当前位置:范文派>教学范文>教案>小学数学教案

小学数学教案

时间:2023-09-03 12:55:25 教案 我要投稿

小学数学教案优秀(7篇)

  作为一位杰出的教职工,通常会被要求编写教案,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!以下是小编整理的小学数学教案7篇,仅供参考,欢迎大家阅读。

小学数学教案优秀(7篇)

小学数学教案 篇1

  教学目标:

  1、初步体验数据的收集及整理过程。

  2、认识简单的条形统计图,能根据统计图回答一些简单的问题。

  3、初步体会统计的必要性

  教学重、难点:数据的收集及整理

  教具准备:统计图若干张

  教学流程:

  一、创设情境,提出问题

  师:小朋友们,从幼儿园到现在,你们参加过哪些比赛呢?

  师:小朋友们个个多才多艺,老师真为你们有这样的幸福生活而高兴。过几天就是六一儿童节了,学校将举行一次大型的`文体活动,我们班也准备组织一项活动比赛,大家高兴吗?应该组织哪一项活动比赛好呢?谁帮老师出出主意?

  生自由发言

  师:刚才,同学们都积极地给老师提出了建议,都勇于发表自己的意见,你们都是提问能手。但是我们只能举行一项活动,你们说老师应该怎么办呢?

  师:同学们的办法可真不少啊!这一节课我们就继续来学习统计。(板书课题:组织比赛)

  二、调查统计,解决问题

  1、调查准备 明确要求

  师:我们先以小组单位进行调查,请小组长把1号信封里面的统计图拿出来,大家仔细看一看、说一说你看到了什么?

  生:这是一张最喜欢的活动统计图,有5个直条,下面写着跳绳、踢球、其他,还有两个括号。

  师:是啊!有跳绳、踢球,还有两个项目没有告诉我们,你们说应该填什么活动项目好呢?其他是什么意思呢?

小学数学教案 篇2

  教学目标

  1.使学生理解平均数的含义,掌握简单求平均数的方法.能根据简单的统计表求平均数.

  2.培养学生分析、综合的能力和操作能力.

  3.使学生感悟到数学知识与生活联系紧密,增强对数学的兴趣.

  教学重点

  明确求平均数与平均分的区别,掌握求平均数的方法.

  教学难点

  理解平均数的概念,明确求平均数与平均分的区别.

  教学步骤

  一、铺垫孕伏.

  1.小华4天读完60页书,平均每天读几页?

  2.一个上下同样粗的杯子里装有16厘米深的水,把这些水平均倒在4个同样粗细的杯子里,每个杯子里的水深是多少厘米?

  3.小明和小刚的体重和是160斤,平均体重多少斤?

  师:上述1、2两题都是把一个数平均分成几份,实际每一份都一样多,而第3题是把两个数的和平均分成两份,每份不一定是实际数.所以,求几个数的平均数与把一个数平均分成几份,是有区别的.

  二、探究新知.

  1.引入新课.

  以前,我们学习过把一个数平均分成几份,求每份是多少的应用题,也就是平均分的问题.

  今天我们共同研究一下求平均数问题.(板书课题:求平均数)

  2.教学例2.

  (1)出示例2.用4个同样的杯子装水,水面高度分别是6厘米、3厘米、5厘米、2厘米.这4个杯子水面的平均高度是多少?

  (2)组织讨论:你怎样理解水面的平均高度?

  (3)学生汇报讨论结果,教师进一步明确:所谓平均高度,并不是每个杯子水面的实际高度,而是在总水量不变的情况下,水面高度同样的高度值.

  (4)学生操作.

  请同学们拿出准备的积木,用每块积木的高度代表1厘米,先用积木按例题的高度要求叠放四堆来表示4杯水的高度,再动脑动手操作一下,使这四杯水的水面高度相等.

  (5)学生汇报操作结果,一般出现两种方法.

  第一种:数出共有多少个积木,或把积木全部叠放在一起,共16厘米,再用

  164=4厘米,得出每杯水水面的平均高度是4厘米.

  第二种:直接移多补少.从6厘米中取2厘米放入2厘米杯中,从5厘米杯中取1厘米放入3厘米杯中,就可直接得到4杯水面高度相同的水,水面高度都是4厘米.这说明原来4杯水水面的平均高度是4厘米.

  (6)师:通过同学们的操作,我们得到了这4杯水水面的平均高度是4厘米.但这里有一个问题,操作时,我们使水杯的水面实际高度发生了变化,平均高度得到了,而原来4杯水水面高度却发生了变化.而现实生活中,很多求平均数的情况是不允许改变原值的.例如:高个身高180厘米,矮个身高140厘米,两人的平均身高是160厘米.并不是把高个的身体削下一部分来,接在矮个身体上,使两人身高相等.由此可见,通过直接操作的方法来求平均数,在很多情况下是行不通的.如果我们不通过操作,直接通过计算,能不能求出这4杯水水面的平均高度呢?怎样计算方便呢?

  (7)引导学生列式计算.

  (6+3+5+2)4

  =164

  =4(厘米)

  答:这4个杯子水面的平均高度是4厘米.

  小结:通过上题的计算,进一步明确:应先相加求出高度总和,再用高度和除以杯子数,得到平均高度.

  (8)看例2与复习题,两题的`结果都是4厘米,所表示的意义相同吗?

  明确:复习题中,4厘米是平均分的结果,即每个杯子水面的实际高度就是4厘米;例2是求的平均数,4厘米表示的是各杯子水面高度的平均值,而每个杯中水面的实际高度并不一定是4厘米,它们的实际高度并不要求发生变化.

  (9)反馈练习.

  小强投掷三次垒球,每次的成绩分别是:28米、29米、27米.求平均成绩.

  3.教学例3.

  (1)出示例3:四年级一班第一小组有6个同学,第二组有7个同学,下面是两组同学身高的统计表(单位:厘米)

  (2)读题,组织学生讨论:两组人数不同,每人的身高也不尽相同,想要直接比较出哪一组的身高较高,怎么做比较好呢?

  (3)根据讨论结果,明确先求出每组的平均身高,再进行比较.

  (4)列式计算.

  第一小组的平均身高是多少?

  (136+142+140+135+137+144)6

  =8346

  =139(厘米)

  第二小组的平均身高是多少?

  (132+141+133+138+145+135+142)7

  =9667

  =138(厘米)

  第一小组的平均身高比第二小组的高多少?

  139-138=1(厘米)

  答:第一小组平均身高高一些,高1厘米.

  (5)反馈练习.

  一个小组有7个同学,他们的体重分别是:39千克、36千克、38千克、37千克、35千克、40千克、34千克.这个小组平均体重是多少千克?

  三、课堂小结.

  通过小结,进一步区分平均分与平均数两个概念的不同含义,巩固求平均数的方法.

  四、布置作业.

  回家后量出你家中每个人的身高,记录下来,并求出全家人的平均身高.

小学数学教案 篇3

  【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  【教学重点】

  圆锥体体积计算公式的推导过程.

  【教学难点】

  正确理解圆锥体积计算公式.

  【教学步骤】

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的体积是和它等底等高圆柱体积的1/3

  V=1/3Sh

  6、思考:要求圆锥的`体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

小学数学教案 篇4

教学内容:课本第69页例2、3;练一练;《作业本》第31页。

  教学目标:理解解比例的意义,掌握解比例的方法,能正确地解比例。

  教学重点:解比例的基本方法与依据。

  教学难点:解比例的方法

  教学过程:

  一、复习:

  1、什么叫比例?

  2、什么是比例的基本性质?

  3、怎样检查两个比是否成比例?

  二、新授:

  1、先请学生心里想好一个比例(数目简单些),如2:3=4:6,只告诉其他同学其中的三项,让大家猜一猜还有一个数字是什么?

  2、根据比例的基本性质,如已知比例中的任何三项,就可以求出另一个未知项。

  3、求比例中的未知项,叫做解比例。

  4、例2解比例:

  30∶12=45∶χ

  解:30χ=12×45…………根据是什么?

  χ=………不先求积,先约分比较简便。

  χ=18

  5、例3解比例=

  ①请学生独立尝试;

  ②注意格式;

  ③反馈练习。

  6、试一试。

  三、巩固练习:

  1、解比例:(练一练第1题第一竖行)

  2、练一练第2题

  3、补充:χ∶0.8=3∶1.2

  四、小结:

  这节课学习了什么?

  五、《作业本》第31页。

  小学六年级数学教案——用比例知识解答应用题教案

  教学目的

  1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.

  2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.

  3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.

  教学重点

  通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

  教学难点

  通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.

  教学过程

  一、复习准备.

  下面每题中的两种量成什么比例关系?

  (1)速度一定,路程和时间.

  (2)总价一定,每件物品的价格和所买的数量.

  (3)小朋友的年龄与身高.

  (4)正方体每一个面的面积和正方体的表面积.

  (5)被减数一定,减数和差.

  谈话引入:我们今天运用正反比例的知识来解决实际问题.

  (板书:用比例知识解应用题)

  二、探讨新知.

  (一)教学例5(用比例解答下题)

  修一条公路,总长12千米,开工3天修了1.5千米.照这样计算,修完这条路还要多少天?

  1.学生读题,独立解答.

  2.学生反馈:

  3.分析:

  (1)为什么需要用正比例解答?

  (2)12和要求的天数之间有什么关系?

  4.小结:我们在做题时,根据注意题目中的数量关系,不仅需要判定运用什么比例方法,而且还要注意找准题目中的对应关系.

  (二)反馈.

  1.某车队运送一批救灾物品,原计划每小时行60千米,6.5小时到达灾区,实际每小时行了78千米.照这样计算,行完全程需要多少小时?

  2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?

  三、巩固反馈.

  1.一张大纸,如果裁成长36厘米,宽26厘米的小纸张,可以裁成28张;如果裁成长18厘米,宽13厘米的小纸张,可以裁成多少张?

  2.某车间有男工25人,女工20人.如果男工增加15人,要想使男工和女工人数的比不发生变化,女工应该增加多少人?

  3.一项工程,10人去做24天可以完成;如果每人的工作效率不变,现在需要提前4天完成,需要多少人?

  4.两个底面半径相等的圆柱体,第一个圆柱的高是第二个圆柱高的.第二个圆柱的体积是60立方米,第一个圆柱体的体积是多少立方米?

  四、课堂总结.

  通过这堂课的学习,你有什么收获?

  小学六年级数学教案——正比例和反比例的比较

  学目标

  1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

  2.使学生能正确判断正、反比例.

  教学重点

  正、反比例的联系和区别.

  教学难点

  能正确判断正、反比例.

  教学过程

  一、复习准备

  判断下面每题中两种量成正比例还是成反比例.

  1.单价一定,数量和总价.

  2.路程一定,速度和时间.

  3.正方形的边长和它的面积.

  4.时间一定,工效和工作总量.

  二、新授教学

  (一)出示课题

  教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

  小学六年级数学教案——比、比例和比例尺的概念的整理和复习

  教学内容:教科书第35页的第l一3题,练习九的第l一3题。

  教学目的:

  1.使学生明确。比例”和“比”、“比值”等概念之间的联系和区别。,

  2,使学生进一步提高对比例、正比例、反比例的意义和判断的理解和掌握,培养学生的分析问题和解决问题的能力。

  3.加深对比例尺的认识,会求比例尺、图上距离和实际距离。

  教具准备:投影仪、投影片、小黑板。

  教学过程:

  一、复习;;比”和“比例”

  1.复习整理。

  教师:这一单元我们学习了比例的知识,请同学们举例说一说什么叫做比?什么叫做比例?比和比例有什么区别?

  随着学生的回答,教师板书如下表。

  指出:比是表示两个数相除的'关系,有两项;比例是一个等式,表示两个比相等,有四项:

  2.练习。

  用小黑板出示下面的题让学生完成。

  (1)六年级一班有男生24人,女生20人。六年级一斑男生和女生人数的最简单的整数比是( )。

  (2)六年级一班男生和女生人数的比是6:5。男生人数和全班人数的比是( ),女生人数和全班人数的比是( )。

  (3)六年级一班男生和女生人数的比是6:5。男生有24入,女生有( )人。

  二、复习解比例

  1.完成第35页的第2题。

  指名回答什么叫解比例,解比例要根据什么性质。

  接着以 : =l :x为例,复习解比例的过程,使学生进一步明确:在解比例时,如果有带分数,要先把带分数化成假分数,然后利用比例的基本性质,把比例式变为含有未知数的等式来解。

  然后让学生完成第2题的其余习题。

  三、复习正比例、反比例

  用投影片逐一出示下面问题,让学生回答。

  1.什么叫成正比例的量和正比例关系?

  2.什么叫成反比例的量和反比例关系?

  3,正比例和反比例有什么联系和区别?

  学生回答,教师填写小黑板上的表。

  然后教师出示下面两个表,让学生根据表中两种量中相对应的数的关系,判断它们成什么比例,并说明理由。

  使学生明确:要判断两个相关联的量是成正比例还是反比例,要看相对应的两个数的商或积是不是一定,如果积一定说明这两个量成反比例,如果商一定说明这两个量成正比例。如第二个表,通过计算,可以看出上、下两个相对应的数的商一定,也就是说,这个三角形的高的 一定,因而高也一定,所以三角形的面积与底边成正比 例。

  四、课堂练习

  完成练习九的第1—3题。

  1.第1题.学生独立完成,集体订正。在订正第(4)小题时,可以先让学生说说12的约数有哪?然后说出自己用选出的四个约数组成的比例是什么。教师把学生说出的比慎写出来。订正第(6)小题时,要注意检查学生是否把图上距离和实际距离的单位续一了。

  2,第2题,除第(2)、(7)小题教师要提示外,其余各题由学生自己判断,第(2)行驶的路程

  小题,教师可以先说明 =周长,再让学生判断。第(7)小题,可以先让几个学生说说自己的体重和身高,教师把数据记下来,再让学生判断。使学生知道:人的体重和身高有一定的关系,一般人的体重是随着身高而增加的,但体重和身高不成正比例关系。

  3.第3题,教师向学生说明:这题要求图上长方形的长、宽和地基的实际面积。

  小学六年级数学教案——正比例和反比例的比较

  教学目标

  1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

  2.使学生能正确判断正、反比例.

  教学重点

  正、反比例的联系和区别.

  教学难点

  能正确判断正、反比例.

  教学过程

  一、复习准备

  判断下面每题中两种量成正比例还是成反比例.

  1.单价一定,数量和总价.

  2.路程一定,速度和时间.

  3.正方形的边长和它的面积.

  4.时间一定,工效和工作总量.

  二、新授教学

  (一)出示课题

  教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

  (二)教学例7(课件演示:正反比例的比较)

  小学六年级数学教案——解比例教案

  教学目标

  1.使学生理解解比例的意义.

  2.使学生掌握解比例的方法,会解比例.

  教学重点

  使学生掌握解比例的方法,学会解比例.

  教学难点

  引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已

  学过的含有未知数的等式.

  教学过程

  一、复习准备

  (一)解下列简易方程,并口述过程.

  2 =8×9

  (二)什么叫做比例?什么叫做比例的基本性质?

  (三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

  6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

  (四)根据比例的基本性质,将下列各比例改写成其他等式.

  3∶8=15∶40

  二、新授教学

  (一)揭示解比例的意义.

  1.将上述两题中的任意一项用 来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

  2.学生交流

  根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

  3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

  (二)教学例2.

  例2.解比例 3∶8=15∶

  1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

  2.组织学生交流并明确.

  (1)根据比例的基本性质,可以把比例改写为:3 =8×15.

  (2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

  (3)规范并板书解比例的过程.

  解:3=8×15

  =40

  (三)教学例3

  例3.解比例

  1.组织学生独立解答.

  2.学生汇报

  3.练习:解下面的比例.

  = ∶ = ∶

  三、全课小结

  这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

  四、巩固练习

  (一)解下面的比例.

  1. 2. 3.

  (二)根据下面的条件列出比例,并且解比例.

  1.5和8的比等于40与 的比.

  2. 和 的比等于 和 的比.

  3.等号左端的比是1.5∶ ,等号右端比的前项和后项分别是3.6和4.8.

小学数学教案 篇5

  教学内容:

  教材第2页例1,完成教材第3页练习一第1、2、4、5题 第 1 课时 课型 新授

  教学目标 :

  1.结合现实生活,通过具体观察活动,使学生能体验从正面看到的平面图形,它的实物图可以有多种摆放方式。

  2.学生能通过从正面看到的平面图形画出不同摆放方式的小正方体。

  3.通过观察、操作等活动,培养学生的观察能力、动手能力,发展空间观念,初步学会欣赏生活中的数学美。

  4.在活动中培养数学学习热情以及良好的交流、合作习惯。

  教学重点:

  能从正面看到的平面图形画出不同摆放方式的小正方体

  教学难点:

  能从正面看到的平面图形画出不同摆放方式的小正方体

  教具准备:

  课件,小正方体积木

  教学过程:

  一、复习导入

  师:同学们都喜欢玩积木吗?下面我们来玩一个搭积木的游戏。请用手中的4块积木搭一个你喜欢的形状。谁来展示一下你的摆法?

  生展示不同的摆法。

  师:通过刚才的游戏,老师发现同学们越来越喜欢动脑筋了,大家探索出了这么多有趣的摆法。老师真为你们高兴!这一节课希望大家积极动手动脑,我们来继续探索《观察物体》中的奥秘,好吗?(板书课题)

  二、新课讲授

  1.出示教材第2页例1

  (1)师:看同学们刚才学得真好,我又给大家提供了一个玩积木的机会(出示课件):现在有四块积木,如果我想摆出从正面看是这一形状(如图),

  应该怎样摆?有几种摆法?

  请同学们以小组为单位,合作解决这一问题。

  教师巡视指导。

  师:刚才老师发现好多小组都在积极尝试多种不同的摆放方法,这种探索精神非常好,有谁愿意到讲台上,向大家介绍一下你们小组集体的智慧成果?

  生摆

  师:谁还有不同的方法?生摆

  师:电脑出示六种基本摆法,同时指出在这六种方法的基础上再进行移动,就延伸出了多种摆法。

  (2)如果再加一个小正方体,要保证从正面看到的形状不变,你可以怎样摆?同学们以小组为单位,合作解决。

  教师巡视指导。

  学生展示成果。

  (3)同学们真棒!想出了这么多种摆法,你们能尝试着找到一个如何摆放的`规律吗?可以讨论。

  生讨论交流得出:先照图用三个小正方体摆好从正面看到的基本形状,然后余下的一个正方体可以摆在原来物体的前边或后边,都可让正视图保持不变。如果摆在前边,从正面能看到这个正方体,它必须与原来物体里的正方体对齐着摆;如果摆在后边,从正面不能看到这个正方体,它既可以与原来物体里的正方体对齐着摆,也可以不对齐着摆。

  三、课堂作业

  完成教材第3页练习一第1、2、4、5题。

  四、课堂小结

  这节课我们学习了从正面看到的平面图,它的实物图有多种摆放方式,你学会了吗?你还有什么收获呢?

  五、课后作业

  完成练习册中本课时练习。

  板书设计:

  观察物体

小学数学教案 篇6

  一、教学目标:

  1、首先带动课堂气氛

  2、教会学生什么是面积。

  3、学习圆柱体侧面积和表面积的含义。

  4、能够求圆柱的侧面积和表面积的方法。

  二、教学重点:

  动手操作展开圆柱的侧面积

  三、教学难点:

  圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  四、教具准备:

  圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

  五、教学过程:

  (一)、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说)

  师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:.......

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  (二)、探索交流,解决问题。

  圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)

  1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

  2.操作活动:

  (1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3.小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长×宽

  ↓↓↓

  圆柱的侧面积=底面周长×高

  所以,圆柱的侧面积=底面周长×高

  S侧=C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的.,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  (四)、练习

  求圆柱的侧面积(只列式不计算)

  1。底面周长是1.6米,高是0.7米

  2。底面直径是2分米,高是45分米

  3。底面半径是3.2厘米,高是5分米

  (五)研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

  (六),巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

  3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

  六、教学结束:

  布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

小学数学教案 篇7

  教学内容:二年级(下册)第81~83页

  教学资源分析:

  本课内容教学之前,同学已经比较熟练地掌握了表内乘法,并学会了乘法竖式的写法,这些都为学习本课内容作了知识上的铺垫。两位数乘一位数的乘法是以后学习乘、除法的基础,也是本单元中重要的学习内容。

  这局部内容先教学一位数乘几十的口算,为学习一位数乘两位数作好算理和方法上的准备,再教学两位数乘一位数的不进位笔算。一位数乘几十是一位数乘两位数中最容易的,也是最基础的。教材用图画形式出现的实际问题能很清楚地显示出“求3个20是多少?”引起同学对乘法的回忆。列出算式20×3后,形象直观的问题情境又能让每名同学都有自身的算法,然后组织同学交流算法,使采用连加或形象计算的同学学会比较笼统地考虑,从而让同学经历数学化的过程。在“试一试”中,继续口算8头大象能运多少根,把一位数乘几十的积扩展到几百几十,再次引导同学利用表内乘法联想一位数乘几十的积。一位数乘两位数(不进位)的.教学也充沛依*情境图启发同学考虑。教材先布置同学自身想口算方法,在此基础上再介绍笔算方法,这样布置,便于同学由口算方法联想到要把乘数分别与被乘数每位上的数相乘,然后相加,这就有利于同学理解笔算的方法。接着,教材简化了竖式笔算的中间过程,得出笔算的竖式的一般写法,使同学明确一位数乘两位数乘的顺序和每一步积的定位。

  教学目标:

  1、使同学经历探索一位数乘两位数算法的过程,理解一位数乘两位数的算理,并掌握计算方法。

  2、初步学会一位数乘几十的口算和一位数乘两位数的笔算。

  3、使同学经历与他人交流算法的过程,培养同学自主探索、合作交流的良好学习习惯。

  教学重点:

  学会一位数乘几十的口算和一位数乘两位数的笔算

  教学难点:

  理解一位数乘两位数的算理

  教学准备:

  电脑、课件