当前位置:范文派>教学范文>教案>平行四边形教案

平行四边形教案

时间:2024-08-19 14:37:51 教案 我要投稿

【精品】平行四边形教案4篇

  作为一位杰出的教职工,很有必要精心设计一份教案,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?以下是小编为大家收集的平行四边形教案4篇,仅供参考,欢迎大家阅读。

【精品】平行四边形教案4篇

平行四边形教案 篇1

  一、教学目标:

  1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。

  2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

  3.培养学生发现问题、解决问题的能力及逻辑推理能力。

  二、重点、难点

  1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用。

  2.难点:运用平行四边形的性质进行有关的论证和计算。

  3.难点的突破方法:

  本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。

  学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。

  平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。

  为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的`对边、对角让学生认清楚。

  讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。

  新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。

  教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。

平行四边形教案 篇2

  教学目标:

  1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

  2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3、对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:

  理解公式并正确计算平行四边形的面积.

  教学难点:

  理解平行四边形面积公式的推导过程.

  学具准备:

  每个学生准备一个平行四边形。

  教学过程:

  一、导入新课。

  1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

  2、好,下面谁来说一说你找到了哪些学过的图形?

  3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的`左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=ah

  说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的填空。

  7、验证公式

  学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  三、检测导结

  1、学生自学例1后,教师根据学生提出的问题讲解。

  2、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  3、做书上82页2题。

  4、小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  5、作业

  练习十五第1题。

  附:板书设计

  平行四边形面积的计算

  长方形的面积=长宽

  平行四边形的面积=底高

  S=ah

  S=ah或S=ah

平行四边形教案 篇3

  教学目标

  知识技能目标

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四 边形的这两种判定方法,并学会简单运用.

  过程与方法目标

  1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

  2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感态度价值观目标

  通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学重点:

  平行四边形判定方法的探究、运用.

  教学难点:

  对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用.

  教学过程

  第一环节 复习引入:

  ( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

  问题1(多媒体展 示问题)

  1.平行四边形的定义是什么?它有什么作用?

  2.平 行四边形还有哪些性质?

  问题2

  有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

  第二环节 探索活动(12分钟,学生动手探究,小组合作)

  活动1:

  工具:两根长度相等的笔,

  两条平行线(可利用横格线).

  动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

  思考1.1:你能说明你所摆出的四边形是平行四边形吗?

  思考1.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.

  活动2

  工具:两根不同长度的细纸条.

  动手:能否用这两根细纸条在平面上

  摆出平行四边形?

  思考2.1:你能说明你们摆出的四边形是平行四边形吗?

  思考2.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形的.性质:对角线互相平分的四边形是平行四边形

  第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

  随堂练习:

  1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

  (1)OA与OC,OB与OD相等吗?

  (2)四边形BFDE是平行四边形吗?

  (3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

  2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

  (让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

  学生想到的画法有:

  (1)分别过A,C作BC,BA的平行线,两平行线相交于D;

  (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

  (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

  第四环节 小结:(4分钟,学生回答问题)

  师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

  第五环节 布置 作业:

  B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题

  A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

  ② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

平行四边形教案 篇4

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  【教学目标】

  1、通过操作和讨论掌握平行四边形和梯形的特征。

  2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

  3、注意培养学生的空间观念和想像力。

  【教学重点】

  通过操作和讨论掌握平行四边形和梯形的特征。

  【教学难点】

  了解平行四边形与长方形和正方形的关系。

  【教学准备】

  教师准备:直尺,三角板,课件。

  学生准备:直尺,三角板,白纸,铅笔。

  【教学过程】

  一、通过观察,加深学生对四边形特点的了解。

  1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

  (1) (2) (3)

  (4) (5) (6)

  师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

  生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

  师:你知识三角形和四边形有什么特点吗?

  生1:三角形有三条边,三个角。

  生2:四边形有四条边,四个角。

  师:对,今天我们来学习两种特殊的四边形。

  [设计说明:通过这部分的教学活动,加深学生对三角形和四边形的理解,为下一步学习平行四边形和梯形作准备。]

  二、通过观察讨论,让学生发现平行四边形和梯形的特点。

  1、通过让学生观察讨论,认识平行四边形和长方形的定义。

  出示课件:在电脑上出示一组四边形。

  (1) (2) (3)

  (4) (5) (6)

  师:电脑上的这组图形都是什么图形?

  生:四边形。(有前面的知识作铺垫,学生很容易回答出来)

  师:你能把它们分类吗?

  生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)

  生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

  师:你能说说把图(1)、(3)、(6)分为一组道理吗?

  生1:因为图(1)、(3)、(6)有两组平行线。

  师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)

  生:确实有两组平行线。

  师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)

  师:谁能说说把图(2)、(4)、(5)分为一组的道理?

  生2:它们只有一组平行线。

  师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的`定义,并板书)

  2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

  师:同学们,我们已学习了平行四边形的定义,请问长方形和正方形是不是平行四边形呢?

  生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

  生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

  生3:我觉得长方形和正方形是平行四边形,根据平行四边形的定义,只要有两组对边平行的四边形就是平行四边形,

  师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

  师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

  师:你们能说说长方形和正方形特殊的地方吗?

  生:它的四个角都是直角。

  师:对,这说是平行四边形特殊的地方。

  (通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)

  3、进一步认识平行四边形和梯形的特点。

  师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)

  生1:我发现平行四边形对边是相等的。

  师:请同学们用尺子量一量。

  生2:我发现平行四边形的对角相等。

  师:请同学们用量角器量一量。

  师:这两位同学的发现正确吗?

  生:完全正确。

  师:梯形有这些特点吗?请同学们量一量。

  生:没有,梯形的对边不相等,对角也不相等。

  (通过学生的操作,进一点了解平行四边形和梯形的特点)

  师:下面我们可以用图表表示平行四边形和梯形的特点。

  图形对边平行对边对角

  平行四边形有两组对边平行相等相等

  梯形只有一组对边平行不相等不相等

  (用图表表示平行四边形的特点,使学生更好地理解平行四边形和梯形的区别和联系。)

  三、认识四边形之间的关系。

  师:同学们,平行四边形和梯形是不是四边形?

  生:是。

  师:我们可以用这个图来表示:

  平行四边形

  梯形

  四边形

  师:长方形和正方形应怎样表示呢?

  生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

  师:对,应这样表示:

  平行四边形

  长方形 梯形

  正方形

  四边形

  四、巩固练习。

  1判断下面那些图形的平行四边形,那些图形的梯形。

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (7)

  (使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)

  2填空。

  1、两组对边( )的四边形叫做平行四边形。

  2、( )的四边形叫做梯形。

  3、长方形和正方形都有两组对边分别( )且( ),所以它们是特别的( )。

  4、平行四边形和梯形都是( )形,它们都有( ),( )个角。

  (通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)

  五、全课小结。

  师:今天你们学到了什么?

  生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

  [设计说明:本设计通过学生对平行四边形和梯形的观察和探索,发现平行四边形和梯形的特点,并动手验证所发现的观点,从而了解平行四边形和梯形的定义。再通过学生的讨论,得出长方形和正方形是特殊的平行四边形的结论。本设计体现了探索-发现-验证的学习过程,使学生在动手、动脑和动口的过程中掌握本节课的重点和难点。]

【平行四边形教案】相关文章:

平行四边形的认识教案07-30

平行四边形的面积教案07-24

《平行四边形的认识》教案07-09

《认识平行四边形》教案07-27

【精选】平行四边形教案4篇05-23

平行四边形教案五篇05-25

平行四边形教案八篇05-27

【精选】平行四边形教案三篇05-28

平行四边形教案四篇05-12

平行四边形教案汇总10篇05-16