当前位置:范文派>教学范文>教案>平行四边形教案

平行四边形教案

时间:2023-05-29 11:01:40 教案 我要投稿

平行四边形教案模板汇总六篇

  作为一名教师,就有可能用到教案,教案是教学蓝图,可以有效提高教学效率。那么写教案需要注意哪些问题呢?下面是小编整理的平行四边形教案6篇,仅供参考,欢迎大家阅读。

平行四边形教案模板汇总六篇

平行四边形教案 篇1

  教学内容:课本第72页。

  教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。

  教学过程:

  一、复习。

  1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)

  2.填空。

  0.28平方米=()平方分米=()平方厘米

  32000平方米=()公顷

  0.5平方千米=()公顷。

  3.求下面平行四边形的面积。(口答)

  (1)底18厘米,高10厘米

  (2)底25分米,高4分米

  (3)底12.5米,高8米

  (4)底16米,比高多6米

  (5)底和高都是30厘米

  二、新授。

  1.揭示课题。

  师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)

  2.出示例题。

  一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

  学生口述解题思路:求钢板的面积就是求平行四边形的面积。

  学生独立解答

  4.8×3.5?17(平方米)

  答:它的面积约是17平方米

  补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?

  总重量=每平方米重量×平方米数

  学生试做。

  集体评讲。

  钢板重量:3.9×17=66.3(千克)

  三、巩固练习。

  1.P72页做一做。

  通过书面练习第1题达到巩固求平行四边形面积的计算能力。

  指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。

  2.练习十七第6题。

  先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的'底和高分别是多少?求它们的面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)

  学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)

  得出:底和高分别相等的平行四边形,面积也相等。

  判断:下面的平行四边形面积相等吗?

  3.练习十七第7题。

  学生独立完成。集体核对。

  4.练习十七第8题。

  先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。

  四、作业。

  练习十七第9题。

  五、补充练习。

  已知一个平行四边形的面积是28平方米,底是7米,求高是多少?

  引导学生思考:因为:a·h=S

  所以:h=S÷a

平行四边形教案 篇2

  【学习目标】

  1.能运用勾股定理解决生活中与直角三角形有关的问题;

  2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

  3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

  【学习重、难点】

  重点:勾股定理的应用

  难点:将实际问题转化为数学问题

  【新知预习】

  1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

  【导学过程】

  一、情境创设

  欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

  二、探索活动

  活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

  活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

  活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?

  三、例题讲解:

  1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

  2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

  【反馈练习】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

  (2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

  (3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

  2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.无法确定

  3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?

  【课后作业】P67 习题2.7 1、4题

  八年级数学竞赛辅导教案:由中点想到什么

  第十八讲 由中点想到什么

  线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

  1.中线倍长;

  2.作直角三角形斜边中线;

  3.构造中位线;

  4.构造中心对称全等三角形等.

  熟悉以下基本图形,基本结论:

  例题求解

  【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的`中点, AB=10cm,则MD的长为 .

  (“希望杯”邀请赛试题)

  思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.

  注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

  (1)利用直角三角斜边中线定理;

  (2)运用中位线定理;

  (3)倍长(或折半)法.

  【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中数学创新与知识应用竞赛试题)

  思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

  【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

  (浙江省宁波市中考题)

  思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

  【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

  若(1)BD、CF分别是△ABC的内角平分线(如图2);

  (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

  (20xx年黑龙江省中考题)

  思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

  注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

  【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

  (20xx年天津赛区试题)

  思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

  注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

  学历训练

  1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

  (20xx年广西中考题)

  2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

  (200l年山东省济南市中考题)

  3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

  4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

  (20xx年天津市中考题)

  5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

  A.不能确定 B.2 C. D. +1

  (20xx年浙江省宁波市中考题)

  8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

  ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

  ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

  ③若所得四边形MNPQ为矩形,则AC⊥BD;

  ④若所得四边形MNPQ为菱形,则AC=BD;

  ⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

  ⑥若所得四边形MNPQ为菱形,则AB=AD.

  以上命题中,正确的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江苏省苏州市中考题)

  9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

  (20xx年上海市中考题)

  10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

  11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

  (1)求证:EF=FB;

  (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

  12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

  (20xx年四川省竞赛题)

  13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

  (重庆市竞赛题)

  1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号)

  15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

  A. B. C. D.

  16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

  A.1 D.2 C.3 D.

  17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

  A. B. C. D.

  18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

  (20xx年全国初中数学联赛试题)

  19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

  (山东省竞赛题)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

  (1)求证:MB=MC;

  (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

  (江苏省竞赛题)

  21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

  (1)求证AA1+ CCl = BB1 +DDl;

  (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

平行四边形教案 篇3

  1、本单元教材内容

  例1.认识同一平面内两条直线的特殊位置关系:平行和垂直。

  例2.学习画垂线,认识点到直线的距离。

  例3.学习画平行线,理解平行线之间的距离处处相等。

  例1.把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

  例2.认识平行四边形的不稳定性,认识平行四边形的底和高,学习画高,梯形的各部分名称。

  2、重难点、关键

  重点:垂直与平行的概念;平行四边形和梯形的特征。

  难点:画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的'高。

  关键:加强作图的训练和指导,重视作图能力的培养。

  3、教学目标

  (1)使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

  (2)使学生掌握平行四边形和梯形的特征。

  (3)通过多种活动使学生逐步形成空间观念,进一步体会几何图形在日常生活中的广泛应用。

  4、课时划分

  6课时

  (1)垂直与平行 3课时左右

  (2)平行四边形和梯形 3课时左右

平行四边形教案 篇4

  教学目的

  1.引导学生观察长方形、正方形的边和角的特点,认识长方形、正方形的共性和各自的特点.

  2.会在方格纸上画长方形、正方形.

  3.初步认识平行四边形.

  教学重点

  掌握长方形、正方形的特征

  教学难点

  长方形、正方形的区别和联系

  教具、学具准备

  多媒体课件一套(如果没有,可用学具代替)、长方形、正方形纸片,实物图片,七巧板、直尺、三角板.

  教学过程

  一、创设情境,提出问题.

  出示8根小棒(6长、2短)

  1.小组活动:你能用这8根小棒摆一些图形吗?看哪一个小组摆的又快又多.

  2.交流:请各小组到投影上边摆边说有几种.

  3.设疑:图形之间有很多相同的和不同的地方,提出长方形和正方形,它们各有几条边,几个角?每个角是什么角?它们的边和角的特点都一样吗?这两种图形可不可以变成别的形状?这就是我们这节课要研究的内容.(出示课题)

  二、主动探索,研究问题.

  1.认识长方形.

  (1)独立探索,小组交流.从学具中拿出长方报纸片来,动手观察一下它的角和边,会发现什么?(与小组内其他同学交流.)

  (2)小组汇报:请小组各出一名代表发言,分别说一说通过研究发现了角和边有什么特点,并且说一说怎样想的或者是怎样做的.找几个组说一说.(如果有用折纸这一办法的,请他说明怎样做的,演示一下,并给予表扬)

  (3)辩论:长方形有什么特征呢?(小组讨论)

  (4)教师总结:刚才有的同学利用身边的学具量一量,有的同学用折纸这个方法发现长方形相对着的两条边相等,也就是说长方形有两组对边相等,长方形有四个角,四个角都是直角.【演示动画长方形、正方形】

  (5)学生之间交流长方形的特点.每个人都用纸折折看,再验证一下.

  2.认识正方形.

  (1)独立探索,小组交流.

  同学们,刚才你们自己动手研究了长方形的一些知识,那么正方形的角和边又有什么特点呢?试试看,相信你能行.

  (2)汇报交流:正方形有什么特征呢?(小组互相说)

  (3)教师总结.我们用了同样的方法,验证了正方形的边和角的一些特点,也就是正方形的四条边都是相等的,一样长,四个角都是直角.(继续演示动画长方形、正方形)

  3.小组讨论:长方形、正方形的联系和区别【演示动画长方形、正方形的特征】.

  (1)师问:长方形与正方形有什么相同点和不同点吗?

  (2)教师总结:刚才我们研究了长方形和正方形的边角特点.发现它们都有四个角,而且四个角都是直角:它们都有四条边,但是长方形对边相等,正方形不仅对边相等,而且四条边都相等.

  (3)引导学生揭示四边形的概念.

  由四边形围成的图形就是四边形,长方形和正方形都是四边形.

  (4)初步练习:在钉子板上围一个正方形和一个长方形.

  4.平行四边形的初步认识.

  (1)出示:

  让学生自己观察发现,能找出什么图形,你想知道有关平行四边形的什么知识?

  (2)投影出示画在方格纸上的平行四边形.

  引导学生知道:它们有4个角,4条边.

  教师明确:这些图形也是由四条边围成的图形,我们把这样的四边形叫做平行四边形.

  教师说明:这些四边形相对的边之间的宽度总是保持一定的(用直尺演示出对边间的距离不变),我们就说它的对边是平行的,所以我们把这些图形叫做平行四边形.

  引导学生观察、讨论:借助方格来看一看平行四边形有什么特征?(以小组为单位,研究它的边和角的特点.)

  (3)小组研讨,汇报总结.

  平行四边形 角:4个

  边:四条 相对的边相等

  (4)利用学具摆2个不同的平行四边形.

  (5)学生拿出制作长方形(平行四边形)框的学具,用手拉它的一组相对的角.如图:

  讨论:平行四边形与长方形有哪些相同,有哪些不同?

  引导学生:平行四边形和长方形都有四条边,都是相对的边相等.长方形的四个角都是直角,而捏住长方形相对的两个角的'顶点一拉,它就不是长方形了,是一个平行四边形.当平行四边形的角一个变成直角时,四个角就都变成直角,这时平行四边形就又变成了长方形了.【演示动画变化的图形】

  三、运用知识,解决问题.

  1.要求:利用手中的小三角形摆长方形、正方形、平行四边形.(4个小三角形)

  2.利用手中的七巧板摆一些漂亮的图形,再给它起个名字.

  四、看书质疑,全课总结.

  板书设计

  探究活动

  七巧板

  游戏目的

  帮助学生认识几何图形,培养空间关系的认识能力和想象能力.

  游戏准备

  学生每人准备各种各样的图形,如:三角形、长方形、正方形等.

  游戏过程

  1.学生按下面三个要求拼图:

  ①用任意两块图形拼成一个正方形;

  ②用任意三块图形拼成一个长方形;

  2.学生自由拼图,可以拼几何图形、建筑物或其他图案,在规定的时间里谁拼得的图形多,谁就是优胜者.

  注意事项

  等分长方形的奥秘

  活动内容

  让学生用折纸的办法把长方形平均分成两份.

  活动目标

  1.通过折、画、讨论、猜测、验证等形式的活动,使学生掌握用一条直线等分长方形的方法.培养学生创造性思维的能力和探索未知的方法.

  2.运用分组的活动形式,培养学生的合作精神和竞争意识.

  重点和难点

  通过教学,让学生感受并初步掌握实例分析综合思考提出猜测推理验证这种探索问题的方法.是本课教学的重点.如何探索出能等分长方形的直线的规律是本课教学的难点.

  活动准备

  1.教具:长方形纸若干张、教学课件.

  2.学具:直尺、小刀、水笔、大小相等的长方形纸片约10张.

  活动过程

  1.折一折,把长方形平均分成大小相等的两份.然后用直尺沿着折痕画出直线.试一试,你们能折几种?

  (1)请小组成员共同讨论,注意互相分工合作.

  (2)长方形纸片在信封里.

  (3)动手折纸时间为3分钟,比比看,哪组同学画得又快又对又多?

  2.反馈交流:指名上台汇报小组讨论探究的结果.分了几种?是哪几种?然后老师把把相应的折法张贴在黑板上.

  3.探索规律.

  师:这样的直线还有吗?还有几条呢?我们先不忙下结论,还是先来研究这些已经知道的直线有什么共同特点.

  (1)将你们小组等分的长方形纸片2张重叠,并把重叠的长方形纸片拿起来,对准强光处照一照,然后3张、4张逐渐重叠,你发现了什么?

  (2)课件显示各种等分长方形的直线相交于同一点的动态过程.

  (3)引导学生小结:等分长方形的直线都相交于长方形内的一点.

  游戏前,教师可借助磁性黑板等教具作些示范演拼.在学生自由拼图时,教师可在黑板上勾画一些图案,以启发学生思维.

平行四边形教案 篇5

  教学要求:

  1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。

  2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。

  3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。

  教学重点:

  在制作中发现平行四边形的基本特征。

  教学难点:

  引导学生发现平行四边形的特征。

  教学过程:

  一、生活引入

  1.出示校门口伸缩门照片,问:这张照片你熟悉吗?是哪里?请你观察我们校门口的电动门,你能在上面找到平行四边形吗?谁来指给大家看。对,在这个伸缩门上有许多平行四边形。

  2.师:生活中,你还在哪些地方见过平行四边形呢?(指名说)

  3.师:是的,平行四边形在咱们的生活中无处不在,漂亮的小篮子上,安全网上,花园的栅栏上,学校楼梯的扶手上,三菱汽车的标志上,足球门的网上,以及工人叔叔用的升降架上,各式各样的电动门上都有平行四边形的存在。今天这节课,老师就和大家一起来认识平行四边形。(板书课题)

  二、操作探究

  1.师:看了这么多的平行四边形,想不想自己动手做一个呢?老师为大家准备了一些材料,请你选择其中一种材料,制作一个平行四边形。先独立完成,在小组里说一说你的方法。

  2.师:谁来汇报?你选了那种材料?是怎么制作的'?(让学生依次在投影上演示,并介绍制作过程)

  3.讨论:刚才同学们用不同的材料制作了平行四边形,大家制作的这些大小不同的平行四边形的边,有什么共同的特点呢?

  4.下面,请每个小组的同学根据老师的提示进行讨论。

  小组活动:

  (1)仔细观察小组内每个平行四边形,猜想:它们的边有什么共同的特点?组长记录在练习纸上。

  (2)用什么方法去验证你们的猜想?怎样操作?

  (3)通过观察,操作,验证,你们的结论是什么?

  5.师:哪个小组来汇报?首先说你们的猜想是?怎样验证的?(让学生在投影上操作演示)你的结论是什么?(根据学生回答板书)

  6.师:同学们刚才通过观察,操作,验证了平行四边形边的特征,我们可以用一句话概括它的特征是:两组对边分别平行且相等。(板书)对边是指?(课件演示)谁再来说说,平行四边形有什么特点呀?多指名几人说。

  7.师:要看一个四边形是不是平行四边形,就要看?(多指名几人说)下面大家来判断,这里哪些图形是平行四边形?拿出练习纸,完成想想做做第一题,先独立完成,再说说理由,你是怎么判断的。

  三、探索平行四边形与长方形的相同点与不同点。

  1.师:这节课,我们认识了平行四边形,老师手上的这张纸片是什么形状的?现在我想让它变成一张长方形纸片,我该怎么办?请大家帮一帮我。小组操作。

  2.指名汇报,你是怎样剪的?谁来说说它的特征是什么?

  3.刚才我们把平行四边形变成了长方形,下面我们再做个游戏,让长方形变成平行四边形,想玩吗?

  四、小结,并认识平行四边形的不稳定性。

  1.通过这节课的学习,你对平行四边形有哪些认识?

  2.平行四边形对我们的生活有哪些帮助呢?它还有什么特征呢?请看。现在你知道为什么校门口的电动门要做成由许多个平行四边形组成的了吗?(观看电动门伸缩过程)你还能举出更多的例子吗?大家课后做个有心人,搜集相关的资料吧。

平行四边形教案 篇6

  教学目标设计:

  1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。

  2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。

  3、培养初步的推理能力和合作意识,以及解决实际问题的能力。

  教学重点:探究平行四边形的面积公式

  教学难点:理解平行四边形的面积计算公式的推导过程

  教学过程设计:

  一、创设情境,激发矛盾

  拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽

  教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长

  学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。

  教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的平行四边形,提问:这些平行四边形的面积也等于底

  边长×邻边长吗?

  今天这节课我们就来研究“平行四边形的面积”。教师板书课题。

  学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?

  二、另辟蹊径,探究新知

  1、寻找根源,另辟蹊径

  教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?

  引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?

  学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?

  2、适时引导,自主探索

  教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?

  (1)学生操作

  学生动手实践,寻求方法。

  学情预设:学生可能会有三种方法出现。

  第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。

  第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。

  (2)观察比较

  刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?

  (3)课件演示

  是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。

  3、公式推导,形成模型

  既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?

  先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。

  A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?

  B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)

  学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的.平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:

  长方形的面积 = 长 × 宽

  平行四边形的面积 = 底 × 高

  4、变化对比,加深理解

  引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?

  5、自学字母公式,体会作用

  请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的

  面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?

  三、实践应用

  1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)

  2、看图口述平行四边形的面积。

  3分米 2.5厘米

  3、这个平行四边形的面积你会求吗?你是怎样想的?

  4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?

【平行四边形教案】相关文章:

《认识平行四边形》教案03-30

平行四边形教案四篇05-12

平行四边形教案五篇05-25

平行四边形教案八篇05-27

【精选】平行四边形教案4篇05-23

【精选】平行四边形教案三篇05-28

关于平行四边形教案三篇05-18

关于平行四边形教案9篇05-22

实用的平行四边形教案9篇05-20

【必备】平行四边形教案四篇05-15