当前位置:范文派>教学范文>教案>二次根式教案

二次根式教案

时间:2023-04-25 14:46:05 教案 我要投稿

二次根式教案模板汇编7篇

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。那么你有了解过教案吗?以下是小编帮大家整理的二次根式教案7篇,欢迎阅读,希望大家能够喜欢。

二次根式教案模板汇编7篇

二次根式教案 篇1

  一、教学目标

  1.理解分母有理化与除法的关系.

  2.掌握二次根式的分母有理化.

  3.通过二次根式的分母有理化,培养学生的运算能力.

  4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1.教学重点:分母有理化.

  2.教学难点:分母有理化的技巧.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【复习提问】

  二次根式混合运算的步骤、运算顺序、互为有理化因式.

  例1 说出下列算式的运算步骤和顺序:

  (1) (先乘除,后加减).

  (2) (有括号,先去括号;不宜先进行括号内的运算).

  (3)辨别有理化因式:

  有理化因式: 与 , 与 , 与 …

  不是有理化因式: 与 , 与 …

  化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的.方法(依据分式的基本性质).

  例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

  引入新课题.

  【引入新课】

  化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

二次根式教案 篇2

  【教学目标】

  1.运用法则

  进行二次根式的乘除运算;

  2.会用公式

  化简二次根式。

  【教学重点】

  运用

  进行化简或计算

  【教学难点】

  经历二次根式的乘除法则的探究过程

  【教学过程】

  一、情境创设:

  1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

  2.计算:

  二、探索活动:

  1.学生计算;

  2.观察上式及其运算结果,看看其中有什么规律?

  3.概括:

  得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

  将上面的公式逆向运用可得:

  积的算术平方根,等于积中各因式的算术平方根的积。

  三、例题讲解:

  1.计算:

  2.化简:

  小结:如何化简二次根式?

  1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

  2.P62结果中,被开方数应不含能开得尽方的`因数或因式。

  四、课堂练习:

  (一).P62 练习1、2

  其中2中(5)

  注意:

  不是积的形式,要因数分解为36×16=242.

  (二).P67 3 计算 (2)(4)

  补充练习:

  1.(x>0,y>0)

  2.拓展与提高:

  化简:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范围。

  ☆3.已知:,求的值。

  五、本课小结与作业:

  小结:二次根式的乘法法则

  作业:

  1).课课练P9-10

  2).补充习题

二次根式教案 篇3

  教学目的:

  1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;

  2、会求二次根式的代数的值;

  3、进一步提高学生的综合运算能力。

  教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式

  教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值

  教学过程:

  一、二次根式的混合运算

  例1 计算:

  分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。

  (2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。

  练习1:P206 / 8--① P207 / 1①②

  例2 计算

  问:计算思路是什么?

  答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。

  二、求代数式的值。 注意两点:

  (1)如果已知条件为含二次根式的式子,先把它化简;

  (2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。

  例3 已知,求的值。

  分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。

  例4 已知,求的值。

  观察代数式的特点,请说出求这个代数式的'值的思路。

  答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。

  三、小结

  1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。

  2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。

  3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。

  四、作业

  P206 / 7 P206 / 8---②③

二次根式教案 篇4

  一、内容和内容解析

  1.内容

  二次根式的除法法则及其逆用,最简二次根式的概念。

  2.内容解析

  二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.

  基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.

  二、目标和目标解析

  1.教学目标

  (1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

  (2)会进行简单的`二次根式的除法运算;

  (3) 理解最简二次根式的概念.

  2.目标解析

  (1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

  (2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.

  (3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.

  三、教学问题诊断分析

  本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.

  本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.

  四、教学过程设计

  1.复习提问,探究规律

  问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

  师生活动 学生回答。

  【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.

  五、目标检测设计

二次根式教案 篇5

  一、内容和内容解析

  1.内容

  二次根式的概念.

  2.内容解析

  本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.

  教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.

  本节课的教学重点是:了解二次根式的概念;

  二、目标和目标解析

  1.教学目标

  (1)体会研究二次根式是实际的需要.

  (2)了解二次根式的概念.

  2. 教学目标解析

  (1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

  (2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

  三、教学问题诊断分析

  对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的'意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.

  本节课的教学难点为:理解二次根式的双重非负性.

  四、教学过程设计

  1.创设情境,提出问题

  问题1你能用带有根号的的式子填空吗?

  (1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

  (2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.

  (3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

  师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.

  【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

  问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

  师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

  【设计意图】为概括二次根式的概念作铺垫.

  2.抽象概括,形成概念

  问题3 你能用一个式子表示一个非负数的算术平方根吗?

  师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

  【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

  追问:在二次根式的概念中,为什么要强调“a≥0”?

  师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

  【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

  3.辨析概念,应用巩固

  例1 当 时怎样的实数时, 在实数范围内有意义?

  师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

  例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

  师生活动:先让学生独立思考,再追问.

  【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

  问题4 你能比较 与0的大小吗?

  师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,

  【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.

  4.综合运用,巩固提高

  练习1 完成教科书第3页的练习.

  练习2 当x 是什么实数时,下列各式有意义.

  (1) ;(2) ;(3) ;(4) .

  【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.

  【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.

  5.总结反思

  教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

  (1)本节课你学到了哪一类新的式子?

  (2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

  (3)二次根式与算术平方根有什么关系?

  师生活动:教师引导,学生小结.

  【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.

  6.布置作业:

  教科书习题16.1第1,3,5, 7,10题.

  五、目标检测设计

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

  2. 当 时,二次根式 无意义.

  【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

  3.当 时,二次根式 有最小值,其最小值是 .

  【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

  4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.

  【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

二次根式教案 篇6

  第十六章 二次根式

  代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式

  5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数的最小值为5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)宽:3 ;长:5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.

  解:乙的解答是错误的.因为当a=时,=5,a-<0,所以 ≠a-,而应是 =-a.

  本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.

  在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.

  在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.

  练习(教材第4页)

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  习题16.1(教材第5页)

  1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=± .因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R= ,即面积为S的圆的半径为 . (2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由题意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.

  6.解:设AB=x,则AB边上的高为4x,由题意,得x4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.

  7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义. (2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义. (3)∵即x>0,∴当x>0时, 在实数范围内有意义. (4)∵即x>-1,∴当x>-1时,在实数范围内有意义.

  8.解:设h=t2, 则由题意,得20=×22,解得=5,∴h=5t2,∴t= (负值已舍去).当h=10时,t= =,当h=25时,t= =.故当h=10和h=25时,小球落地所用的时间分别为 s和 s.

  9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18. (2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.

  10.解:V=πr2×10,r= (负值已舍去),当V=5π时, r= =,当V=10π时,r= =1,当V=20π时,r= =.

  如图所示,根据实数a,b在数轴上的位置,化简:+.

  〔解析〕 根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.

  解:由数轴可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解题策略] 结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.

  已知a,b,c为三角形的三条边,则+= .

  〔解析〕 根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解题策略] 此类化简问题要特别注意符号问题.

  化简:.

  〔解析〕 题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.

  解:当x≥3时,=|x-3|=x-3;

  当x<3时,=|x-3|=-(x-3)=3-x.

  [解题策略] 化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.

  5

  O

  M

二次根式教案 篇7

  教学目的

  1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

  2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

  教学重点

  最简二次根式的定义。

  教学难点

  一个二次根式化成最简二次根式的方法。

  教学过程

  一、复习引入

  1.把下列各根式化简,并说出化简的根据:

  2.引导学生观察考虑:

  化简前后的根式,被开方数有什么不同?

  化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

  3.启发学生回答:

  二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

  二、讲解新课

  1.总结学生回答的内容后,给出最简二次根式定义:

  满足下列两个条件的`二次根式叫做最简二次根式:

  (1)被开方数的因数是整数,因式是整式;

  (2)被开方数中不含能开得尽的因数或因式。

  最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

  2.练习:

  下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

  3.例题:

  例1 把下列各式化成最简二次根式:

  例2 把下列各式化成最简二次根式:

  4.总结

  把二次根式化成最简二次根式的根据是什么?应用了什么方法?

  当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

  当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

  此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

  三、巩固练习

  1.把下列各式化成最简二次根式:

  2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

  四、小结

  本节课学习了最简二次根式的定义及化简二次根式的方法。同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。

  五、布置作业

  下列各式化成最简二次根式:

【二次根式教案】相关文章:

二次根式教案3篇02-09

【精华】二次根式教案4篇10-05

实用的二次根式教案3篇04-08

【热门】二次根式教案4篇04-04

二次根式教案模板八篇04-07

二次根式教案汇编10篇04-07

二次根式教案合集五篇04-07

二次根式教案七篇11-01

关于二次根式教案合集5篇04-21

二次根式教案范文合集5篇04-17