当前位置:范文派>教学范文>教案>《面积计算》教案

《面积计算》教案

时间:2024-06-14 18:16:16 教案 我要投稿

《面积计算》教案

  作为一名教师,时常要开展教案准备工作,借助教案可以更好地组织教学活动。我们该怎么去写教案呢?下面是小编帮大家整理的《面积计算》教案,欢迎大家分享。

《面积计算》教案

《面积计算》教案1

  教学内容:教材第101页面积计算和练一练,练习十九第6~15题,练习十九后的思考题。

  教学要求:使学生加深理解和掌握已经学过的面积计算公式,进一步了解这些计算公式的推导过程及相互之间的联系,能正确地进行面积的汁算。

  教学过程:

  一、揭示课题

  1.口算。

  出示练习十九第6题,让学生口算。

  2.引入课题。

  这节课,我们复习学习过的面积计算。(板书课题)通过复习,要弄清面积计算公式的推导过程和相互之间的联系,能应用公式进行面积计算。

  二、整理公式

  1.提问:什么叫面积?我们学过哪些图形的面积计算?

  面积的计量单位有哪些,你能说一说平方厘米、平方分米和平方米的大小吗?

  2.整理公式。

  出示第101页的图形。说明:这里的一组图形,表示了相应的面积计算公式的推导过程。请同学们看着第101页上这样的图想一想

  每种图形面积计算公式怎样得到的,再把面积公式填在课本上,然后告诉大家这些公式和它们的来源。如果有不熟悉的,可以相互讨论。让学生填写公式并思考推导过程。

  3.归纳公式。

  指名学生说明相应的计算公式和推导过程,老师板书公式。追问:三角形、梯形面积计算时都要注意什么?(除以2)提问

  从图上看,由长方形的面积计算推出了哪些图形的面积计算公式?由其中的平行四边形面积计算又推出哪些图形的面积计算公式?

  想一想,这些图形的面积计算公式都以哪个图形的面积计算为基础来推导的?指出,我们在推导面积计算公式时,都是以长方形的面积计算为基础。

  后面学习的一些新的图形的面积计算公式都是通过割、补,拼的方法,把它转化为已经能计算面积的图形来推导出来的。

  三、组织练习

  1.做练习十九第7题。

  让学生做在练习本上。

  指名口答算式与结果,老师板书,并让学生说一说是怎样想的。指出:根据三角形面积的推导过程,三角形的面积是等底等高的平行四边形面积的一半。

  2.做练一练第1题。

  小黑板出示,让学生做在课本上。指名口答结果,老师板书在小黑板上,结合让学生说说三角形、梯形和圆的面积是怎样算的。

  3.做练一练第2题。

  指名一人板演,其余学生做在练习本上。集体订正,结合提问学生要怎样换算成公顷。

  4.做练习十九第9题。

  指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。追问:这两个图形的'周长相等吗?面积呢?你发现哪个面积大一些?有什么想法?(长方形和圆如果周长相等,那么圆的面积大)

  5.做练习十九第13题。

  让学生测量、计算。指名说一说每个图形是怎样想的,怎样做的.

  6.让学生口答第14题,说说用什么方法可以求面积。

  7.做练习十九第15题。

  让学生操作、计算,然后口答长、宽和面积,老师依次板书。

  四、讲解思考题

  请同学们观察刚才不同长方形的长、宽和面积,讨论一下:当长方形周长一定时,长和宽的差的变化与面积的大小有什么关系?讨论后指名学生交流每组的讨论结果。追问:这些不同的长方形里,哪一个图形面积最大?指出:长方形周长一定,长和宽的差越小,面积越大;当它成为正方形时,面积最大。

  五、布置作业

  课堂作业,练习十九第8、11、12题。

  家庭作业:练习十九第lO题。

《面积计算》教案2

  一、复习导入。

  1.谈话:今天老师从图形王国里请来一位朋友(出示长方形),这是一个长方形。长方形在我们的生活中是无处不在的。看一看,这个长方形发生了什么变化?(多媒体展示长方形的长增加了3米)还有呢?(学生交流,例如:周长增加了,面积也增加了,宽不变,仍然是一个长方形等。)

  2.谈话:再来看看这个长方形,有什么变化?(多媒体展示宽减少了2米)还有呢?(学生交流,例如:面积减少了,周长减少了,长不变,仍然是一个长方形等)

  3.谈话:刚才我们观察的这组图形,长、宽发生了变化,面积也相应的改变。今天我们就伴随着图形的变化一起来解决一些实际问题。

  二、自主学习,探究新知。

  (一)例题1。

  1.出示:1号长方形模型训练池,长8米。改建时,把长增加了3米,模型池的面积就增加了12平方米。原来模型池的面积是多少平方米?

  提问:从题中你知道了哪些数学信息?问题是什么?(学生汇报)

  2.谈话:想一想,怎么做呢?(学生可能会觉得有困难)

  是不是觉得有点难度?这是一个有关图形面积计算的题目,谁有好方法能帮助大家更清楚地理解题意?(可以画画示意图)

  (学生交流:画图)

  3.谈话:根据题意首先要画什么?(画一个长方形)这个长方形的长是8米。

  下面请你在练习纸上继续画出示意图,并把数据标注出来。

  (学生画示意图,教师巡视。)

  4.展示两份不同的作业交流,让学生进行比较哪一种完整,画的相对比较好。

  交流后,学生修改自己的示意图。

  学生对照示意图,自己简单说说题意。

  5.谈话:根据这幅示意图,你能计算原来模型池的面积了吗?

  ①学生独立列式计算。可分步计算,也可列综合算式。

  ②指名交流,教师板书:12÷3=4(米)

  8×4=32(平方米)

  ③指名说说是怎么想的'。学生回答后提问:为什么第一步要求宽?

  ④一起口答。

  7.谈话:开始看到题目大家觉得解题有点难度,但是画出示意图后,题意就显得清晰、明了,大家一下子就能进行解题了。

  像这样,谁来说说解决这个问题时是怎样做的吗?

  (学生交流)

  8.谈话:刚才我们用画示意图的方法解决了这个问题。虽然是草图,但是你觉得画图时也应该注意些什么?

  (学生交流:长短适当,把数据都表示清楚等)

  (二)试一试。

  1.谈话:根据学校总体设计的需要,有的模型池可以扩建,而有的模型池必须缩小规模。例如:

  出示:2号模型池原来是一个宽为5米的长方形,后来因校园改造,模型池的宽减少了2米,这样模型池的面积就减少了16平方米。现在模型池的面积多少平方米?(在下图中画出减少的部分,再解答)

  提问:5米表示什么,2米表示什么?

  2.学生独立完成示意图,标出相应的数据。

  学生交流怎么画的。教师多媒体展示。

  谈话:观察这幅示意图,发生了什么变化?

  (学生观察交流:长方形的长没变,宽变短了,面积变小了。)

  3.提问:要求现在模型池的面积,首先需要知道什么?(现在模型池的长和宽)

  学生独立列式计算。

  指名交流,并说说是怎么想的。

  4.谈话:这题和前一题有什么不同的地方?(学生交流)

  在解题时有什么相同的地方?(先画示意图)

  (三)想想做做第1题。

  1.出示:学校的3号模型池也是一个长方形,长增加4米,或者宽增加2米,面积都比原来增加12平方米,原来这个模型池的面积是多少平方米吗?(先在图上画一画,再解答)

  2.学生交流解决这个问题要注意的地方。“长增加4米,或者宽增加2米” 什么意思?(要么增加长,要么增加宽)

  3.学生在小组里交流如何画出示意图,全班交流。

  指出:为了方便大家画图,一般我们可以把两张图合二为一。

  教师多媒体展示。

  4.学生根据示意图列式计算。指名交流,并说说分别求的是什么?

  12÷2=6(米)

  12÷4=3(米)

  6×3=18(平方米)

  5.谈话:你觉得画示意图解决问题,有什么要提醒大家的?

  (四)想想做做第2题。

  1.谈话:现在我们已经知道3号模型池原来的长是6米,宽是3米。根据模型训练的需要,把模型池的长增加了4米,宽增加了3米。模型池的面积增加了多少平方米?(先在图上画出增加的部分,再解答。)

  2学生独立思考,在小组里交流。思考:有不同的方法解决吗?教师巡视。

  3.小组派代表交流,全班交流。

  (1)根据示意图来计算。可分别求出增加的三个长方形面积,再合起来;

  (2)也可用现在面积减去原来的面积,等于增加部分的面积。

  三、课堂小结。

  1.谈话:今天我们学习了什么内容?你觉得画示意图的方法有哪些优点?

  2.布置作业:补充习题第68页。

《面积计算》教案3

  教学内容:现代小学数学第九册

  教学目的:

  1、在掌握长方形面积计算公式的基础上利用知识的迁移学会

  平行四边形、三角形、梯形面积的计算方法并运用于实践。

  2、通过在电脑上搜集有关的资料经过整理加工、分析比较,能总结推导平行四边形、三角形和梯形面积的计算公式。

  3、学会把不熟悉的图形通过转化变成熟悉的图形,培养迁移

  能力,渗透转化思想。

  教学重点:学会搜集信息,整理加工,分析比较,总结推导出平行四边

  形、三角形的面积计算公式。

  (一)新授课

 一、 导入新课:

  1、 出示各种多边形在日常生活中的实例。

  2、 出示草坪、红领巾、跳箱、圆木堆的实例图:

  提问:要算一算有多大,有多少,该怎么办?

  3、 揭题:多边形面积的计算

  二、 教学新课:

  (一) 平行四边形面积的计算:

  1、 比较平行四边形与长方形的大小:(熟悉操作方法)

  2、 选择其中一些图形剪拼成长方形或正方形:(图略)

  3、 观察剪拼过程,思考:选择的是什么图形?剪拼后的`长方形、正方形和原图形有什么关系?

  4、 在图形中找出和长方形A面积相等的平行四边形。(图略)

  5、 在剪拼成的长方形中找出平行四边形的底和高:(操作)

  6、 学生观察并推导出平行四边形的面积计算公式:

  平行四边形的面积=底×高 S=ah

  7、 练一练:计算平行四边形的面积。

  (二) 三角形和梯形面积的计算:

  1、 选择三角形和梯形拼成已学过的图形:(图略)

  2、 操作并思考:选择的是什么图形?拼成后是什么图形?它和原图形有什么关系?(边回答边演示)

  3、 三角形面积的计算:

  (1) 计算阴影部分的面积:(图略)

  (2) 学生观察推导出三角形面积的计算公式:

  三角形的面积=底×高÷2 S=ah÷2

  (3) 练一练:看图填写答案。

  发现:等底等高的三角形面积相等。

  4、 梯形面积的计算:

  (1) 学生观察两个全等的梯形拼成的平行四边形和长方形,推导出梯形的面积计算公式;

  梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

  (2) 口答:梯形的面积。

  (三) 总结:

  根据各图形间的联系,分别写出长方形、平行四边形、三角形、梯形的面积。

  三、 巩固推导方法:

  1、 学生根据各自的掌握情况在计算机上选择各种方法推导三角形和梯形的面积。

  2、 交流部分推导方法。

  (二)练 习 课

  一、基本练习:

  1、学生选择日常生活中的问题加以解决:

  例:计算草坪、红领巾、跳箱的大小;圆木的根数;水渠横截面的面积。

  2、完成判断,选择题:(计算机统计正确率)

  3、 小小设计家:(几何画板操作)

  用平行四边形、三角形、梯形设计一副图案,并算出面积。比一比,谁画得好,算得对。

  二、综合练习:

  1、 选择条件计算面积:

  2、 组合图形的应用题练习:

  3、 逆向思维训练:

  (1) 讨论:已知面积求多边形的底和高的方法。

  (2)画图:画面积是12平方厘米的多边形。(几何画板操作)填表后画图,集体交流。

  单位:CM

  底 高

  底 高

  上底

  下底 高

《面积计算》教案4

  教学内容:第24~25页。

  教学目标

  1、在系统复习的基础上通过练习加以巩固,使学生掌握多边形面积面积的计算公式,并能准确熟练地加以运用,解决简单的实际问题。

  2、培养学生收集信息的能力和灵活运用知识解决生活中的实际问题的能力。

  3、灵活、熟练地应用面积计算公式,解决有关实际问题。

  3、培养学生良好的合作意识。

  教学过程

  一、复习各图形面积的计算公式:

  要求学生分别用文字的和字母的规范表达各公式,写在作业本上。

  二、练习

  1、第6题填表指名分别说说每题的结果,如果有错,再指名说说应该怎么算。3、2、第7题读题后,强调:这道题要分两步,先算面积,再算题中的问题。指名说说算面积的方法。方法一:20×9-1×9(提醒:减去的也是一个平行四边形,不是减“1”)方法二:(20-1)×9(转化:可以假设那条小路是在边上,那平行四边形的底就是19米了。)比较两种方法的联系,算一算。

  3、第8题读题后,估计有的`学生不能很好的理解“每个三角形的腰长8米”。可画其中的一个,让学生理解这个腰长,其实也就是直角三角形的底和高分别是8米。

  4、第9题,读题后模仿第7题的解题步骤,指名板演。

  注意的问题:

  (1)算出的面积57平方米是不是就是57千克?应该用怎样的算式表达得才比较规范?

  (2)算出需要油漆57千克后,后面怎么写才规范?

  5、第10题。读题、看读图。

  (1)说说该题钢管的排列特点。说说你联想到了什么图形?(梯形)提醒:横截面指名说说算梯形的几个关键数据:上底(9)、下底(14)和高(6)可以怎么算:(9+14)×6÷2=69(根)

  (2)根据排列特点,如果下面还有钢管,分别是多少?如果最下面一排是16根,怎么算?完成板书:9+10+11+12+13+14+15+16观察该算式,你可以怎么算?方法一:用(头+尾)乘个数除以2的方法方法二:凑十法比较两种方法,哪个更简单?为什么?指出:凑十法是低年级时学得的方法,这题用方法一更简单,它适用于更多的情况。“头”相当于“上底”,“尾”相当于“下底”,“个数”相当于“高”。

  (3)联想:如果这堆钢管原来还有很多,最上面是1根,它是什么形状?怎么算?为什么明明像三角形,却不用三角形的面积公式来计算?得出:它其实是一个梯形。

  (4)可能会有的学生会和等差数列的方法联系后回答问题。两种思路的对比和联系。

  (5)补充:等差数列的有关知识。

  三、评价与反思。

  学生根据自己的表现能得几颗x,就把几颗x涂上颜色。

  三、布置课外作业:

  1、在第131页上剪一个三角形和一个梯形。

  2、练习11题。

《面积计算》教案5

  教学目标

  重点:Δ

  难点:※知识与技能

  过程与方法

  情感态度与价值观

  Δ使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积.

  ※培养学生运用数学知识解决生活中问题的能力.

  教具,学具

  电脑,课件

  课件

  梯形面积的计算练习

  设计思路

  一,复习有关知识,做到有的放失.

  二,通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些 拼成的平行四边形和原来梯形的关系.

  三,进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.

  三,针对学生在学习过程中出现的问题适当的进行补充和强化.

  教学过程

  自我设计

  一,复习梯形面积的计算公式.

  二,基本练习:

  1,求下面梯形的面积:

  上底2米 下底3米 高5米

  上底4分米 下底5分米 高2分米

  2,填空:

  两个完全一样的梯形可以拼成一个( )形,这个拼成的图形的底等于梯形的.( )与( )的和,高等于梯形的( ),每个梯形的面积等于拼成的平行四边形面积的( ).

  3,梯形的上底是a,下底是b,高是c,则它的面积 =( )

  4,一个梯形上底与下底的和是15米,高是4米,面积是( )平方米.

  5,一个梯形的面积是8平方厘米,如果它的上底,下底和高各扩大2倍,它的面积是( )平方厘米.

  6,判断:

  1)梯形的面积等于平行四边形的面积的一半. ( )

  2)两个完全相同的直角梯形,可以拼成一个长方形. ( )

  3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米. ( )

  三,提高练习:

  1,练习四第1题.用两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的平行四边形的面积是多少平方分米

  2,第2题 让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的

  3,第3题 右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.

  4,第5题 要注意两个问题:1,统一面积单位;2,讲清楚数量关系.

  5,第6题 先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.

  课后反思

  通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些 拼成的平行四边形和原来梯形的关系.进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.

《面积计算》教案6

  教学目标:

  ⑴认知目标:

  ①让学生理解长方形、正方形面积计算方法的推导过程。

  ②能应用长方形、正方形面积计算方法进行计算

  ⑵能力目标。

  ①在长方形、正方形面积公式的推导中,培养学生动手操作的能力、初步的归纳概括能力和迁移、类推的能力。

  ②在小组合作、师生交流中,培养学生的小组合作能力,鼓励学生勇于探索,培养学生

  的探索能力和创新。

  ③渗透“实验——猜想——验证——概括”的数学学习方法,为今后学习其它平面图形的面积计算打下基础。

  ④通过比较正方形和长方形面积计算方法的异同,渗透事物间相互联系发展变化的辩证唯物主义观点。

  情感目标:

  ①让学生动手实验操作、大胆猜想,以激发学生学习数学的兴趣。

  ②在学习和活动中,明白数学来源于生活,进一步激发学生学习数学的热情。

  学习重点:让学生通过动手实践、交流发现长方形、正方形面积的计算方法,掌握面积计算公式。

  学习难点:长方形、正方形面积计算方法的推导。

  教具:课件。

  学具:15个1平方厘米的正方形、学习纸。

  教学过程:

  一、复习旧知,引入新课。

  1、师:我们已经学习了面积和面积单位,现在谁来介绍一下什么是面积?常用的面积单位有哪些?

  2、前面在练习中我们已经发现可以用数小正方形的方法来求面积。(电脑出示)如下图:

  让学生说说每一个小正方形的面积是多少,长方形的面积是多少?

  3、师:同学们,数小正方形的方法可以得到这个长方形的面积,但是在实际生活中,如果要测量篮球场的面积、操场的面积、游泳池的面积…(出示图片),也用数正方形的方法去求,那可太麻烦了,所以我们就要寻找一种更好的、更简便的方法来计算面积。今天我们就来研究长方形、正方形面积的计算方法。(揭示课题。)

  (设计意图:让数学接近学生的生活。通过课件出示篮球场、操场、游泳池等图片,在具体可感的的场景中引起学生新知的欲望,让学生感受到数小正方形的方法太麻烦,应该寻找一个更简便的方法来计算长方形的面积。)

  二、实践探究,寻找方法。

  (一)利用迁移,大胆猜想。

  我们先来研究长方形的的面积计算方法。

  1、复习长方形周长计算方法。在研究长方形的面积之前,谁先来说说长方形的周长是如何计算的?

  2、师:既然长方形周长的计算与它的长和宽都有关,现在请你猜一猜,长方形的面积计算可能与什么有关?(根据学生回答,肯定长方形的面积与它的长和宽有关。)

  (设计意图:学生学习有关长方形的知识已有计算周长的方法,我就利用这个旧知,让学生猜测长方形面积的计算是不是跟它的长和宽有关呢?在迁移中导出新知。)

  (二)分层实验,发现计算方法。

  1、初求面积,猜想方法。

  师:既然长方形的面积和它的长和宽有关,到底是怎样的关系呢?现在请你先来试一试。在练习纸上,有一个长5厘米、宽3厘米的长方形,请你想办法求出它的面积。可以自己独立尝试,也可以同桌讨论进行。学生动手尝试。

  学生汇报自己的方法。

  设想学生可能有的方法:(1)用1平方厘米的正方形摆,摆了15个,所以它的面积是15平方厘米。(2)每行摆5个,可以摆3行,它的面积是5×3等于15平方厘米。(3)用尺画了15个边长是1厘米的正方形,所以它的面积是15平方厘米。(4)因为它的长是5厘米、宽是3厘米,所以它的面积是5×3等于15平方厘米。

  比较学生的方法,说说哪一种最简便?(发现用乘法计算最简便)

  发现用乘法计算的第2种方法与第4种的联系。观察第2种方法与第4种方法,有没有发现什么?

  (联系:因为这个长方形的长是5厘米,所以可以每行摆5个1平方厘米的正方形,宽是3厘米,所以可以摆3行。所以第2种方法其实与第4种方法是相类似的。就是长方形所含面积单位的个数等于长、宽厘米数的积。)

  师:经过刚才的计算,我们发现用乘法来计算长方形的面积比较简便。现在请你们猜一猜,长方形面积的计算方法是怎样的呢?(学生猜测,出现长方形的面积=长×宽(板))

  那我们的这个猜想到底对不对呢,(在上面的猜想上打个问号)下面我们继续研究。

  (设计意图:学生先初步求长5厘米、宽3厘米的长方形的面积,初步感知长方形的面积不仅跟它的长和宽有关,而且猜想长方形的面积=长×宽。那这个

  猜想到底对不对呢,学生带着想要去验证这个计算方法的急迫心情开始下面的活动。)

  2、动手操作,验证猜想。

  (1)师:老师在每组桌上摆了一个信封,在每个信封里放了许多面积是1平方厘米的小正方形,请你自己动手来拼各种各样的长方形。

  (2)在拼长方形之前,老师要提两个要求:

  ①用到的小正方形的个数不限,想用几块就用几块。

  ②同桌合作,一个人拼,一个人记录。也可以交换着拼和记录。每拼出一个长方形,就请你在这张表格(实物投出表格)中记录下你这个长方形的长、宽和面积。然后再接着拼。

  ③拼好以后,请你和同桌相互说说你拼的这个长方形:长是多少?宽是多少?用了多少个面积是1平方平方厘米的小正方形?所以它的面积是多少平方厘米?

  3、反馈交流。

  (1)(指名学生反馈)现在谁愿意来讲一讲你是怎么拼的?你拼的.长方形长是多少?宽是多少?用了多少个小正方形?所以它的面积是多少平方厘米?(学生边说师边在电脑中输入。)

  (2)其他同学还有不同的拼法吗?

  4、四人小组讨论。把你们的表格放在一起,相互观察表格,你从大家的表格中能发现什么规律了吗?你发现长方形的面积与它的长和宽有什么关系了吗?

  5、:刚才我们通过大胆猜想,并通过自己的实验进行了验证,发现了长方形的面积=长×宽。这种学习方法对我们的学习有很大的帮助,希学习新本领时,经常想起这种方法。

  (设计意图:小组合作,不仅可以促进学生的学习,而且在合作中验证了自己的猜想,找到解决问题的办法,也培养了合作的意识,增强了团队的力量。)

  6、寻找正方形的面积计算方法。

  (1)学生猜想正方形面积的计算方法。

  (2)(电脑出示)一个长7分米、宽5分米的长方形,求出它的面积。

  (3)再把这个长方形渐变成长6分米、宽5分米的长方形、长5分米、宽5分米(边长5分米的正方形)。让学生自己计算面积。

  (4)得出正方形的面积计算方法。正方形的面积=边长×边长。

  (设计意图:学生再次猜想,并利用迁移,找到了正方形的面积计算方法。)

  7、比较长方形和正方形的面积计算方法。现在我们来比一比,长方形和正方形的面积计算公式,你发现了什么?(通过都是用乘法来进行计算的。不同的是长方形必须知道长方形的长和宽,正方形只要知道边长就行了,其实正方形是长和宽相等的长方形。)

  三、应用方法,巩固深化。

  1、先量一量,再计算它们的面积。

  让学生先估计它们的面积。

  学生动手测量并计算。

  反馈交流。

  2、先估计书本封面和黑板的面积,再动手测量,计算它们的面积。

  3、学校在开展绿化、美化校园活动中,在操场西边修了一个边长是5米的正方形花坛,请你帮忙算算花坛的面积是多少?如果在花坛的四周围一圈栏杆,请你帮忙算算栏杆有多长?

  4、前两天,老师就遇到了一件麻烦事:我办公桌上的一块面积是24平方分米的台玻璃,不小心被打破了,我想再配一块大小相等的玻璃,请你们帮

《面积计算》教案7

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

  2.培养学生观察能力、动手操作能力和类推迁移的能力。

  3.培养学生勤于思考,积极探索的学习精神。

  教学重点

  理解三角形面积计算公式,正确计算三角形的面积。

  教学难点

  理解三角形面积公式的推导过程。

  教学过程:

  一、复习铺垫。

  1.剪下第137页的三角形,标出它的底和高(量出底和高的长度)

  2.出示长方形、正方形、平行四边形、三角形的图片

  提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?

  师:今天我们一起研究“三角形的面积”(板书课题)

  3.学习新知识之前共同回忆平行四边形面积的计算公式是怎样得出的?(电脑演示推导过程)

  二、指导探索

  第一部分:数方格面积。

  1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)

  2.订正:看一看电脑博士数出的每个三角形的面积。

  (演示课件:拼摆图形下载)

  3.评价一下以上用“数方格”方法求出三角形面积。

  第二部分:推导三角形面积计算公式。

  拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

  启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  1.用两个完全一样的直角三角形拼。

  (1)教师参与学生拼摆,个别加以指导

  (2)电脑演示拼摆过程(演示课件:拼摆图形下载)

  (3)讨论:①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

  2.用两个完全一样的锐角三角形拼。

  (1)组织学生利用手里的学具试拼。(指名演示)

  (2)电脑演示拼摆的过程(突出旋转、平移),(演示课件:拼摆图形下载)

  提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  3.用两个完全一样的钙角三角形来拼。

  (1)由学生独立完成。

  (2)(演示课件:拼摆图形下载)

  4.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的`平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  第三部分:三角形面积的应用。

  1.例1、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

  2.由学生独立解答。

  3.订正答案(教师板书)

  5.6×4÷2=11.2(平方厘米)

  答:这个三角形的面积是11.2平方厘米。

  三、质疑调节

  1.总结这一节课的收获,并提出自己的问题。

  2.教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  (3)把三角形转化成已学过的图形,还有别的方法吗?

  四、反馈练习

  1.下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。

  2.计算下面每个三角形的面积。

  (1)底是4.2米,高是2米;

  (2)底是3分米,高是1.3分米;

  (3)底是1.8米,高是.1.2米;

  3.指出P69三个三角形的底和高,算出它们的面积各是多少?

  五、板书设计

  典型例题

  1、一个三角形的底是18厘米,面积是126平方厘米,高是多少厘米?

  分析:两个完全一样的三角形可以拼成一个平行四边形,三角形与拼成的平行四边形等底等高。

  先用三角形面积乘以2,求出平行四边形面积,再用平行四边形面积除以底(18厘米),就是平行四边形的高,也就是三角形的高。

  解:(厘米)

  答:三角形的高是14厘米。

  2、如图,正方形ABCD,三角形(1)的面积比三角形(2)的面积大8平方厘米,厘米,求DE的长。

  分析:正方形中包括梯形AOCD,三角形ADE中也包括梯形AOCD。三角形(1)的面积比三角形(2)大8平方厘米,说明三角形ADE的面积比正方形ABCD的面积大8平方厘米。正方形面积是(平方厘米),那么三角形ADE的面积就是(平方厘米),已知三角形ADE的面积和高,就可以求出三角形的底(DE)。

  解:(平方厘米)

  (厘米)

  答:DE的长为21.6厘米。

  3、一个等腰直角三角形的斜边长是6分米,这个等腰直角三角形的面积是多少?

  指导:按常规方法,只有找出三角形的底和高才能求出三角形的面积,显然此种途径用小学所学的数学知识是行不通的。我们可以把四个完全一样的等腰直角三角形拼成一个正方形(如图)

  边长是6分米的正方形是一个等腰直角三角形面积的4倍。

  (平方分米)

  答:这个等腰直角三角形的面积是9平方分米。

  例4下图中平方厘米,D、E、F分别是BC、AC、AD的中点,求

  分析:三角形ABD和三角形ADC是两个等底等高的三角形,所以它们的面积相等,三角形ADC的面积占三角形ABC的一半,面积是平方厘米。在三角形ADC中,三角形ADE和三角形CDE等底等高,所以三角形ADE的面积占三角形ACD面积的一半,是平方厘米。在三角形ADE中,AEF和DEF是两个等底等高的三角形,它们的面积相等,所以三角形DEF的面积相当于三角形ADE的一半,即平方厘米。

  (平方厘米)

  答:三角形DEF的面积是3平方厘米。

《面积计算》教案8

  教学内容;

  教科书第82—84页。

  教学目标:

  1、经历长方形和正方形面积计算公式的推导过程,理解并掌握这两个面积计算公式,能运用公式进行长方形和正方形的面积计算,并能用来解决接但的实际问题。

  2、在学习活动中发展观察能力、操作能力、空间想象能力和抽象能力,培养符号感。

  3、进一步激发探索数学问题的兴趣和欲望,进一步培养合作意识和合作能力。

  教学重难点:

  教学重点是组织学生探索长方形的面积计算公式。

  教学难点是运用公式进行长方形和正方形面积计算

  教学准备:

  每人准备12个边长1厘米的政纲性硬纸片‘1张电话卡或其他类似的卡片。

  教学课时:

  1课时。

  教学过程:

  一、 导入新课

  1、出示两组长方形,第一组等宽不等长,第二组等长不等宽。

  2、提问:每组中两个长方形哪个的面积比较大,你是怎么看出来的?

  3、谈话:通过我们对两组长方形的观察,发现长相等的两个长方形,宽比较大的面积比较大;宽相等的两个长方形,长比较大的面积大,这说明了长方形的面积与它的长和宽有关系。那么,有什么关系呢?这节课我们就来研究长方形的面积计算,同时也研究正方形的面积计算。(板书课题)

  二教学新课

  1、 教学例1。

  (1)谈话:请同学们拿出自己准备好的边长1厘米的正方形卡片,四人合作摆出3个不同的长方形。然后一起看一看摆成的每个长方形长是多少厘米,宽是多少厘米,用了多少个1平方厘米的正方形,面积是多少,再分别填写在自己的课本第82页的表格里。

  (2)学生小组合作摆长方形,彼此交流,各自填表。

  (3)展示部分小组填写的表格。

  提问:每个长方形中正方形卡片的个数你们是数出来的,还是算出来的,说给大家听听。表中长方形的面积的平方厘米数与所用卡片的个数有什么关系?(用了几个1平方厘米的小正方形,拼成的长方形的面积九世纪平方厘米。)

  2、 教学例2。

  (1)(出示例2左图)谈话:要求你们量出这个长方形的长和宽,再量出它的面积。想一想,量长和宽用什么工具量,量面积用什么量?怎么量?

  学生各自测量课本上的例2左图。

  谈话:你测量的长方形的长和宽各是多少?面积是多少?在小组内交流。

  指名说出测量结果和测量方法。

  (2)(出示例2右图)谈话:这幅图你打算怎样测量他的面积?没人各自在书上测量,如果面积单位不够用,自己想办法解决。如果无法解决可与同学交流商量。

  提问:这个长方形的长、宽各是多少厘米?面积是多少平方厘米?你是怎样量面积的?(可以沿着长摆一行,共用5个面积单位;沿着宽摆一列,共用4个面积单位,说明每行5个面积单位,可以摆4行,一共有20个面积单位,面积20平方厘米。)

  3、教学第82页“试一试”。

  (1)出示题目。

  (2)谈话:这个长方形已经量出了它的长和宽,你能利用刚才量长方形面积的.经验,想像出这个长方形的面积怎样量并说出它的面积吗?

  (3)在小组里交流想法。

  (4)小组代表向全班同学汇报。

  4、归纳长方形的面积计算公式。

  (1)谈话:通过刚才的一系列操作活动,你们是不是发现了长方形的面积与它的长和宽的关系。怎样计算长方形的面积?在小组里讨论。

  (2)指名回答,根据回答板书:长方形的面积=长×宽。

  (3)讲述:这就是长方形的面积计算公式。为了更简明,我们还可以用字目标是这个共识,这个公式是S=a×b、(板书:S=a×b)在这个公式里,S表示什么?a表示什么?b呢?

  (4)提问:计算长方形的面积需要知道那两个条件?你能运用长方形的面积计算公式,解释一下刚上课时我们讨论的两组图形为什么宽相等、长越大面积越大,长相等、宽越大面积约大吗?

  5、探索正方形的面积计算公式。

  (1)提问:运用长方形的面积计算公式能不能计算正方形的面积?根据正方形边长的特点和边的名称,你认为用什么公式计算正方形的面积更合适?

  (2)学生讨论后提名回答,根据回答板书:正方形的面积=边长×边长。

  (3)提问:如果用a表示正方形的边长,你能用字母表示出正方形的面积公式吗?(板书: S=a×a)计算正方形的面积需要几个条件?什么条件?

  三、组织练习。

  1、 做“想想做做”第1题。

  学生独立计算,指明板演。订正时注意是不是正确使用面积单位。

  2、 做“想想做做”第2题。

  (1)出示题目,明确要求。

  (2)谈话:现在让你估计长方形、正方形的面积,你打算怎样估计?与上两节课我们估计长方形、正方形的面积是在方法上有什么不同?

  (3)让学生各自估计,记下估计结果,再测量、计算,并检验自己估计得怎么样。

  (4)指名说一说估计方法和结果,以及测量和计算的结果。

  3、 做第83页“试一试”的两道题。

  独立计算,指名两人扮演,全班共同订正,注意算式和答语中的单位名称。

  4、 做“想想做做”第4题。

  (1)默读题目,明确要求。

  (2)各自用手中的电话卡或其他卡片测量数学书封面各有几个电话卡那么大,并计算书本封面面积。

  四、课堂作业

  做“想想做做”第3题。

  五、全课总结

  1、提问:这节课你学习了那些知识?有什么收获?还有什么不明白的地方?

  2、谈话:长方形和正方形的面积计算在日常生活中发泛应用。例如,油漆我们的黑板就要先算出黑板的面积,为做教室门准备材料,就要计算教室门的面积。你能估计一下我们教室的黑版面和教室门正面的面积玛?回到家里可以找一些表面是长方形或正方形的物体,测量并计算出面积。

《面积计算》教案9

  一、复习准备,数学教案-梯形的面积计算。

  1、出示平行四边形图。

  2、提问:这是什么图形?知道底和高会求面积吗?如果剪去这个平行四边形的一角,剩下的会得到什么图形呢?哪个图形的面积你会直接计算?梯形的面积该怎样计算呢?

  3、揭题。

  二、新授。

  1、出示梯形图。

  (1)提问:这是什么图形?说说梯形各部分的名称。提示:求梯形的面积能不能像推导三角形面积计算公式一样,把它转化成已经学过的图形,计算它的面积?

  (2)操作实验。

  反馈:你拼成了什么图形?指名拼一拼。

  指导拼法。

  ①重合。

  ②旋转。哪个梯形旋转?一般可以怎样移动一个梯形?旋转到两下底成一条直线为止。

  ③平移。

  思考:通过重合、旋转、平移的方法将两个完全一样的梯形拼成了一个平行四边形,每个梯形的面积与拼成的平行四边形的面积有什么关系?反过来还可以怎么说?

  2、出示直角梯形图。

  (1)两个完全一样的直角梯形又能拼成一个怎样的图形,动手拼一拼。

  (2)提问:拼成了什么图形?平行四边形与梯形有什么关系?

  (3)观察:每个直角梯形的面积与拼成的长方形的面积有什么关系?

  小结:两个完全一样的梯形经过重合、旋转、平移的方法可以拼成一个平行四边形或长方形,并且每个梯形的面积是拼成的平行四边形或长方形的一半。

  3、观察拼成的平行四边形。

  思考:(1)比较梯形的上底下底与拼成的平行四边形的底有什么关系?

  (2)比较梯形的高与拼成的平行四边形的高有什么关系?

  同桌讨论完成填空,小学数学教案《数学教案-梯形的面积计算》。

  4、填表。

  (1)提问:是不是所有的完全一样的两个梯形都能拼成平行四边形呢?拿出梯形用同样的方法拼一拼,并把数据填入表中。

  (2)从实验中你有什么发现?说说怎样求梯形的面积?

  5、教学字母公式。

  提示:可以将梯形转化成平行四边形来推导它的'面积计算公式,还可以将它转化成别的图形来推导它的面积计算公式。课后思考。

  三、应用。

  1、 应用公式求梯形面积必须知道什么?知道梯形的上底、下底和高怎样求出梯形的面积?

  2、 学习例题。

  3、 完成“练一练”。

  4、 拓展。

  四、总结。

  1、 这节课学习了什么内容?是将梯形转化成什么图形来学习它的面积计算公式的?

  2、 通过什么方法转化的?

  3、 梯形的面积计算公式是什么?应用公式时要注意什么?为什么要除以2?

  五、板书。

  梯形面积的计算

  平行四边形的面积 = 底×高

  梯形的面积 = (上底+下底)×高 2

  S = (a+b) h 2

《面积计算》教案10

  教学内容:

  教材第9—10页例4、例5及“练一练”、“试一试”、“练习二”第6-9题。

  教学目标:

  1.通过操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

  2.进一步体会转化方法的价值,培养自己应用已有知识解决新问题的能力,发展自己的空间观念和初步的推理能力。

  教学重点:

  经历探究三角形面积计算公式的过程,理解并掌握三角形的面积计算公式。

  教学难点:

  理解三角形面积公式的推导过程。

  教学准备:

  多媒体课件、教材第115页的三角形。

  探究方案:

  一、自主准备

  1.说一说:下面每个小方格表示1平方厘米,你知道涂色三角形的面积各是多少平方厘米吗?你是怎么想的?

  ()()()

  2.思考:

  (1)三角形的面积与它拼成的平行四边形的面积有什么关系?

  (2)有没有直接计算三角形面积的方法呢?

  (3)假如要你探究三角形的面积,你打算把它转化成什么图形进行研究?我想转化成

  二、自主探究

  1.拼一拼:从课本第115页上选两个完全一样的三角形剪下来,看看能不能拼成平行四边形。

  2.填一填:你剪下的两个完全一样的三角形能拼成平行四边形吗?如果能,拼成的平行四边形的面积和每个三角形的面积各是多少?请填写下表。

  3.想一想

  (1)拼成平行四边形的两个三角形有什么关系?

  (2)拼成的平行四边形的底和高与原三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?

  (3)根据平行四边形的面积公式,怎样求三角形的面积?

  三、自主应用

  试一试:完成书上第10页的“试一试”。

  四、自主质疑

  说一说:

  (1)三角形的面积公式是怎么推导的?你还有什么疑问?

  (2)你认为本节课应学会什么?

  教学过程:

  一、明确目标

  提问:同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?

  二、交流提升

  1.出示例4的方格图及其中的.平行四边形。

  (1)全班交流:每个涂色的三角形的面积各是多少平方厘米?

  (2)小组交流:你是怎么得出每个三角形的面积的?说说你的想法。

  (3)全班交流:有人用数方格的方法得出三角形面积,也有同学先求出平行四边形的面积,再除以2得出三角形的面积。

  三角形的面积和平行四边形的面积会有什么联系呢?

  2.交流三角形面积公式的探究情况。

  (1)出示例5:展台出示各组的表格填写情况,各组派代表上台展示拼的过程。

  小组讨论:你剪下的两个完全一样的三角形的底和高各是多少?面积是多少?拼成的平行四边形的底和高各是多少?面积是多少?

  (2)全班交流:你有什么发现?(即例5下面的问题)

  (3)梳理、明确

  两个完全一样的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成一个平行四边形。

  这个平行四边形的底等于三角形的底,这个平行四边形的高等于三角形的高。因为每个三角形的面积等于拼成的平行四边形面积的一半,所以三角形的面积=底×高÷2,用字母表示三角形面积公式:S = a h÷2

  3.交流“试一试”

  (1)全班交流:你是怎么想的?计算三角形的面积为什么要除以2?

  (2)学生订正。

  三、巩固提升

  1.完成“练一练”的1、2两题。

  学生先独立完成,再讨论交流:两个完全一样的三角形拼成一个平行四边形,三角形的面积和平行四边形的面积有什么关系?(让学生弄清谁是谁的2倍,谁是谁的一半。)

  2.练习二第6题。

  学生独立完成,组织校对。

  3.练习二第7题。

  (1)多媒体出示第7题的方格图及平行四边形和三角形。

  (2)独立思考:你认为图中哪几个三角形的面积是平行四边形面积的一半?为什么?

  (3)小组交流:分别是怎么想的。

  (4)全班交流、总结

  可以通过计算,判断三角形的面积是不是平行四边形面积的一半,也可以把三角形的底和高与平行四边形逐一比较,很快作出判断。

  4.练习二第8、9题。

  (1)学生独立完成,再交流想法。

  (2)学生订正。

  四、总结延伸

  本节课你有什么收获?还有什么疑问?

  板书设计:

  三角形的面积计算

  两个完全一样的三角形都可以拼成一个平行四边形。

  平行四边形的面积=底×高

  2倍一半

  三角形的面积=底×高÷ 2

《面积计算》教案11

  教学内容:教材第101页的内容复习面积的计算,完成练习十九第6-10题。

  教学要求:使学生加深理解和掌握已经学过的面积计算公式,进一步了解这些计算公式的推导过程及相互之间的联系,能正确地篝面积的计算。

  教学过程:

  一、揭示课题。

  1、口算

  练习十九第6题,让学生口算。

  2、引入课题。

  这节课,我们复习学习过的面积计算。通过复习,要弄清面积计算公式的`推导过程和相互之间的联系,能应用公式进行面积计算。

  二、整理公式。

  1、提问:什么叫面积?我们学过哪些图形的面积计算?

  面积的计量单位有哪些?你能说一说平方厘米、平方分米和平方米的大小吗?

  2、整理公式。

  出示第101页的图形。

  让学生填写公式并思考推导过程。

  3、归纳公式

  指导学生说明相应的计算公式和推导过程,老师板书公式。

  追问:三角形、梯形面积计算时都要注意什么?

  想一想,这些图形的面积计算公式都以哪个图形的面积计算为基础来推导的?

  三、组织练习。

  1、做练习十九第7题。

  让学生做在练习本上。

  2、做“练一练”第1题。

  小黑板出示,让学生做在课上。

  指名口答,老师板书在小黑板上,结合让学生说说三角形、梯形和圆的面积是怎样算的。

  3、做“练一练”第2题。

  指名一人板演,其余学生做在练习本上。

  四、布置作业。

  课堂作业:练习十九第8、9题。

  家庭作业:练习十九第10题。

《面积计算》教案12

  教学内容:

  教科书88页和89页

  教学目标:

  (1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。

  (2)培养学生合作学习的能力以及动手操作能力。

  (3)进一步渗透旋转、平移的数学思想。

  教学重点:理解并掌握梯形面积公式的计算方法。

  教学难点:理解梯形面积公式的推导过程。

  教具准备:多媒体课件

  教学过程:

  一、创设情境,引出问题

  教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

  问:同学们这块地是什么图形啊?

  生1:这是一个梯形。

  问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

  生2:必须先知道梯形的面积。

  师:今天我们这节课就来研究“梯形面积的计算”(板书)。

  二、探究新知。

  (1)、铺垫孕伏。

  组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

  重点突出旋转、平移、割补的数学思想。

  (2)、协作研讨,探求方法

  1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

  师:谁能介绍一下这个梯形?

  生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

  师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

  2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

  生4: (3+5)42=16(平方厘米)

  生5: 542+342=16(平方厘米)

  生6: (5+3)42=16(平方厘米)

  生7: (5-3)42+34=16(平方厘米)

  生8: (5+3)(42)=16(平方厘米)

  生9: (3+5)24=16(平方厘米)

  生10: 34+(5-3)42=16(平方厘米)

  师生交流、点评……

  3、总结规律,渗透数学思想方法

  师:这些方法有什么共同的地方吗?

  生11:结果都是16平方厘米。

  生12:每种方法的计算过程中都用到3、4、5、2这几个数字。

  师:这几个数字和梯形有什么关系吗?

  生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

  师:现在谁能猜一猜梯形的面积计算公式是怎样的?

  生14:梯形的面积=(上底+下底)高2

  师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

  生15:S=(a+b)h2

  三、应用知识,解决问题

  1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

  生16:(300+200)100210=2500(棵)

  2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

  3、提高能力练习:共同探讨练习十八的第四题。

  四、知识小结,体验学习的快乐!

  教学反思:

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的'推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

  我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

《面积计算》教案13

  教学目标:

  1、知识技能目标——学会推导概括出三角形面积公式,能运用公式计算简单的实际问题。

  2、发展性目标——通过动手操作,培养学生观察、概括、分析推陈出新理能力和实践能力,培养学生发现问题、提出问题并解决问题的能力。

  3、创造性目标——多途径探索推导三角形面积计算公式的方法,培养学生的'求异思维和创新精神。

  教学重难点:使学生自己动手发现三角形的面积公式。

  教学用具:三角形纸片、教具,小黑板。

  教学过程:

  一、创设情境、激发猜想

  出示一幅由各种图形组成的房子。

  师:这座房子由哪些图形拼成的?

  你会计算出它们的面积吗?怎

  么算?还有哪一个图形的面积没学?(三角形)想学吗?今天我们就来研究三角形的面积。(板书课题:三角形的面积计算)

  师:请同学们猜一猜,三角形的面积与什么因素有关?(角、边、高……)

  到底谁猜得对,我们就一起来验证一下吧。

  二、实践操作,探索问题:

  师:小明也想拼一座房子,可他手上只有一堆三角形的拼板,这可怎么呢?你们能帮他想想办法拼一拼吗?

  分组拼板:

  1、以四人小组为单位,每组都有一副像小明手中的几个三角形拼板,一起动手拼一拼。

  2、请一组派代表来说说怎么拼,并上台拼给大家看。

  师:同学们真利害,帮助小明解决了问题。只有三角形你们也能拼出房子来,怎么拼的,发现了什么?

  两个三角形可以拼出一个平行四边形。

  是两个三角形就可以了吗?(强调要两个完全一样的三角形)

  你能举个例子吗?

  说明了两个一样的锐角三角形可以拼成一个平行四边形。

《面积计算》教案14

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

  教学过程

  复习导入

  1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式.

  1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

  3.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  4.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  5.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的`面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

《面积计算》教案15

  一、以旧引新(6分钟)

  1.复习正方形的面积公式和圆的面积公式。

  2.回答下面各圆的面积。

  1.说出S正=a2、S圆=πr2

  2.左圆面积=π×22=4π

  右圆面积=π×(2÷2)2=π

  1.边长是5cm的正方形面积是多少?

  5×5=25(cm2)

  2.如果r=4cm,则圆的面积是多少?

  3.14×42

  =3.14×16

  =50.24(cm2)

  二、动手操作,感知特点。(15分钟)

  1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,

  思考:

  (1)外方内圆的图形是怎样组成的?它有什么特点?

  老师明确:外方内圆的图形称为圆外切正方形。

  (2)外圆内方的图形是怎样组成的?它有什么特点?

  老师明确:外圆内方的图形称为圆内接正方形。

  2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。

  3.引导学生在圆内画一个最大的正方形。

  4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。

  1.

  (1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。

  (2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。

  2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的.圆心。

  3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。

  4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。

  3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。

  三、探究思考,解决问题。(10分钟)

  1.计算圆外切正方形与圆之间部分的面积。

  (1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。

  (2)组织学生算出正方形和圆之间部分的面积。

  2.计算出圆内接正方形与圆之间部分的面积。

  课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。

  1.

  (1)观察图形的特点,讨论计算方法并尝试汇报交流。

  (2)分别算出这个圆和正方形的面积:

  S圆=3.14×12=3.14m2

  S正=2×2=4m2

  S阴=S正-S圆

  =4-3.14

  =0.86m2

  2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。

  4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?

  四、拓展应用。(5分钟)

  1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。

  2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?

  1.读题,审题,明确题意后,尝试独立完成。

  2.独立完成,然后全班汇报。

  5.计算阴影部分的面积。

  ×102π-102≈57(cm2)

  五、全课总结。(5分钟)

  1.谈谈这节课你有哪些体会。

  2.布置作业。

  学生谈本节课学习的收获。

  教学过程中老师的疑问

【《面积计算》教案】相关文章:

长方形面积的计算教案汇总8篇04-14

《梯形面积的计算》教学反思04-02

长方形面积的计算教案范文合集六篇05-09

面积的教案11-21

长方形面积的计算教案范文合集七篇05-13

《长方形面积的计算》教学设计06-30

圆的面积教案10-13

面积和面积单位教案七篇04-03

面积和面积单位教案十篇12-25

面积和面积单位教案范文八篇04-11