的。)

  二、自主探究(自主学习,探讨问题)

  1、引入

  同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

  (板书课题:整数乘法的运算定律能否推广到分数乘法)

  2、推导运算定律是否适用于分数。

  (1)学生发表对课题的见解。

  (2)验证

  有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

  3、教学例5.

  (1)出示: ,学生小组合作独立解答。

  4、教学例6.

  (1)出示: ,学生小组合作独立计算。

  (2)小组汇报学习成果,说一说你们组应用了什么运算定律。

  5、小结

  应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

  三、拓展总结(应用拓展,盘点收获)

  1、完成练习三的第6题。

  学生说一说应用了什么运算定律。

  2、完成课本第10页的做一做题目。

  其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。

  3、总结

  这节课你有什么收获?

分数乘法教案 篇4

  教学目标

  1.进一步理解分数乘整数的意义。

  2.掌握分数乘整数的计算法则。

  3.能够熟练准确地计算分数乘整数的计算题。

  教学重点

  分数乘整数的计算方法,能正确计算。

  教学难点

  理解先约分再计算能使计算简便。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、复习分数乘整数的意义及计算法则

  二、出示例题

  1.出示3/4×6

  教师引导学生能不能先约分再计算。

  学生得出结论后教师讲解先约分后计算的格式。

  你会填吗?

  1/6+1/6+1/6+1/6=1/6×()

  3/4+3/4+3/4+3/4+3/4

  =3/4×()

  2/25+2/25+2/25

  =2/25×()

  在计算分数乘整数时,用分数的分子(),分母()。

  学生先用计算法则进行计算后进行约分。

  学生进行计算并比较两种方法那种方法简单。

  复习巩固分数乘整数的计算方法。

  进一步应用分数乘整数的计算方法,体验先约分再计算。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  2.练习

  完成课本第3页的做一做

  三、综合练习

  1.练一练第1题

  2.教师指导完成练一练第2题

  学生完成后还可以估一估一个月、一年能滴多少水。

  四、布置作业

  完成练一练第3、4、5题

  学生独立完成做一做

  学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。

  学生根据老师的.指导进行计算,并解释结果的实际意义。

  借助图形语言,加深学生对分数乘整数的意义的理解。

  巩固分数乘整数的计算方法,培养学生的节约意识。

  板书设计:

  分数乘整数

  复习题:出示例题3/4×6

分数乘法教案 篇5

  教学目标

  1.理解和掌握“求一个数的几分之几是多少”的分数应用题的结构和解题方法.

  2.渗透对应思想.

  教学重点

  理解应用题中的单位“1”和问题的关系.

  教学难点

  1.理解“求一个数的几分之几是多少”的应用题的解题方法.

  2.正确灵活的'判断单位“1”.

  教学过程

  一、复习、质疑、引新

  1.说出 、 、 米 的意义.

  2.列式计算

  20的 是多少?6的 是多少?

  学生完成后,可请同学说一说这两个题为什么用乘法计算?

  3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算.这是乘

  法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(出示课题:分数应用题)

  二、探索、质疑、悟理

  (一)教学例1(也可以结合学生的实际自编)

  学校买来100千克白菜,吃了 ,吃了多少千克?

  1.读题.理解题意,知道题中已知条件和所求问题;搞清数量间的关系.

  2.分析.

  教师提问:重点分析哪句话呢?“吃了 ”这句话是分率句.是什么意思呢?

  (就是把100千克白菜平均分成5份,吃了这样的4份).

  3.画图.(演示课件:分数乘法应用题1)

  画图说明:a.量在下,率在上,先画单位“1”

  b.十份以里分份,十份以上画示意图.

  c.画图用尺子,用铅笔.

  4.尝试解答.

  解法一:用自己学过的整数乘法做

  (千克)

  解法二:

  5.小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答.

  (二)巩固练习

  六年级一班有学生44人,参加合唱队的占全班学生的 ,参加合唱队有多少人?

  1.把哪个数量看作单位“1”?

  2.为什么用乘法计算?

  (三)教学例2

  例2.小林身高 米,小强身高是小林的 ,小强身高多少米?

  1.演示课件:分数乘法应用题2

  2.求参加合唱队有多少人实际上就是求 米的 是多少,数学教案-分数乘法应用题,小学数学教案《数学教案-分数乘法应用题》。

  3.列式: (米)

  答:小强身高 米.

  (四)变式练习

  小强身高 米,小林身高是小强的 倍,小林身高多少米?

  三、归纳、总结

  1.今天所学题目为什么用乘法计算

  2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?

  共同点:都是已知单位“1”和分率,求单位“1”的几分之几是多少。

  从分率可入手分析

  四、训练、深化

  (一)先分析数量关系,再列式解答

  1.一只鸭重 千克,一只鸡的重量是鸭的 ,这只鸡重多少千克?

  2.一个排球定价36元,一个篮球的价格是一个排球的 ,一个蓝球多少元?

  (二)提高题

  1.一桶油400千克,用去 ,用去多少千克?还剩多少千克?

  2.一桶油400千克,用去 吨,用去多少千克?还剩多少千克?

  五、课后作业

  (一)修路队计划修路4千米,已经修了 。修了多少千米?

  (二)一头鲸长7米,头部长占 。这头鲸的头部长多少米?

  (三)成昆铁路全长1100千米,桥梁和隧道约占全长的 。桥梁和隧道约长多少千米?

  六、板书设计

  数学教案-分数乘法应用题

【分数乘法教案】相关文章:

分数乘法教案02-13

分数乘法教案15篇02-13

分数乘法教案(15篇)02-15

分数乘法教案精选15篇03-29

【精选】分数乘法教案四篇07-06

实用的分数乘法教案3篇03-31

实用的分数乘法教案4篇01-22

有关分数乘法教案三篇06-12

分数乘法教案范文7篇12-21

分数乘法说课稿01-17