《加法交换律和结合律》教案
作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!以下是小编为大家收集的《加法交换律和结合律》教案,欢迎大家分享。
《加法交换律和结合律》教案1
教学内容:
苏教版四年级上册P56-57例题。
教学过程:
一、创设情境,导入新课(屏示主题图)。
图中的小朋友在干什么?从图中你了解到了什么?能提出数学问题吗?我们选择一个:跳绳的有多少人?(屏示问题。)
二、探索加法交换律:
1.在情境中初步感知加法交换律。
学生列式:28+17=45(人)或17+28=45(人)。
同样的一幅图,同样的一个问题,我们列出了两道不同的算式,其中“28+17"是用男生人数加上女生人数,“17+28”呢?(女生人数加上男生人数)
两道算式都表示把男生人数和女生人数合起来,所以都等于?(45人)
两道算式得数相同,我们可以用“=”把它们连成一个等式。(屏示等式:28+17=17+
28)
【评析:使用新教材后,许多教师对数量关系的运用弱化了,不少老师在这里就算式论算式,就运算论运算,出了力,却效果差,此处让学生根据已知条件,紧扣数量关系来列式,为理解加法意义服务。由于学生思考的角度不同,所依据的数量关系和列出的算式也就不同,因此运算的顺序也就不同,为教学下面的内容作了很好的铺垫。】
2.观察等式,发现个案特点:
仔细看,等号左右两边有什么相同?
——都是在加法中,两个加数相同,得数都等于45。(板书:加法)
不同呢?——两个加数的位置不同。
位置怎样了?(屏示动态交换过程)(板书:交换)
3.举例验证,并简要表示规律。
像这样的等式你能再写几个吗?(汇报时,教师在屏幕上输出学生举出的等式:)
追间:类似这样的等式能写完吗?(屏示省略号。)
虽然咱们写出的等式各不相同,但是仔细观察,它们却蕴藏着共同的规律,你发现了吗?交流一下。
师小结:两个数相加,交换加数的位置,和不变。
刚才,我们用语言把加法中的这个规律表达了出来,其实,我们还可以用一些更为简洁的方式来表达,比如用汉字、图形、字母等写成等式,也能表示这样的规律,你能用自己喜欢的方式来表达吗?(在实物投影上展示交流。)
【评析:多媒体课件有效而不花哨,通过图片、数据的移动,对学生感知加法交换律起了很好的意会作用;同时根据学生的回答,在屏幕上随机生成算式,激发了学生的学习热情,让学生感受到类似算式所具有的普遍性,为抽象出加法交换律奠定基础。】
4.用字母表示交换律:
刚才大家想出的等式都很好,不仅能把我们发现的规律表示出来,而且比语言叙述更简洁。其实这个规律,是加法的一个很重要的运算律。(板书:运算律)能给它取个名字吗?——加法交换律。
在数学上,我们通常用字母a和b来表示两个加数,那么,加法交换律可以写成:a+b=b+a。
加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?
——加法验算,交换两个加数的位置再加一遍就是运用了加法交换律。
【评析:第一次观察交流,是让学生初次感受算式的特点,并能仿写出来;第二次看和说,有助于学生用语言和符号来归纳出算式的特点。看和说都是学生自己在活动,学生相互间的说,打破了课堂中一对一的交流形式,增加了表述的时空。学生用符号和文字表示算式后,再次让学生说出符号和文字所表示的意义,让学生经历由数上升到用符号、字母表示的一种抽象过程,学生在此过程中感受到了方法的形成,并且能把这种方法迁移到加法结合律的学习上。】
5.巩固练习(抢答)。(屏示:你能根据运算律填一填吗?)
屏示:96+35=35+□ 204+□=57+204
37+□=59+□ 76+□=□+76
这4道练习都用到了哪个运算律?(加法交换律)
三、探索加法结合律。
1.在情境中初步感知加法结合律。
回到操场,刚才是跳绳的同学,现在有什么变化?(屏示:23个踢毽子的女同学)
仔细看(屏示大括号),你看懂了吗?(求参加活动的一共有多少人?)
有三部分,你打算先求什么?(跳绳的有多少人?)(屏示动态结合过程)会列综合算式吗?(28+17)+23。
师:你给28、17加上了括号,表示什么?(先算28加17)先把跳绳的人数合起来,再加上踢毽子的人数。
还可以先求什么?(女生的总人数)(屏示动态结合过程)现在算式怎么列?
28+(17+23),现在括号加在了什么位置?表示什么?(先算17加23),也就是先把女生的人数合起来,再加上男生的人数。
两道算式都能求出参加活动的总人数,会计算吗?要求:一、二两组算第一题,三、四两组算第二题:
汇报:两道算式都等于68人,得数相同!
2.比较异同点,连成等式。(屏示:(28+17)+23,28+(17+23))
两道算式完全一样吗?有什么不同?
——第一道括号在前,表示先把前两个数相加,再和第三个数相加。
第二道括号在后,表示先把后两个数相加,再和第一个数相加:
运算的顺序不同,为什么得数还相同呢?
——因为两道算式都是把28、17、23三个加数相加。
师:三个加数是相同的,就连先后的位置也相同,所以得数相同,连成等式!(动态屏示等式:)
3.感知众多案例,积累感性认识。
凌老师这里还有两道算式,注意看!(屏示:(13+45)+25,13+(45+25))
猜一猜,它们的得数可能会怎样?悄悄告诉同桌!
同桌分工,一人算一道,看看结果怎样?
汇报:左右得数相同,连成等式!(屏示:“=”)
再看,(屏示:(36+18)+22和36+(18+22))。
仔细观察,大胆猜测,它们的结果又会怎样?
认为相同的举手!为什么这么肯定?(因为都是这三个数相加,只不过运算顺序不同,但得数还是相同的)口说无凭!(屏示:?)还得算算!左边?右边?得数确实一样,你们真厉害!(?消失)
猜得这么准,你们是不是隐隐约约发现什么规律了?能说说吗?(屏示三组等式)这三组等式中都是三个数相加,左边都是先把前两个数相加,再和第三个数相加,右边都是?(先把后两个数相加再和第一个数相加)它们的和都怎么样?(不变)。
4.猜测规律,举例验证。
这个发现,会不会仅仅是一种巧合呢?如果换成其他的三个数相加,左右两边的得数还会相同吗?你能不能再举些例子来验证?同桌互相验证,全班汇报。
像这样举出的例子,被同桌证实和不变的举手!有没有同学举出的例子左右两边和不相同的?这样的例子能举完吗?(屏示省略号)
5.归纳加法结合律。
看来,我们的发现不仅仅是巧合,三个数相加一定有规律!
师生共同小结:三个数相加,可以先把前两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,它们的和不变。
师:这个规律又是我们今天要认识的另一个运算律——加法结合律。(板书:加法结合律)
加法结合律也可以用字母来表示,现在需要几个字母?(3个,a、b、c)
你能用丰母把加法结合律表示出来吗?(板书:(a+b)+c=a+(b+c))
【评析:“猜测一举例验证一归纳结论一运用”是教学运算律的主要思路,此处重视学习方法的指导与形成。两次列式得出两个运算律,第一次重在方法的`形成,第二次重在方法的运用。】
6.小结。(略)
四、巩固练习。(作业纸)
1.你能在方框内填出合适的数吗?
(45+36)+64=45+(36+□)
(72+20)+□=72+(20+8)
560+(140+70)=(560+□)+□
2.你能把得数相同的算式连一连吗?
(1)72+16 A.(75+25)+48
(2)45+(88+12) B.16+72
(3)75+(48+25) C.(45+88)+12
真了不起!完成得这么好,还有两道算式也想请你们帮帮忙呢,愿意吗?如果这两道算式得数相同,你就起立证明自己的观点,看谁反应快!准备!
(84+68)+32 84+(68+23)
哎,站了又坐下去,怎么回事?不能连!为什么?(三个加数中有一个不同了)哪个加数不同?一个是32,一个是23,既然两边不等,那你知道哪边大吗?现在你有什么想说的?(看题要仔细)
【评析:巧用“上当法”,制造错误陷阱,使学生在不经意间犯错。在一路都对的情况下,思维定势让学生必然要错,然而,这样的错误对于学生来说,记忆却异常深刻,旨在使学生认识到,计算时一定要仔细看清题目。】
3.渗透简算意识。
计算比赛:一二两组算左边,三四两组算右边,不写过程,直接写得数,半分钟,看哪组速度最快!
45+(88+12) (45+88)+12
时间到!停笔!我宣布,一二两组快!三四两组慢!凌老师这样评价,你们有话要说吗?尤其是三四两组!不公平?左边算式中先算88加12,正好凑成100。右边呢?(凑不成100)能凑整的快是吗?
好,再来一题!这次公平一点,自己选择,想算哪道就算哪道!师出示:75+(48+25) (75+25)+48
等于多少?你算的是哪道?为什么都选这道?因为先算75加25正好得到100。
原来巧用运算律还能使一些计算更简便呢!这就是我们下一节课研究的内容!
【评析:根据运算律进行简便计算,是下面的内容,对学生来说并不难。但要让学生形成简便计算的意识,比会进行简便计算更重要。因此此处通过口算比赛,让学生在比先后的过程中,萌发如何计算快的意识,其实就是运用运算律使计算简便的过程,继而在自选口算题的过程中,学生能自发地运用运算律。在这里,无需教师过多的讲解,学生在计算中便感受到了运算律的作用。】
《加法交换律和结合律》教案2
【教学内容】
国标本苏教版四年级上册P56—57例题,完成P58的“想想做做”。
【教学目标】
1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
【教学过程】
一、故事导入,激发兴趣
(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?
引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的`规律,同学们想不想研究一下?
二、创设情境,联系生活
谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。
(课件出示例题情境图)
提问:从图中你了解到哪些数学信息?(指名说一说)
提问:你能提出用加法计算的问题吗?
学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?
谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。
三、探索加法交换律,初步感知
课件出示问题(1)要求参加跳绳的有多少人?
提问:应该怎样列式?
指名口答,教师板书:28+17=45(人)
提问:还可怎么列式?板书:17+28=45(人)
提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?
谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28
板书:28+17=17+28(学生齐读这个等式)
提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。
提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。
提问:像这样的等式你能写得完吗?
谈话:既然写不完,可以用省略号表示(板书省略号)
提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?
提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文
字等等表示,试试看。
学生写在练习本上,教师巡视,并作相应辅导。教师实物投影出学生写得情况。
师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?
生:a+b=b+a
提问:a和b分别代表什么?
小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律,我们这节课就是来研究加法运算中的规律。
板书课题:加法的运算律
师:下面老师想考考大家。
考考你:(1)您能在()里填上合适的数字吗?
96+35=35+()204+57=()+204
指名回答,为什么?
(2)下面的等式符合加法交换律吗?为什么?
75+25=25+75 46+59=46+59 90+10=5+95
(没有交换加数的位置;等号两边的加数不同。)
(3)同学们学的真不错,接下来我们来玩个游戏,看看同学们的反应快不快。
游戏:对口令
师:83+17=生:17+83=
97+44=35+65=
88+75=300+600=
a+b=785+68=
(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?
下面一道题357+218,请同学们计算并用加法交换律进行验算。
四、探索加法结合律,自主合作
谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究其他同学提到的问题,看看有什么发现。
出示问题(2):参加活动的一共有多少人?
提问:你会列综合算式解决这个问题吗?
指名回答,教师板书:28+17+23
《加法交换律和结合律》教案3
教学目标:
1.在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。
2.在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。
教学重点:理解并掌握加法交换律、结合律。
教学难点:归纳、概括出加法交换律和结合律。
教学准备:课件
教学过程:
一、谈话引入
1.师生谈话。
同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?
学生自由发言。
2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)
追问:你能根据这些信息,提出哪些用加法计算的问题?
(1)跳绳的有多少人?
(2)参加活动的'女生有多少人?
(3)参加活动的一共有多少人?
3.导入新课。
在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中
的运算规律。(板书课题)
二、交流共享
1.加法交换律。
(1)提出问题:求跳绳的有多少人,应该怎样列式计算?
(2)列式解答。
指名学生回答,教师板书:28+17=45(人)
追问:还可以怎样列式?
教师板书:17+28=45(人)
(3)观察发现。
提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。
引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。
引导:我们可以用什么符号将这两道算式连起来呢?(等号)
师板书:28+17=17+28
(4)照样子写一写。
让学生试写等式,并投影展示。
提问:观察这些等式,你有什么发现?
(两个加数交换位置,和不变)
(5)指导学生用自己喜欢的方法表示出这种规律。
学生在各自的练习本上表示规律后,交流各自的表示方法。
(6)用字母表示加法交换律。
明确:如果用字母a、b分别表示两个加数,上面的规律可以写成:
a+b=b+a
教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)
2.加法结合律。
(1)课件出示问题:跳绳和踢毽子的一共有多少人?
(2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。
(3)组织汇报交流。
解法一:先算出跳绳的有多少人。
(28+17)+23
=45+23
=68(人)
解法二:先算出女生有多少人。
28+(17+23)
=28+40
=68(人)
提问:这两道算式有什么相同的地方和不同的地方?
学生观察、比较这两个不同算式的计算结果。
追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写?
根据学生的回答,师板书:(28+17)+23=28+(17+23)
(4)加深认识、探索规律。
①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。
(45+25)+16○45+(25+16)
(39+18)+22○39+(18+22)
②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?
学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,
和不变。
追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?
师板书:(a+b)+c=a+(b+c)
小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)
三、反馈完善
1.完成教材第56页“练一练”。
让学生说说每个等式各运用了什么运算律及判断的依据。
第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。
2.完成教材第58页“练习九”第1、2、3题。
(1)第1题中的最后一小题运用了加法交换律和加法结合律。
(2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。
(3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。
让学生计算,并说说每组中两题的联系。
比较每组中的两题,说说哪一题计算起来更加简便。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
《加法交换律和结合律》教案4
教学内容:
义务教育课程标准实验教科书四年级数学。下册P28—29页内容。
教学目标:
1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
理解并掌握加法交换律和加法结合律,能用字母来表示。
教学难点:
经历探索加法交换律和结合律的过程,发现并概括出运算规律。
教学准备:
多媒体课件
教学过程
一、谈话导入,鼓励猜想
1、出示图片牛顿与“万有引力”
2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的.问题,并努力从中探索规律。
二、合作交流,探索猜想
(一)故事激趣,初次猜想
1、朝三暮四
猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?
2、初步感知,大胆猜想
出示:3+4=4+3
师:仔细观察这两个加法算式,你发现了什么?
得出:两个加数交换位置,和不变。(适时板书)
(二)广泛举例,验证猜想。
师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)
师:既然是猜想,想不想知道猜的对不对?
生:想。
师:我们还得举例验证。
1、举例要求:
(1)任意两个数,求出他们的和;
(2)交换两个加数的位置,再求出两个数的和:
(3)比较两次的结果,判断式子是否相等。
2、学生汇报,师板书。
3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)
4、揭题:大家发现的这个规律叫什么呢?
学生交流后,师板书。
5、用字母表示加法交换律。
(1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。
(学生可能使用文字,图形,符号等方式)
(2)用字母表示加法交换律:a+b=b+a
6、追问:加法交换律中,什么变了,什么没有变?
7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)
(3)出示教材56页的例题情境图。
解决:跳绳的有多少人?
28+17=45(人)17+28=45(人)
(三)规律延伸,猜想拓展。
1、根据反思,拓展规律。
师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?
生可能会说出以下几个想法?
“猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”
“猜想五:几个加数时,变换加数的位置和也不变?“
2、举例探究,验证猜想。
师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。
3、汇报交流,验证猜想。
师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结
小结:
a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立
b、只要能举一个反倒,就能验证猜想肯定不成立。
(1)验证猜想三。
师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。
(2)验证猜想四
师:哪些同掌选择了“猜想四”,又是怎样做的?
学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。
《加法交换律和结合律》教案5
教学内容:
北师大版小学数学四年级上册第三单元乘法探索与发现(三)加法交换律与结合律P47.
教学目标:
1、经历探索过程,推导出加法交换律和结合律,会用字母表示数。
2、会运用加法交换律和结合律对一些算式进行简便计算。
3、激发学生的学习兴趣,培养学生的思维能力和科学的学习方法。
教学重点:
引导学生探索概括出加法交换律和结合律,并初步理解运用、进行简便计算。
教学难点:
加法交换律和结合律的探索推导过程与运用。
教具准备:
PPT课件等
教学过程:
一、复习导入,回忆旧知。
要求学生回忆一下上一节课学过的乘法的'运算规律。
(我们上节课学习了《乘法交换律和乘法结合律》,那么,大家回忆一下,乘法交换律和乘法结合律的公式又是什么呢?)
a×b=b×a
(a×b)×c=a×(b×c)(黑板板书)
(那么加法是否也有同样的规律呢?让我们现在来探讨一下)
二、创设情境、操作体验
1、由生活引入,通过对话的形式与学生共同探讨交换的含义。
数一数:本班男生的人数和本班女生的人数,求本班一共有多少人?
男生+女生:(26+17)人
女生+男生:(17+26)人
结果无论哪一种计算方法,计算出来的结果都是相等的。
再举书本上两个例子来说明。
26+17=17+26
3+2=2+3
15+20=20+15
a+b=b+a (黑板板书)
让学生列出不同的算式,分析比较两个算式的共同点和不同点。
突出强调“交换”的意思。结果表明:两个式子的加数交换了位置,但和不变。再要求学生自己举一两个例子来试试看。
2、出示题目:同学们的课间活动很丰富,看,有28个男生在跳绳,17个女生在跳绳,23个女生在踢毽子,参加活动的一共有多少人?
方法一:先算跳绳的一共有多少人:28+17人,再算全部的人数:(28+17)+23人。
方法二:先算一下女生,再算一下他们加起来一共是多少人:28+(17+23)人。
那么得出:(28+17)+23=28+(17+23)整十
(3+2)+5=3+(2+5)
(19+12)+38=19+(12+38)整十
(a+b)+c=a+(b+c)
结果表明,计算出来的结果都是相等的。
3、再举书本中的例子来说明结合的两个数的条件和原因。
57+49
=50+7+40+9
=50+40+7+9
=(50+40)+(7+9)因为50+40=90,90是一个整十数。
=90+16
=106
三、巩固练习,加深记忆。
1、书本P47(3)利用你发现的规律,计算下列各式。
2、想一想:下面的等式各应用了什么运算律?
82 + 0 = 0 + 82
47 +(30 + 8)=(47 + 30)+ 8
(87 + 68)+ 32 = 84 +(68 + 32)
75 +(48 + 25)=(75 + 25)+ 48
3、比一比:谁算得又快又对!
38+76+24 (88+45)+12
四、布置作业。
五、板书设置。
《加法交换律和结合律》教案6
教学内容:加法交换律和结合律
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:
教学过程:
一、课前谈话。
有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。
二、教学加法交换律。
1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑出示:①跳绳的一共有多少人?
2、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)
为什么这两个算式的结果一样?
3、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28
仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?
4、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
5、我们再仔细的.观察这几个算式,从中你们有什么发现?怎样可以把这个规律用简单的方法表示出来?教师巡视,并作相应的辅导,在学生交流后板书出各种表示方法,并追问:你这样表示,每个符号分别表示什么?
教师说明:在数学上,我们一般用ab来表示两个加数。
让学生写出用ab表示的规律。
能否给这个规律起个名字?教师板书后,指名说说加法交换律的含义。
6、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。7、练习:完成想想做做第2题前面两小题。
三、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师板书出各种综合算式。
让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?
教师板书: (28+17)+23=28+(17+23)
5、小黑板出示: (42+26)+74Ο42+(26+74)
(32+29)+71Ο32+(29+71)
(27+33)+28Ο27+(32+28)
提问:这三组能否组成等式?有手势表示。你是怎么知道的?(口算结果验证)
6、看着黑板上的板书,你们从中有了什么新的发现?学生同桌交流后再全班交流,最后教师说明:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、完成“想想做做”第2题的后面两个小题。
四、巩固练习。
1、完成“想想做做”第1题。
第4小题引导学生发现是运用了加法交换律和加法结合律。
2、比一比:38+76+24 38+(76+24)
(88+45)+12 45+(88+12)
要用最快的速度知道四个算式的答案,你认为哪个算式简单?
3、完成“想想做做”第3题第1行。
4、完成“想想做做”第5题
五、课堂总结:通过本节课的学习,你有什么新的收获?
【《加法交换律和结合律》教案】相关文章:
加法交换律教学反思04-22
《加法结合律》教学反思05-27
100以内的加法和减法教案10-10
《100以内的加法和减法二》教案03-08
加法的验算教案05-08
小数加法和减法五年级教案04-15
《小数的加法和减法》教学设计06-02
《小数的加法和减法》教学反思02-23
加法运算律教案10-31
大班9的加法教案01-07