当前位置:范文派>教学范文>教案>《数学广角》教案

《数学广角》教案

时间:2024-05-19 13:49:38 教案 我要投稿
  • 相关推荐

《数学广角》教案

  作为一名无私奉献的老师,总不可避免地需要编写教案,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!下面是小编为大家收集的《数学广角》教案,仅供参考,希望能够帮助到大家。

《数学广角》教案

《数学广角》教案1

  班级学情分析:

  我校三年级共有学生43人,大多数数学学习能力较强,但是优劣差距较大,所以教学起来还是有一定困难的。

  教学目标:

  1、通过摆一摆、玩一玩、画一画等实践活动,了解有关两两组合的知识。

  2、培养学生初步的观察、分析能力和有序的、全面思考问题意识。

  3、培养学生大胆猜想、积极思维的学习品质。

  4、通过学习学生能应用排列组合的知识解决生活中的实际问题。

  教学重点:经历探索简单事物两两组合规律的过程

  教学难点:能用不同的方法准确地计算出组合数。

  教学用具:课件、卡片、铅笔、直尺等。

  教学过程:

  一、创设情境,激趣导入:

  师:小朋友们喜欢什么样的球类运动呢?

  (让学生各抒已见。)当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。

  二、引导参与:4人小组合作完成。然后汇报,并说理由。

  三、共同探究:

  师:20xx年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。

  师:如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)

  1、让学生大胆说一说、猜一猜。

  2、四人小组用学具卡片摆一摆、讨论讨论。

  3、学生汇报。

  4、汇报时可让学生利用学具卡片在黑板上演示他们求组合数的方法。

  5、一小组演示。

  6、其他同学认真观看。

  8、然后在相互探讨、补充。

  9、力求能准确算出比赛场数。

  10、方法允许多样。每种方法都放手让学生相互交流、学习。老师适当引导。

  11、师生共同。

  A、用画“正”字数出要踢多少场。

  B、把巴西、土耳其、中国、哥斯达黎加四个国家摆成正方形用连线的方法求出场数。

  C、把巴西、土耳其、中国、哥斯达黎加四个国家摆在一直线上在用连线的方法求出场数。

  13、用课件将上面第二、第三种方法直观演示。

  14、让学生把这些抽象的知识直观化、具体化。

  15、老师总结。

  刚才同学们有的用了把所有的情况逐一罗列出来,有的同学是用图示法求出两两组合数的.,用哪一种方法求都可以,只要这种方法是你喜欢的。

  课堂练习:

  比赛结束了。运动员相互握手告别。问题是:四个人每两人握手一共要握几次手呢?

  (1)进行礼仪教育。

  (2)四人小组进行实践。

  (3)请1-2个小组代表上台演示。

  作业设计:

  提问:如果是5个运动员每两人握一手,一共要握几次手呢?

  我的问答:

  课堂是以学生为主体的, 所以学生的主体地位在任何时候都要放在首位,但这一点也是许多教师都犯的一个通病,把课堂看做自己表演的舞台,给学生留的空间很少,这就我自己认为是错误的,你说呢!

《数学广角》教案2

  教学内容:

  义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。

  教学目标:

  1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。

  2.数学思考目标:

  能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。

  3.问题解决目标:

  (1).能借助直观图,利用集合的思想方法解决简单的实际问题。

  (2).渗透多种方法解决重叠问题的意识。

  4.情感态度目标:

  (1)培养学生善于观察、善于思考的能力。

  (2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。

  教学重难点:

  1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。

  2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。

  教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。

  学法指导:

  1.借图观察、分析、讨论、交流、操作。

  2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。

  教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。

  学具准备:常规学具、彩笔、作业本。

  教学过程:

  一、创设情境,引入新课

  1.激情导入,引出例题

  师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)

  师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)

  师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?

  设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。

  三一班某小组同学“献爱心”的.情况:

  捐款

  黄娜

  董泽

  李彤

  张阳

  任一

  捐物

  孟涛

  李彤

  任一

  吴越

  张恒

  张旭

  生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。

  生2:我发现捐款的有5人,捐物的有6人。

  师:你能提出一个数学问题吗?

  生1:捐款的比捐物的少几人?

  生2:捐物的比捐款的多几人?

  生3:捐款的和捐物的一共多少人?

  2.设问质疑,引发冲突

  师:参加捐款捐物的一共有多少人?如何解答?

  生:11人、10人、9人。

  师:这么一个简单的问题怎么会有这么多不同的答案呢?

  生:里面的同学重复了。

  师:哪里重复了?(李彤和任一,课件闪动。)

  看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)

  师:下面请同学们分组讨论,如何去调整表格?

  二、小组交流,探究新知

  1.分组讨论、调整表格。(各组代表汇报、操作、展示)

  方案一:

  捐款

  李彤

  任一

  黄娜

  董泽

  张阳

  捐物

  李彤

  任一

  孟涛

  吴越

  张恒

  张旭

  师:你觉得你们组这样摆有什么好处?

  生:把重复的两个同学摆在前面,能引人注意。

  师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?

  (课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)

  方案二:

  捐款

  李彤任一

  黄娜

  董泽

  张阳

  捐物

  孟涛

  吴越

  张恒

  张旭

  师:哇!你们的摆法很独特,说说你们这样摆有什么好处?

  生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。

  师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。

  设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。

  (课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)

  2.圈一圈。

  师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?

  设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。

  3.探究韦恩图

  师:为了让大家看的更清楚、更直观,请看大屏幕:

  (1)取消表格。

  表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。

  (2)捐款的移到左边,捐物的移到右边。

  (3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)

  设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。

  (4)介绍韦恩图。

  师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)

  设计意图:介绍课外知识,拓宽知识视野。

  师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。

  4.列式计算。

  (1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。

  师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。

  (2)计算板演。

  方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)

  讨论:为什么要减2?(因为有2个人既捐款又捐物)

  方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)

  设计意图:发展学生思维,体现方法多样化。

  三、实践应用,巩固内化

  师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:

  1.举一反三(4道抢答题)

  4.思维训练

  三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。

  (1)既参加数学竞赛又参加作文竞赛的有几人?

  (2)只参加数学竞赛的有几人?

  (3)只参加作文竞赛的有几人?

  设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。

  四、总结质疑,自我提高

  1.学生说这节课的收获并质疑

  2.互相评价、共同提高(自评互评生评师师评生)

  师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。

  引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:

  1.获得红花奖励的指哪些同学?

  2.获得红星奖励的指哪些同学?

  3.既获得红花奖励又获得红星奖励的指哪些同学?

  4.只获得红花奖励的指哪些同学?

  5.只获得红星奖励的指哪些同学?

  6.获得红花奖励和红星奖励的一共有多少人?

  设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。

  五、作业布置,知识升华

  我是小小设计师。(课后作业)

  请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!

  设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。

  六、板书设计,凸显重点(体现学生的主体地位)

《数学广角》教案3

  学情分析:

  四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。

  教材分析:

  “植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。

  设计理念:

  《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。

  教学内容:

  人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

  教学目标:

  知识与技能:

  1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。

  2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。

  数学思考:

  1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  解决问题:

  能够应用本节所建构的植树问题的`数模以及探寻到的规律,针对实际情形灵活的来解决问题。

  情感态度与价值观:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:会应用植树问题的规律解决一些相关的实际问题。

  教学难点: 建构数模,探寻规律。

  教学准备:课件、实物投影仪、每组一张表格

  教学流程:

  一、创设情景,导入新课。

  1、猜谜语

  师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

  “现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

  2、找间隔

  “生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

  “我们的身边还有间隔吗,一起来找找吧!”

  3、揭示课题

  出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”

  “对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

  二、自主探究,构建模型

  师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

  1、设计不同方案

  师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。

  2、展示不同方案

  投影仪展示学生的设计方案,问:“你是怎么画的?”

  师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。

  师:“今天这节课我们先来探讨两端都栽的情况。”

  3、小组探索、加强体验

  (1)提出问题

  出示例1(课件9)学生默读题目,找出关键词并做解释。

  师:“需要多少棵树苗呢?”指名说出不同的答案并板书。

  师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

  (2)验证猜想

  演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)

  分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

  (3)总结规律

  小组内填写表格,观察:“你发现了什么规律?”板书规律

  “刚才通过画图知道了棵数,能不能通过计算得到呢?”

  师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

  4、运用规律

  (1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

  (2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

  三、巩固应用,内化提高

  师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

  1、公共汽车上(出示课件13)

  2、公路上(出示课件14)

  3、上楼梯(出示课件15)

  4、钟表上(出示课件16)

  引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

  四、回顾整理,反思提升

  师:通过今天的学习,你有什么收获?

  “对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)

  “收获方法比收获知识更重要,祝贺大家!”

  板书设计:

  植树问题

  两端都栽

  棵数=间隔数+1

  间隔数=路长÷间距

  路长=间隔数×间距

  100÷5+1=21(棵)

《数学广角》教案4

  教材说明

  “数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生的抽象、概括能力。《标准》中指出,第二学段要让学生“进一步体会数在日常生活中的作用,会运用数表示事物,并能进行交流”。在日常生活中,数有着非常广泛的应用,在第一学段学生已经有了初步体会,特别是在一年级上册认数的时候,教材在“生活中的数”版块中就已经出现了像邮政编码、门牌号、车牌号这样的数在生活中的应用实例。数不仅可以用来表示数量和顺序,还可以用来编码,本单元就是在学生的生活经验和已有知识的基础上,进一步体会数字编码在日常生活中的应用,并通过实践活动进行简单的数字编码,培养学生的数学思维能力。

  数字编码和我们的生活紧密相关,比如邮政编码、身份证号码、电话号码等,在这些号码中都蕴含着数字编码的思想,同时也为我们的生活提供了很多便利。运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。

  在这一单元我们主要是通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。教材首先从老师点名的情境引入,说明我们可以用数字编码来区分班上的每个学生。接下来,例1和例2通过邮政编码和身份证号码等生活实例让学生体会数字编码在生活中的应用,初步了解邮政编码的结构与含义,了解身份证号码中蕴含的一些简单信息和编码的含义,探索数字编码的简单方法。例3和例4是在此基础上,让学生通过两个实践活动来运用数字或字母进行编码,加深对数字编码思想的理解。例3是让学生给学校的每一个学生编一个学号,例4是让学生给班里或学校图书角的书籍编一个书号,和例3相比,更复杂一些,是用符号和数字的组合进行编码,这种编码在生活中也是处处可见,比如汽车的车牌号、火车的车次、飞机的航班号以及商品的型号等,从而体会到数学应用的广泛性,提高学生学习数学的兴趣和积极性。

  教学建议

  1. 恰当把握教学要求。

  数字编码是一种抽象的数学思想方法,在这里只是让学生通过日常生活中的一些实例,初步体会数字编码在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,学会运用数进行编码,初步培养学生的抽象、概括能力。学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,并不要求学生掌握编码中每个数字的信息和含义。另外学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。

  2.本单元内容可用3课时进行教学。

  1.情境图。

  教材首先由学生非常熟悉的老师点名的生活情境来引入,然后小精灵提出问题:“如果不叫姓名,还能怎样来区分班上的学生呢?”从而引起学生的讨论:还可以用编号的形式给每个学生编个号码。接下来,教材说明数不仅可以用来表示数量和顺序,还可以用来编码。

  教学时,教师可以创设这样的情境,让学生探讨用编号的方法来区分班上的学生。这样引出数不仅可以用来表示数量和顺序,还可以用来编码。这部分内容也可以结合后面的例1来教学,教师课前可以让学生先收集一些由数字组成的号码,如车牌号、邮政编码、电话号码等,然后在班上交流和汇报,教师在学生汇报的基础上,通过多媒体课件再来展示生活中经常见到的这些数字编码现象,比如邮政编码、身份证号码、电话号码等,通过这些生活中广泛存在、学生熟悉的素材来引出数字编码,使数字编码这个看似抽象的问题变得直观和有趣,这样也更能激发学生的学习兴趣,并且当老师提出学生能发现这些数字编码中的“秘密”时,也就更加激发了学生的探索欲望。

  2.例1。

  例1是通过了解邮政编码的结构和含义来初步体会数字编码的方法,同时通过邮政编码在信件传递中的功能初步体会数字编码在我们日常生活中的作用。教材首先由编辑室经常收到全国各地读者的来信这个生活中的情境来引出,让学生思考:你知道这些信件是怎样传递的呢?接下来,教材用一组连续的示意图展示了信件传递的过程:先是一个小女孩把信件投入邮筒中,然后邮局(所)把收集起来的信件通过机器分拣,机器能根据每封信上面的邮政编码进行分类,再把信件传递到收信人所在地的邮局,最后由邮递员根据具体的地址来投递信件。了解了信件传递的过程后,小精灵给同学们提出了问题:你知道本地的邮政编码吗?你想知道这些数字是怎样编排的吗?引导学生来探索邮政编码中数字编排的结构和含义。

  邮政编码是代表投送邮件的邮局的一种专用代号,也是这个局(所)投送范围内的居民与单位的通信代号。教材这里呈现了一个标准信封的正面,并向同学们介绍了邮政编码的结构:邮政编码由6位阿拉伯数字组成,如448268。它的前两位数表示省、自治区、直辖市,如44表示湖北省;第三位数表示邮区代号,如448表示湖北省荆门邮区;第四位数表示县(市)的编号,如4482代表湖北省荆门市沙洋县邮局;最后两位代表邮件投递局(所),所以448268表示的就是——湖北省荆门市沙洋县五里邮电支局的投递局。同样,邮政编码100009表示的是——北京市东城区地安门邮电局的投递局。了解了邮政编码的组成,接下来介绍邮政编码作为我们国家的邮政代号在信件传递的过程中所起的作用。教材通过小精灵揭示:有了邮政编码,机器就能对信件进行分拣,这样就大大提高了信件传递的`速度,从而让学生体会数字编码在生活中的重要作用。

  教学时,教师要充分调动学生学习的积极性,可以结合例1后面的“做一做”,让学生利用课外时间调查、收集一些邮政编码,如学校所在地的邮政编码、父母单位所在地的邮政编码、爷爷奶奶住址所在地的邮政编码等。并要求学生设法了解邮政编码的结构与含义,如向邮局工作人员或邮递员咨询、查阅邮政编码书籍等。在学生汇报了收集的邮政编码后,老师提出问题:你们知道这些信件是怎样传递的吗?让学生在调查的基础上展开讨论,等学生发表完意见后,老师再进行补充或总结。这里可以利用教材的示意图来介绍,也可以设计多媒体课件或动画动态地展现信件传递的流程。

  学生了解信件的传递过程后,老师接着提出问题:我们收集了这么多邮政编码,你们发现它们有什么相同的地方?机器怎么能根据邮政编码的数字进行分拣呢?这些数字又是怎样编排的呢?让学生先通过观察、比较找出收集来的邮政编码的相同点:同一个省、市的邮政编码前面有几位是相同的。在此基础上,再让学生根据查阅的资料或是调查的结果来讨论邮政编码的数字编排的结构和含义,如果大部分学生课前已经了解了邮政编码的组成,老师可以让学生结合自己手中的一个邮政编码来进行说明,比如学校的邮政编码的组成。如果学生有困难,老师可以在学生交流汇报自己的看法后,结合教材给出的邮政编码的结构图具体说明它的组成,也就是每个数字代表的含义。然后再让学生结合某个邮政编码给出它的组成,在小组中相互说一说。

  如果学生课前没有调查,可以先让学生在小组中讨论,说说自己的猜想,然后老师再在学生猜想的基础上说明邮政编码的结构和组成(可配合多媒体课件),最后再结合邮政编码的结构图具体说明。了解它的组成后,再让学生试着就某个具体的邮政编码给出具体的说明,比如结合例1下面的“做一做”,再让学生说一说学校的邮政编码是怎样组成的。

  了解了邮政编码的组成后,让学生思考一下邮政编码在信件传递中所起的作用。可以让学生先互相交流讨论一下,在学生讨论的基础上再进行总结。

《数学广角》教案5

  设计说明

  1、利用多媒体创设教学情境。

  新课伊始,让学生观看“挑战者”号飞机失事的全过程,让学生从机毁人亡的事件中感受到“次品”带来的危害,领悟到检验的重要性,培养学生的责任意识。这样的情境创设,体现了数学来源于生活、服务于生活、高于生活的教学理念。

  2、重视引导学生用直观的方式清晰地表达出推理过程。

  《数学课程标准》指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。本设计在教学例1时,通过组织学生进行试验的操作活动,让他们在充分的操作、试验、讨论、探究中,找到解决问题的多种策略,然后引导学生用直观、简明的方式,清晰地表示出推理的过程,进一步理清思路,为后面数量更多的找次品问题做好认知和方法上的准备。

  课前准备

  教师准备

  PPT课件 天平 3瓶钙片

  学生准备

  每人8张圆片学具 每组1张找次品记录表

  教学过程

  教学环节

  教师指导

  学生活动

  效果检测

  一、创设情境,引入新课。(5分钟)

  1、课件播放“挑战者”号飞机失事的`录像。

  2、引导学生猜测造成飞机失事的原因。

  3、导入新课。

  1、看录像。

  2、思考并回答老师提出的问题。

  生1:驾驶员操作不当。

  生2:飞机故障,零件不合格。

  3、明确本节课要学习的内容。

  1、列举生活中质量不合格的产品带来的危害有哪些?

  二、实践操作,自主探究。(10分钟)

  1、出示2瓶钙片:其中有1瓶少了3片,引导学生探究找次品的方法。

  2、出示一架天平:阐述天平的工作原理和特点。

  3、出示3瓶钙片:其中有1瓶少了3片,引导学生尝试找出轻的一瓶。

  4、引导学生汇报找次品的方法。

  5、引导梳理、比较:无论是先称哪2瓶,只要称一次就能找出次品了。

  1、自主探究找次品的方法。

  (1)打开瓶子把钙片倒出来数一数。

  (2)用手掂一掂。

  (3)用秤称一称。

  2、认识天平,明确天平的工作原理,并在天平两端放入质量相同的物体,感受天平平衡的条件。

  3、利用学具独立思考、自主探究,可以拿出3个学具代替3瓶钙片,进行实际操作。

  4、各小组派代表汇报找次品的方法。

  5、汇报:只要称一次就能找出次品了。

  2、有5瓶钙片,其中1瓶少了4片。如果用天平称,天平两端各放1瓶,至少称()次才能找出次品;如果天平两端各放2瓶,至少称()次才能找出次品。

  三、合作交流,发现最优方案。(15分钟)

  1、课件出示例2。

  指名读题,说一说“至少”的含义。

  2、组织小组合作找出次品,填写表格。

  3、引导学生观察表格,分组汇报找次品的方法。

  4、引导学生观察表格:

  (1)分成的份数、分的方法与找出次品所要称的次数有什么关系?

  (2)怎样分找出次品需要称的次数最少?

  5、用你发现的方法找出9个、10个、11个零件中的1个次品(次品重一些),看看是不是保证找出次品的次数也是最少的。

  1、读题,说一说“至少”的含义。

  2、小组合作,2名同学摆学具,1名同学用图示作记录,1名同学填写“找次品记录表”。

  3、利用实物和表格汇报:

  (1)分成8(3,3,2),至少要称2次。

  (2)分成8(4,4),至少要称3次。

  (3)分成8(2,2,2,2),至少要称4次。

  4、讨论、交流,明确:把8分成3份(每份数量尽量相等)去称,能保证称的次数最少。

  5、小组合作操作、验证,汇报试验结果。

  3、用天平从7件物品中找出1件次品(次品轻一些),把7件物品分成()份称较合适。

  4、有8瓶水,其中7瓶质量相等,另外有1瓶是糖水,比其他7瓶水略重一些,至少称()次能保证找出这瓶糖水。

  四、巩固练习,拓展延伸。(8分钟)

  1、引导学生完成教材112页“做一做”。

  2、补充说明:分成3份的方法最好,不能平均分的,每份的数量尽量相等。

  1、独立完成教材112页“做一做”。

  2、汇报,说明自己的最优方案。

  5、如果有12个零件,其中一个是次品(次品略重),那么应该怎么分,称的次数最少而且保证能找出次品?

  五、课堂总结,布置作业。(2分钟)

  1、通过今天的学习,你有什么收获?

  2、布置课后学习内容。

  谈自己本节课的收获。

《数学广角》教案6

  教学目标:

  (一)通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义。初步获得一些简单的推理经验。

  (二)能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  (三)在简单的推理过程中,培养学生初步的观察、分析、推理和有有条理的进行数学表达的能力。

  (四)使学生感受推理在生活中的广泛运用,初步培养学生有顺序的全面的思考问题的意识。

  教学重点:

  理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单的推理经验。

  教学难点:

  初步培养学生有序的,全面的思考问题及数学表达的能力。

  教学过程:

  (一)激情导入

  游戏:猜猜我的年龄?

  来猜一猜吧!哦,有这么多答案,看来大家没办法确定老师的年龄,给你一个提示:36、37这两数中有一个是老师的年龄。

  有两种可能,老师再给你一个信息,我今年不是36岁,现在答案一样,说说你是怎么猜的。

  像这样根据一些信息提示,得出一些结论,这样的方法叫推理!

  认识他吗?著名侦探柯南,他就是通过自己敏锐观察力和逻辑推理侦破了一个个扑朔迷离的案件,今天他也给我们带来了数学推理挑战题,有信心尝试吗?

  (一)初级挑战

  生活中的'推理;

  (二)中级挑战

  教师利用课件呈现例1,出示例题1

  师:同学们,我们认真阅读,然后告诉老师,从题目中你发现了哪些信息?

  生:有三本书,语文、数学、道德与法治。

  生:有三个小朋友,分别是:小红、小丽、小刚。

  生:他们三人各拿一本。

  师:下面三人各拿一本,这个信息是什么意思呢?

  生:他们三人拿的书都不相同。

  师:下面我们来看看三个小朋友都说了什么话?

  生:小红说:我拿的是语文书。小丽说:我拿的不是数学书。

  师:题目中要让我们求什么?〔问题:小丽拿的是什么书?小刚呢?〕

  师:很好,那他们到底拿的是什么书呢?

  1、选择自己喜欢的方法来完成学习单

  2、完成后,和同桌说说你是怎么想的。

  学生活动,汇报

  学生自主学习完成,教师巡视。

  学生汇报:

  生 1:小红拿的是语文书,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了。

  生 2:用连线的方法

  我把人名和书名写成两行,然后根据小红拿的是语文书,所以小红就与语文书连在一起了,剩下的小丽和小刚就只能连数学和道德与法治了,小丽又说,她拿的不是数学书,那小丽肯定拿了道德与法治了,再连上线,最后小刚拿的就是数学书了,再连上线。

  生3:用表格法(小红拿的是语文书,所以先在小红下打勾,那小丽和小刚拿的 就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了

  师:孩子们,再来回顾解决问题的过程,找完数学信息后,部分同学选择了用连线法跟表格的方式来进行整理,这样做可以让我们把信息整理得更加地〔清楚、简洁〕。

  先从哪个条件开始呢?

  三个同学都是从“小红拿到是语文书”找到关键条件,把能确定的就先确定。〔板书:先确定〕

  师:接下来呢?就剩下数学书和道德与法治书了,而小丽又说:〝我拿的不是数学书〝,小丽拿的肯定是道德与法治书了;又在剩下的条件中,根据已给的条件,能排除的先排除。〔板书:排除〕

  最后因为小红拿的是语文书,小丽拿的是道德与法治书,所以小刚拿的就是数学书。最后我们推出结论。

  刚才同学们很厉害,表现这么棒,柯南送给大家一首儿歌,一起念念。

  掌握了推理技巧和方法,我们一起练练手:

  1、试一试

  指明学生读题后,认真思考,同时让学生说一说:你是怎么想的呢?用什么方法?并且请一名同学展示自己是怎么做的,怎么考虑的?

  生:用连线法,把三只狗的名称和重量分别写成两行,因为笑笑是最轻的,所以笑笑和5千克连在一起,乐乐比欢欢重,乐乐就与9千克连在一起,剩下的欢欢就与7千克连在一起。师:同学们,说的真好!

  2、猜一猜

  师:从题目中,我们知道了哪些信息呢?

  生:信封里有一个圆,一个三角形,一个长方形,他们分别是三种颜色中的一个。

  师:哪个图形,我们最能先判断出来,为什么?

  生:绿色的是圆形,因为绿色露出来的是半圆,下面肯定也是半圆,

  师:发现的非常好!那红色和蓝色能不能判断?生:不能。

  师:下面请听老师一个提示:〔出示课件:蓝色说:我不是三角形。〕现在请同学们用喜欢的方法写下来。

  学生展示结果并说一说自己是怎么想的。〔?让学生尽量说出直接阅读后就知道的和连线法,以及表格法〕

  师:下面我们一起来看看到底是不是这样的。〔教师点击课件把信封拿掉,显示结果〕

  师:小朋友真棒!太厉害了!同学们现在跟老师一起说一说,绿色的是圆形,剩下三角形和长方形,蓝色的不是三角形,所以红色的是三角形。最后蓝色的一定是长方形。

  (三)终级挑战

  读题后,同桌两人利用学习单里的卡片摆一摆,验证你的想法,写下数字密码。

  并指名一位同学上台演示,说说你的推理过程。

  恭喜同学们,闯关成功。

  (四)小游戏

  三人游戏,三顶不同颜色的帽子,闭眼,每人分别戴上一顶,根据同伴帽子的颜色,猜自己帽子的颜色,

  (五)课堂总结

  师:同学们,开心吗?通过这节课的学习,你有哪些收获呢?是呀,我们个个都成为了小侦探。推理是一个非常重要的数学思想方法,希望同学们在今后的学习中,能善于观察,勤于思考,用推理解决更多的问题。

《数学广角》教案7

  第九单元整理与复习

  第5课时应用广角

  教学内容:

  教材第104——105页。

  教学目标:

  1、能读懂题意,了解解决实际问题类型的题目的含义。

  2、能利用所学知识解决日常生活中常见的问题。

  3、能正确地评价自己本册书知识的掌握的情况。

  教学重难点:

  周期现象的理解

  教学准备:

  多媒体。

  教学过程:

  一、复习回忆,引入内容

  1、你在生活中发现了哪些数学问题?

  2、你能运用所学的数学知识和方法解决这些问题吗?

  二、组织练习

  1、简单的周期现象P105页第25题。

  指名学生读题,从题中你知道了什么?

  你能从图中看出第4、5秒照明灯是亮的还是暗的?

  几秒后亮灯的情况开始和前面重复?照明灯发光的规律是什么?

  第39、40称照明灯是亮的还是暗的?

  如果让照明灯每5秒以固定的'规律变化,你会设计吗?像上图那样画一画。

  2、学生独立完成P104页第23、24两题。

  指名板演,其余学生独立完成

  指名学生说说他每步的运算想法

  综合算式是如何列的,符合题意吗?

  3、调查你们小组同学每家的图书本数,制成统计表。

  你能说说小组同学家图书本数的平均数最少不会少于多少,最多不会大于多少?并算出这个平均数吗?

  三、自我评价

  回顾自己本学期学习的表现,能得几个★,就把几个☆涂上颜色。

  四、课堂总结

  通过今天的学习,你有什么收获呢?

  板书设计:

  简单的周期现象:

  亮亮暗亮暗暗亮亮暗亮暗暗亮亮暗亮暗暗

  教后反思:

《数学广角》教案8

  【教材分析】

  本节课内容是义务教育教科书四年级上册第104页的一节课,这节课主要是通过一些简单的优化问题向学生渗透优化思想,使学生认识到解决问题策略的多样性,形成解决问题最优方案的意识。例题是选用了学生熟知的日常生活中的素材,通过合理安排操作节省时间,让学生体会在解决问题中优化思想的应用。教给学生用流程图的方式表示解决问题的顺序或方案,教给学生设计方案的具体方法。

  【设计理念】:

  学习优化问题就是为了让数学与生活密切联系,并且让学生在活动中发现数学的价值,体会运筹思想在解决实际问题中的应用。优化问题这个内容是日常生活中应用比较广泛的数学知识,同时也是发展学生抽象能力和逻辑思维能力的好素材。因此设计本节课时,我用“小明的一天”把 内容变为源于学生切身生活体验的,适合学生思考、探究,有利于培养学生创新意识、探究精神,促进学生发展的信息资源。《数学课程标准》中指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”

  【学情】

  通过前面几册的学习,四年级的学生已经掌握了一些重要的数学思想方法,“统筹方法”的运用,学生在日常生活中有用到过,平时在做的时候,有部分学生也注意到怎样做会省时些。但更多的是无意识的,通过本节课的学习,学生对“统筹方法”的运用有所了解,知道怎样做效率会更高,今后遇到类似的问题会有意识地去运用。

  【教学目标】

  1、通过简单的生活实例,使学生初步体会运筹学在解决实际问题中的作用。

  2、让学生经历自主探索的过程,体验解决问题策略的多样性,并在寻求解决问题最优方案的过程中积累数学的基本活动经验,感悟优化的数学思想。

  3、凸显数学与生活的紧密联系,使学生初步形成从数学的角度发现、提出问题的能力以及分析、解决问题的能力,增强应用意识和实践能力。

  【教学重点】体会优化的思想。

  【教学难点】学会选择合理、快捷的方法解决问题,形成寻找最优方案的意识。

  【教学具准备】多媒体课件、沏茶工序卡片。

  【教学过程】

  一、激情导课

  1、老师给大家带来了一位新朋友,你们看,他叫小明,也是一位四年级的学生,他是一个既聪明又懂事的好孩子,我们一起来走进小明的一天。

  小明的一家每天早上都喝鲜牛奶,他需要做两件事:热牛奶和洗3个杯子,已知热牛奶需要10分钟,洗一个杯子需要1分钟,猜猜小明用多少分钟让一家人喝到牛奶的?

  生1:10+3=13(分钟) 生2:10分钟

  导出课题:小明在热牛奶的同事洗杯子,真是个会充分利用时间的好孩子。只要能合理安排时间就能省时间。今天我们就来学习《合理安排时间》

  (设计理念:从最简单的两件事入手,让学生在争论中认识到在热牛奶的同时可以洗3个杯子,感知在等候的时间段做其他的'事情可以节省时间)

  2、明确目标:合理 省时

  二、民主导学

  任务:怎样才能让客人尽快喝上茶?如果你是小明,怎样安排比较合理并且节省时间?

  1、任务呈现

  师:上午10点,小明家的门铃响了,原来是李阿姨来到小明家做客。懂事的小明想到了给李阿姨沏杯茶,自己沏茶的时候需要做什么事?我们来看看小明沏茶都需要做哪些事?分别需要多长时间?

  师:小明要做这么多事,请你帮小明想一想,他应该先做什么,再做什么?如果你是小明,你能想出几种解决方案?你会怎样安排比较省时?

  设计一种能尽快让客人喝上茶的方案。现在请拿出手中的工序图片摆一摆,并算一算你们设计的方案需要用多长时间?

  把你的想法写出来,然后和小伙伴交流。

  2、自主学习

  学生把自己的安排写在纸上,然后小组间选出最优方案,组长组织做好汇报准备。

  3、展示交流 小组展示→全班展示

  展示不同的方案,并让学生述说设计过程: (请一小组学生到黑板前用工序图片摆一摆):

  方案A:洗水壶→接水→烧水→洗茶杯→找茶叶→沏茶(用14分钟)

  方案B:洗水壶→接水→洗茶杯→烧水→沏茶(用13分钟)

  找茶叶

  方案C:洗水壶→接水→烧水→找茶叶→沏茶(12分钟)

  洗茶杯

  方案D:洗水壶 → 接水 → 烧水 → 沏茶(用11分钟)

  洗茶杯 找茶叶

  (教师巡视,发现学生的不同方法,并有选择性的进行汇报。)

  经过比较,我们发现方案 D 所需时间最少。用这个方案才能让李阿姨尽快的喝上茶。

  这样的图式叫做流程图。用流程图表示简洁、清晰、明了。

  教师小结:通过刚才的设计我们知道:在做一些事情时,能同

  时做的事情越多,所用的时间也就越短。

  (设计意图:本着从学生的生活经验和知识基础出发的原则,我首先创设了生活中熟知的情境----为客人沏茶,这样浓郁的生活气息,很容易吸引学生的注意力,激发学生的学习兴趣。接着让学生先想一想,自己沏茶的时候需要做什么事,再看小明需要做哪些事,这样设计能巧妙地拉近学生和小明之间的距离,使问题层层递进,使教学过程衔接自然。通过观察知道,小明做的事很多,请同学们帮助小明想一想,该先做什么,再做什么。有了这样的基础之后,才让同学们小组动手操作,摆一摆,算一算,这样就为设计出最优化的方案提供了素材,让学生自主设计方案,体现了学生才真正是学习的主人。最后通过学生的汇报,共同总结出最优化方案。让学生真正地在亲自动手实践的过程中,设计出了合理安排时间的最优化方案。)

  练习:下午爸爸要去办公室取资料,妈妈带着小明要去商场购物,他们一起从家出发,他们办完这些事回到家,至少需要多长时间?(练习二十第1题)

  (设计理念:这道题是配合例1的练习,但又难于例1,让学生脱离操作上升到抽象,达到思维的突破,结合实际问题进一步体会优化思想在现实生活中的作用。)

  三、检测导结

  1、目标检测

  晚上小明感冒了,吃完药后要赶快休息。他应如何合理安排这些事情?

  找杯子倒开水 1分钟

  等开水变温 6分钟

  找感冒药 1分钟

  量体温 5分钟

  2、结果反馈

  请一学生展示他的检测题,大家一起评判、对照。

  请你说一说,生活中还有哪些事情可以通过合理安排来提高效率?(指多名学生说一说)

  (设计意图:请学生们说一说生活中例子,有正面例子也有反面例子,让同学们再一次感悟生活与数学的密不可分的关系。)

  3、反思总结

  今天我们一起认识了聪明懂事的小明,同时也有了自获。谁能说一说自己的收获。

  生1:我知道了要合理安排时间。

  生2:根据情况把一些事情穿插起来做,可以节省很多时间。

  生3:合理安排时间也就节约了时间。

  生4:时间是宝贵的,我们要珍惜它。

  师:其实关于合理安排时间的问题,就是最优化问题,也是简单的运筹学。成语“运筹帷幄”讲的也是这个道理。

  师:古今中外仁人志士对时间的认识都很深刻。伟大的文学家鲁迅就讲过这样一句话:时间,每天得到的都是24小时,可是一天的时间给勤勉的人带来智慧和力量,给懒散的人只能留下一片悔恨。把这句话送给大家,与大家共勉。

  (设计意图:在设计“反思总结”这一环节中,首先让学生畅谈了自己的收获和体会,再一次体现学生是学习的主体。然后再用名人名言结束了本节课,能给学生留下深刻的铬印,给学生以启迪。)

  四、课后作业:设计一张时间表,合理地安排星期天的学习和生活时间。

  【板书】 合理安排时间 合理

  省时

  方案A:洗水壶→接水→烧水→洗茶杯→找茶叶→沏茶(用14分钟)

  方案B:洗水壶→接水→洗茶杯→烧水→沏茶(用13分钟)

  找茶叶

  方案C:洗水壶→接水→烧水→找茶叶→沏茶(12分钟)

  洗茶杯

  方案D:洗水壶 → 接水 → 烧水 → 沏茶(用11分钟)

  洗茶杯 找茶叶

  困惑:

  1、网上有许多类似的设计,怎样能讲出新意?

  2、本节课容量是否大?教参建议本单元内容3课时完成,所以我把涉及到的习题全部放在了一节课。

  3、对“例1”的课堂把控不住。

《数学广角》教案9

  知识与技能:

  1、使学生初步体会对策论方法在解决实际问题中的应用。

  2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  3、培养学生的应用意识和解决实际问题的能力。

  过程与方法:

  使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的'能力。

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  重点:

  体会优化的思想

  一、情境导入:

  1、你们听过“田忌赛马”的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?

  2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?

  3、这节课我们就来研究研究。

  板书课题:数学广角

  二、探究新知

  1、把田忌在赛马中使用的方法在给出的表格中补充完整。出示表格

  2、思考:田忌所用的这种策略是不是唯一能赢秦王的方法?讨论

  3、引导学生:看一看田忌一共有多少种可采用的应对策略?把田忌所有的可以采用的策略都找出来,填如表中。

  4、展示各组汇报的结果

  田忌可采用的策略一共有6种,但只有一种是唯一可以获胜的。

  5、说一说:田忌的这种策略在生活中还有哪些应用?结合实际说一说。

  三、巩固新知

  1、数学游戏:

  学生讲田忌赛马的故事

  思考问题

  学生将表格填写完整

  学生分组讨论

  学生通过对照表找到答案

  汇报讨论结果

  学生举生活中的实例

  如乒乓球团体比赛等

  通过讲故事,使学生体会对策论在实际生活中应用。

  使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  使学生体会对策论在生活中的应用。

  1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。

  想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报?

  说明游戏规则

  2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。:如果让你先报数,为了获胜,你第一次报几?以后怎么报?

  四、小结:

  这节课你有什么收获?

  五、作业:

  写一篇数学日记

  独立完成后,小组交流结果

  同桌两人一组来玩这个游戏。小组内讨论问题,汇报交流

  学玩游戏

  通过练习,巩固所学的知识,使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

《数学广角》教案10

  教学目标:

  1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

  2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

  3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

  教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

  教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

  教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

  教学过程:

  一、 唤起与生成

  1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

  2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

  3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

  确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

  4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

  二、探究与解决

  (一)、小组探究:4放3的简单鸽巢问题

  1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  2、审 题:

  ①读题。

  ②从题目上你知道了什么?证明什么?

  (我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

  ③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

  “不管怎么放”:就是随便放、任意放。

  “总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

  “至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

  3、探 究:

  ①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

  ②活 动:小组活动,四人小组。

  听要求!

  活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

  听明白了吗?开始!

  3、反 馈:汇报结果

  同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

  可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

  追 问:谁还有疑问或补充?

  预设:说一说你比他多了哪一种放法?

  (2,1,1)和(1,1,2)是一种方法吗?为什么?)

  只是位置不同,方法相同

  5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

  (1)逐一验证:

  第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

  符合总有一个笔筒里至少有2支铅笔。

  第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

  第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

  符合条件的那个笔筒在三个笔筒中都是最多的。

  (2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

  (3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

  所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

  (二)自主探究:5放4的简单鸽巢原理

  1、过 渡:依此推想下去

  2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

  3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

  4、验 证:你们的猜测对吗?让我们来验证一下。

  活动要求:

  (1)思考有几种摆法?记录下来。

  (2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

  好,开始。(教师参与其中)。

  5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

  分别是:5000 、4100、 3200、 3110 、2200、2111

  (课件同步播放)

  预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

  6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

  7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

  ①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

  ②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

  不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

  (三)、探究鸽巢原理算式

  1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

  还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

  (好麻烦,是啊, 想想都觉得麻烦!)

  2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

  其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

  3、平均分:为什么这样分呢?

  生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

  师:你为什么要先在每个笔筒中放1支呢?

  生:因为总共只有4支,平均分,每个笔筒只能分到1支。

  师:为什么一开始就要去平均分呢?

  生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

  师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

  生:平均分已经使每个笔筒中的笔尽可能的`少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

  师:看来,平均分是保证“至少”数的关键。

  4、列式:

  ①你能用算式表示吗?

  4÷3=1……1 1+1=2

  ②讲讲算式含义。

  a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

  b、真棒!讲给你的同桌听。

  5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔 请用算式表示出来。

  5÷4=1……1 1+1=2

  说说算式的意思。

  a、同桌齐说。

  b、谁来说一说?

  师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

  (四)探究稍复杂的鸽巢问题

  1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

  2、题组(开火车,口答结果并口述算式)

  (1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

  (2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有支铅笔

  7÷5=1…… 2 1+2=3?

  7÷5=1…… 2 1+1=2

  出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

  你认为哪种结果正确?为什么?

  质 疑:为什么第二次还要平均分?(保证“至少”)

  把铅笔平均分才是解决问题的关键啊。

  (3)把笔的数量进一步增加:

  8支铅笔放5个笔筒里,至少数是多少?

  8÷5=1……3 1+1=2

  (4)9支铅笔放5个笔筒里,至少数是多少?

  9÷5=1……4 1+1=2

  (5)好,再增加一支铅笔?至少数是多少?

  还用加吗?为什么 10÷5=2 正好分完, 至少数是商

  (6)好再增加一支铅笔,,你来说

  11÷5=2……1 2+1=3 3个

  ①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

  ②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

  ③铅笔的支数到多少支的时候,至少数就变成了4了呢?

  (7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3 5+1=6

  (8)算的这么快,你一定有什么窍门?(比比至少数和商)

  (9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

  3、观察算式,同桌讨论,发现规律。

  铅笔数÷笔筒数=商……余数” “至少数=商+1”

  你和他们的发现相同吗?出示:商+1

  4、质疑:和余数有没有关系?

  (明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

  (五)归纳概括鸽巢原理

  1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

  100÷30=3…… 10 3+1=4 至少数是4个

  (因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

  2、推广:

  刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

  (1)书本放进抽屉

  把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

  8÷3=2……2? 2+1=3

  (因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

  (2)鸽子飞进鸽巢

  11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

  11÷4=2……3? 2+1=3

  答:至少有 3只鸽子飞进同一只鸽笼。

  (3)车辆过高速路收费口(图)

  (4)抢凳子

  书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

  3、建立模型:鸽巢原理:

  同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

  知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

  揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

  5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

  有信心用我们发现的原理继续接受挑战吗?

  3、巩固与应用

  那我们回头看看课前小魔术,你明白它的秘密了吗?

  1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

  答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

  正确应用鸽巢原理是表演成功的秘密武器!

  2、飞镖运动

  同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

  课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

  在练习本上算一算,讲给你的同桌听听。

  谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

  41÷5=8……1? 8+1=9

  在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

  3、我们六年级共有367名学生,其中六(2班)有49名学生。

  (1)六年级里至少有两人的生日是同一天。

  (2)六(2)班中至少有5人的生日是在同一个月。

  他们说的对吗?为什么?

  同桌讨论一下。

  谁来说说你们的想法?

  1、367人相当于鸽子,365、或366天相当于鸽巢......

  2、49人相当于鸽子,12个月相当于鸽巢......)

  真理是越辩越明!

  3、星座测试命运

  说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

  你用星座测试过命运吗?你相信星座测试的命运吗?

  我们用鸽巢原理来说说你的想法。

  全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

  4、柯南破案:

  “鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

  (课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

  年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

  大爷:是什么手机号呢?这么贵?

  年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

  老大爷:哦!

  听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

  聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

  (手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

  4、 回顾与整理。

  这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

  下 课!

  板书设计:

  鸽? 巢? 问? 题

  物体? 抽屉 至少数

  4? ÷ 3 =? 1……1 1+1=2?

  5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

  7? ? ÷ 5? =? 1……2? ? ? 1+1=2

  9 ÷ 5? =? 1……4? 1+1=2

  11 ? ÷? 5? =? 2……1 ? 2+1=3

  28 ÷ 5? =? 5……3? 5+1=6

  100 ? ÷ 30? =? 3……1 3+1=4?

  m ÷ n = 商……余数? 商+1

《数学广角》教案11

  教学目标:

  知识与技能:1、使学生初步体会运筹思想在解决实际问题中的应用。2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  重点:体会优化的思想

  难点:寻找解决问题最优方案,提高学生解决问题的.能力。

  教具:图片

  教学过程:

  一、情境导入:

  1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?

  2、这节课我们继续来学习数学广角。板书课题:数学广角

  二、探究新知

  教学例3

  1)出示情境图片:

  码头上现在同时有3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?

  2)观察图,说说可以得到哪些信息?

  问:要使三艘货船的等候时间的总和最少,应该按怎样的顺序卸货?

  学生讨论

  3)可以有哪些卸货的顺序?每种方案总的等候时间是多少?

  列出表格,问:从表中你有什么发现吗?

  引导学生思考汇报

  4)找出最优方案

  三、巩固新知:

  1、书后做一做

  小名、小亮、小叶同时来到学校医务室。要使三人的等候时间的总和最少,应该怎样安排他们的就诊顺序?

  2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?

  四、小结:

  这节课你有什么收获?

  五、作业:

  补充练习

《数学广角》教案12

  教学内容:

  数学广角找次品(教材第111页的内容及第113页练习二十七的第1题)。

  教学目标:

  1、知识与能力:尝试用数学方法解决实际生活中的简单问题。

  2、过程与方法:通过观察、猜测、实验、推理等活动,指导学生体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3、情感、态度与价值观:引导学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的策略问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:

  尝试用数学方法解决实际生活中的简单问题。

  教学难点:

  学生体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  教具准备:

  课件等。

  教学方法:

  小组合作、交流的学习方法。

  教学过程:

  一、情景导入

  出示天平教具,提问:这是什么?(天平)你知道天平的作用吗?它的工作原理是什么?

  二、新课讲授

  1.自主探索。

  (1)出示教材第111页例1:这里有3瓶钙片,其中有一瓶少了3片,你能用什么方法把它找出来吗?

  (2)独立思考。老师鼓励学生大胆设想,积极发言。

  方案:打开瓶子数一数,用手掂掂,用天平称。(板书课题:找次品)

  2.自主探索用天平找次品的基本方法。

  (1)引导学生探索利用天平找次品的方法:大家猜猜,怎样利用天平找出这瓶少了的钙片,我们可以拿出3个学具,代替钙片,想象一下,怎样才能找出少了的那瓶?

  (2)独立思考,有一定思维结果的时候小组交流。

  (3)全班汇报

  ①一个一个地称重量(利用砝码),最轻的就是少了的.那一瓶;

  ②利用推理:在天平两端各放一瓶,根据天平是否平衡来判断哪一瓶是少的。如果天平平衡,说明剩下的一瓶就是少的;如果天平不平衡,说明上扬的一端是少的。

  (4)小结并揭示课题。

  ①综合比较几种方法(数一数,掂一掂,盘秤称,天平称),哪一种更加快速,准确?

  ②在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点。利用天平能够快速准确地把它找出来,我们把这类问题叫做找次品。

《数学广角》教案13

  知识与技能:

  1、使学生初步体会对策论方法在解决实际问题中的应用。

  2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  3、培养学生的应用意识和解决实际问题的能力。

  过程与方法:

  使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:

  使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  重点:

  体会优化的.思想难点:寻找解决问题最优方案,提高学生解决问题的能力。

  教具:

  图片教学过程:

  一、情境导入:

  1、你们听过“田忌赛马“的故事吗?田忌是怎样赢了齐王的?谁能给大家讲一讲这个故事?

  2、问:田忌的马都不如齐王的马,但他却赢了?这是为什么呢?

  3、这节课我们就来研究研究。

  板书课题:

  数学广角二、

  探究新知

  1、把田忌在赛马中使用的方法在给出的表格中补充完整。出示表格 齐王 田忌 本场胜者第一场 上等马 下等马 齐王第二场 中等马 上等马 田忌第三场 下等马 中等马 田忌

  2、思考:田忌所用的这种策略是不是唯一能赢秦王的方法?

  讨论3、引导学生:看一看田忌一共有多少种可采用的应对策略?把田忌所有的可以采用的策略都找出来,填如表中。

  4、展示各组汇报的结果田忌可采用的策略一共有6种,但只有一种是唯一可以获胜的。

  5、说一说:田忌的这种策略在生活中还有哪些应用?结合实际说一说。

  三、巩固新知

  1、数学游戏:

  1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报?说明游戏规则

  2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。如果让你先报数,为了获胜,你第一次报几?以后怎么报?

  四、小结:

  这节课你有什么收获?

  五、作业:

  写一篇数学日记

《数学广角》教案14

  教学目标:

  1、通过一系列的猜测、比较、推理等活动,使学生感受简单的推理的过程,初步获得一些简单的推理经验。

  2、在猜测中让学生学会对于推理过程的简单叙述。

  3、培养学生初步的观察、分析及推理能力。

  教学重点:经历感受简单的推理过程,培养初步的观察,分析及推理能力。

  教学难点:培养学生初步的有序地、全面地思考问题的能力。

  教具准备:橡皮、智慧星、桂圆、荔枝、橘子等水果各一个、

  教学过程:

  一、激趣引入

  师:小朋友们,你们喜欢玩游戏吗?现在老师和大家一起做个游戏,你们愿意吗?

  (师出示两块不同颜色的橡皮,分别藏在左右手中,让大家猜一猜,左右手中是什么颜色的橡皮)

  生乱猜,师说你们能确定吗?(生答)

  师:现在老师给你们一个提示,我的右手拿的不是白色的橡皮,现在猜猜老师手里拿的是什么颜色的?能确定吗?说说你的想法。(生答)

  师:你们真棒!原来猜也有大学问,要想一次猜准就要有依据去猜才行,今天老师和大家一起走进数学广角,去玩一玩猜一猜的游戏,大家高兴吗?(板书:推理)

  谁能猜得准,说得好,谁就能得到老师送的智慧星,得智慧星多的同学就是本节课的数学明星,有信心吗?

  二、探究新知

  1、“猜名字”游戏

  师:在“数学广角”里有两位小朋友已经在等我们了,看,你们能猜出哪位是兰兰,哪位是红红吗?(生猜)大家能不能确定谁是兰兰,谁是红红呢?(不能),那何老师给大家一个提示。(出示:左边的小朋友说:“我不是红红”)可以猜出来了吗?能说说你是怎么想的吗?(生:左边的小朋友说她不是红红,那她就是兰兰,右边的小朋友就是红红了。)还有别的想法吗?(左边的不是红红,那右边的肯定就是红红,左边的就是兰兰了)。

  师:你们俩不但猜得准,而且说得也清楚,真不错!大家把掌声送给他们,老师也送你们一个礼物,是什么呢?(师预先准备两种颜色的智慧星)指一生:奖给你的不是红色的,那是什么颜色的?师追问思维过程。

  (师:你看!多聪明的孩子啊!两件物品,一种情况,只用两个词儿,两句话就把意思给表达出来了,谁再来说说?)

  谁愿意和大家说说为什么刚开始不能马上猜出来,而现在却很快就猜对了呢?

  师:是啊!当事情有两种情况时,要想一次猜准,需要根据提示先排除其中一种情况,再去猜。

  2、师生猜水果

  (1)老师这里有桂圆和荔枝两种水果,我想请一个同学一起藏水果,猜我们各拿的是什么水果?(先请学生拿一种水果,老师根据学生拿的告诉提示。)

  师:请听提示:我拿的不是XX,你们知道我们分别拿的是什么吗?说说理由

  (2)师再出示一些水果(小番茄、葡萄等),请一名同学任选两个水果放在背后,(师:来,先给小朋友们一个提示。)

  提示:我的左手不是桔子,那我的右手是什么?为什么?

  3、同桌合作,学生利用学具互相猜题

  (1)接下来,我们同桌来玩一玩这个游戏,这样,我们每个小朋友的桌上不是放着一个学具袋吗?袋里装着我们的学具,你可以选择其中的两个学具,和同桌玩一玩推理的游戏,注意:猜之前要先给同桌一个什么?(提示)

  (2)刚才我们玩的这些游戏都有一个什么共同点?(板书:2种物体,1个提示)

  我们接着往下学。

  4、游戏:生活中的推理游戏

  师:其实生活中经常会遇到这样的“推理”游戏,大家想猜猜何老师的一些事情吗?

  ①我喜欢打乒乓球,我握拍子的手不是左手,那是哪只手?

  ②我教的二年级班长不是女孩子,是——?

  ③我走路时,先迈的不是右脚,那是哪只脚?

  同学们反应真快!如果猜的事情有两种可能,我们就根据提示语去猜,不是这种情形,就是另一种情形。

  三、情境体验,完整表述推理过程(三种情况的猜测)

  1、“猜年龄”游戏

  师:兰兰和红红的好朋友亮亮听说我们在“数学广角”玩游戏,也赶来参加,欢迎吗?亮亮想考考大家,猜猜他们3人的年龄,他们分别是7岁、8岁、9岁,谁能一次猜出他们各自的年龄?(不能)那该怎么办?(提示)师出示:亮亮说:“我今年8岁了”现在可以确定了吗?(不可以)一个提示语够吗?(还得一个),师出示:红红说:“我不是7岁”。能确定吗?你是怎么想的?请同桌互相说说,(从亮亮的话中知道他8岁了,再根据红红说的“我不是7岁”,可判断红红9岁,兰兰7岁。)多指几名同学说推理的过程。

  师:要想保证一次猜准3种情况,需要几个提示语?(生:两个)

  2、“猜兴趣小组”游戏

  师:三种情况的猜测,知道两个提示语,就一定能猜准确吗?

  兰兰他们3个小朋友和大家一样非常喜欢学习,他们利用课外活动时间分别参加了美术、舞蹈、书法兴趣小组,(贴出提示兰兰说:我参加了美术小组;

  红红说:我不参加美术小组,)“你们根据这两个提示能猜出3人各参加了什么小组吗?为什么不能?(这两个提示语是重复的)

  师再出示:也没有参加书法小组,现在能猜出来了吗?

  师生共同小结:要猜的事情是三种情况时,需要2个提示语,但不能重复,猜一猜时可以把直接告诉我们的.放一旁,再根据猜两种情况的猜法去猜其余两种。

  四、课间放松游戏

  (师生一起做律动)

  拍拍你的肩,不是左肩,那是哪个肩?那是()肩。

  摸摸你的耳,不是右耳,那是哪只耳?那是()耳。

  踏踏你的脚,不是右脚,那是哪只脚?那是()脚。

  伸伸你的手,不是左手,那是哪只手?那是()手。

  五、应用拓展

  1、活动一(猜跳棋)

  师:出示三个纸杯,分别装着红黄蓝三种颜色的跳棋,你们分别猜出纸杯里装的是什么颜色的跳棋吗?(生答不能)

  现在老师给你一个提示(1号杯子里是红色的)现在你能才到吗?(生答不能)老师再给你一个提示,(2号杯子里不是蓝色的)

  这时你能不能判断了吗?(生说能,多指几名同学说推理过程)

  师小结:要想保证一次猜3种情况,需要知道几个提示?(两种)

  2、猜名次

  小刚、小明和小红跑步比赛,它们会是第几呢?

  小刚:我不是第一就是第二,

  小明:我在小刚的前面,

  小红:我是第三名。

  (师,根据提示,先确定小红,剩下第一名和第二名,根据小刚的提示有可能是第一,也有可能是第二,根据小刚的提示能确定一定是第一名,所以小刚是)

  六、课堂总结。

  同学们,在数学广角玩的愉快吗?有很多的收获吧!

  今天我们学的“猜一猜”,这其实是数学里的简单推理知识,希望同学们遇到这些问题时,能冷静地去判断、推理。

《数学广角》教案15

  教学内容:

  课本P100页。

  教学目标:

  1、通过活动让学生感受简单推理的过程,初步获得一些简单推理的经验。

  2、培养学生的推理能力。

  3、培养学生的合作意识和创新精神。

  教具学具:

  动物图片、语文、数学、自然等教科书。

  教学过程:

  一、游戏一:

  故事导入:森林王国要举行运动会,入场时要组织一个花束队,鸡大婶让蓝猫和非非准备一束花,鸡大婶说:他们拿的分别是红花和蓝花。蓝猫说:我拿的不是红花。鸡大婶说:请同学们猜一猜,蓝猫和非非分别拿的是什么花?

  今天有许多这样的问题等着同学们去猜,大家要比一比谁最爱动脑筋。

  [设计意图]:故事导入新课等于抓住了儿童的天性,激起了他们玩的乐趣和学习的`积极性。

  二、游戏二:

  (1)出示例2的第一组图让学生注意观察。

  让学生猜一猜他们拿的是什么书?

  请学生说一说自己是怎样想的。

  (2)、小组活动

  4人一组,两名同学分别拿语文数和数学书,其中一名同学说:我拿的不是什么书。另外两名同学比赛看谁猜得快。交换进行。

  (3)、同桌活动。

  拿出准备好的动物卡,又一名同学操作,左(右)手拿的是(不是)什么,另一名学生猜,交换进行。

  三、游戏三:

  1、找三名同学配合,创设真实情景,根据例题做一做,让学生猜一猜,说一说是怎样想的。

  2、小组活动

  A、师:把猜一猜的游戏规则说一说。4人一组轮流进行,每人至少猜一次。

  B、进行活动。教师不做任何规定,让学生撇开思维,自己去猜。

  C、小组交流,向全班汇报活动过程。

  3、观察比较例3和例2有什么不同?学生回答后教师总结。

  4、巩固练习:师生一起做游戏。

  [设计意图]:通过多种游戏活动,既给了学生充分的时间活动,一起在活动中探索新知。放手让学生随意玩,鼓励他们玩出新意,教师捕捉创新的火花,培养他们的求异思维。

  五、课堂总结

  这节课我们上得真愉快,你们在游戏中都学会了什么?

  教学反思:

【《数学广角》教案】相关文章:

《数学广角——搭配》说课稿08-16

数学广角教学反思04-21

数学广角教学设计12-09

数学广角优化《田忌赛马》的教学反思范文通用04-23

数学广角田忌赛马赛教学设计范文(通用5篇)11-12

小学数学教案07-19

(精选)小学数学教案07-25

小学数学教案07-20

幼儿的数学教案03-01

快乐数学大班教案04-02