- 相关推荐
初中数学教案设计
作为一名辛苦耕耘的教育工作者,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么教案应该怎么写才合适呢?以下是小编精心整理的初中数学教案设计,仅供参考,希望能够帮助到大家。
初中数学教案设计1
一、案例实施背景
本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。
二、案例主题分析与设计
本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同
时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。
2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。
四、案例教学重、难点
1、重点:正确运用科学记数法表示较大的数
2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数
五、案例教学用具
1、教具:多媒体平台及多媒体课件、图片
六、案例教学过程
一、创设情境,兴趣导学:
1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?
2、展示课本图片,现实中,我们会遇到一些比较
大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。
师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。
(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000
生1:答:13.7亿,640万,3亿。
师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗?生:不好用。(让学生意识到以前所学的方法不够用了)师:接下来我们一起来探索新的`记数方法。
分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。
二、尝试探索,讲授新课:
1、探索10n的特征
计算一下102、103、104、105、1010你发现什么规律?102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000
(观察并思考,小组讨论)
(1)结果中“0”的个数与10的指数有什么关系?
(2)结果的位数与10的指数有什么关系?
2、练习:将下列个数写成只有一位整数乘以10n的形式。
(1)500(2)3000(4)40000
师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。
4、科学记数法:
像上面这样,把一个大于10的数表示成a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。
(思考,小组讨论)
10的指数与结果的位数有什么关系?
分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。
三、巩固新知,知识运用:
1、将下列各数写成科学记数法形式。
(1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米?分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。
(观察并思考,小组讨论)
5、如何将一个用科学记数法表示的数写成原数?
a×10n将a的小数点向右移动n位原数
分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。
练习:人体内约有2.5×10 5个细胞,其原数为多少个?
七、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好
地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。
初中数学教案设计2
一、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向运动米
2 ×3=
② —2 ×3
—2看作向西运动2米,×3看作向原方向运动3次。
结果:向运动米
—2 ×3=
③ 2 ×(—3)
2看作向东运动2米,×(—3)看作向反方向运动3次。
结果:向运动米
2 ×(—3)=
④(—2)×(—3)
—2看作向西运动2米,×(—3)看作向反方向运动3次。
结果:向运动米
(—2)×(—3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=()同号得
(—)×(+)=()异号得
(+)×(—)=()异号得
(—)×(—)=()同号得
②积的绝对值等于。
③任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的.关系,得出两个有理数互为倒数,它们的积为。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
初中数学教案设计3
教材分析:
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认
识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的`根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
教学过程:
板书设计:
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2= 。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b-4ac可判定根的情况;
④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。
⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
教学反思:
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
【初中数学教案设计】相关文章:
初中数学教学反思05-29
初中数学说课稿08-16
初中数学教学设计07-26
初中数学教案02-23
初中数学教学反思06-14
数学二年级上册教案设计02-01
初中数学教学设计模板07-23
初中数学教学设计大全07-23
人教版初中数学教学设计08-02
初中数学线上教学总结02-11