《圆柱的体积》教案汇编(15篇)
作为一名优秀的教育工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。快来参考教案是怎么写的吧!下面是小编整理的《圆柱的体积》教案,欢迎阅读,希望大家能够喜欢。
《圆柱的体积》教案1
探究目标:
1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:
学生会应用圆柱体积公式解决实际问题。
探究过程:
一、迁移引入
提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?
二、自主探究
1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?
怎样求这个长方体的容积呢?
2、出示圆柱形鱼缸。
⑴估测。这个圆柱形鱼缸的容积大约是多少?
⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:
生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)
⑷评价。
组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的'计算方法。
⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。
⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?
3、自学例题。
组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。
三、巩固练习
做教科书第80页“做一做”中的第2题、练习二十一的第5题。
学生独立完成,指名板演,集体评讲。
四、创意作业
学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。
在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?
《圆柱的体积》教案2
教学内容:
教材第10~12页圆柱的体积公式,例1、例2和练一练,练习二第1~5题。
教学要求:
1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。
2.培养学生初步的空间观念和思维能力;让学生认识转化的思考方法。
教具准备:
圆柱体积演示教具。
教学重点:
理解和掌握圆柱的体积计算公式。
教学难点:
圆柱体积计算公式的推导。
教学过程:
一、铺垫孕伏:
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求说出解题思路。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
3.提问:什么叫体积?常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积高)
二、自主研究:
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)
2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。(可分小组进行)
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)
(3)探索求圆柱体积的公式。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的.底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的体。这个长方体的底面积与圆柱体的底面积,这个长方体的高与圆柱体的高。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:。(板书:圆柱的体积=底面积高)用字母表示:。(板书:V=Sh)
(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
4.教学例1。
出示例1,审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位)
0.9米=90厘米2490=2160(立方厘米)
5.做练习二第1题。
让学生做在课本上。指名口答,集体订正。追问:圆柱的体积是怎样算的?
6.教学试一试一个圆柱的底面半径是2分米,高是8米,求它的体积。指名一人板演,其余学生做在练习本上。评讲试一试小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。
7.教学例2。
出示例2,审题。小组讨论计算方法,然后学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?(单位统一,最后结果用体积单位,结果保留整数。)
三、巩固练习
第12页,练一练。
四、课堂小结
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。
五、布置作业
练习二第2,3,4,5题及数训。
六、板书设计:
圆柱的体积
长方体的体积=底面积高
圆柱的体积=底面积高
V=Sh
《圆柱的体积》教案3
一、教学目标
【知识与技能】
掌握圆柱的体积计算公式,能够正确计算圆柱的体积。
【过程与方法】
通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。
【情感态度价值观】
感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。
二、教学重难点
【教学重点】
圆柱的体积公式。
【教学难点】
圆柱体积公式的推导过程。
三、教学过程
(一)引入新课
提问:长方体和正方体的体积公式是什么?
预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体
(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。
(二)探索新知
1.圆柱体积公式的猜想
在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。
提问:长方体和正方体的体积相等吗?
预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。
追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的`体积公式可能是什么?
预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。
2.圆柱体积公式的推导
回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。提问:圆柱可以转化成已知体积公式的哪个图形呢?
预设:可以把圆柱转换成长方体。
让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢?
预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的图形就越接近长方体。
组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。
预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。
3.圆柱体积公式的推出
提问:圆柱的体积公式是什么?
预设:圆柱的体积=底面积×高
用大写字母V表示圆柱的体积,S表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。
预设:V=Sh
教师强调字母V、S是大写,h是小写。
追问:回顾探究圆柱体积公式的过程,有哪些心得体会?
预设1:可以用长方体体积公式推导出圆柱体体积公式;
预设2:把圆柱转化成长方体,与探索圆面积的方法类似;
预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。
(三)课堂练习
试一试
一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?
(四)小结作业
提问:通过本节课的学习有什么收获?
课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。
四、板书设计
《圆柱的体积》教案4
最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。现把它撷取下来与各位同行共赏。
……
师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?
生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?
生1:我是从书上看到的。
(举起的手放下了一大半。很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。老师便顺水推舟,让他们来讲。)
生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!
师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。那不就证明了圆柱体积的计算公式就是用底面积乘高吗?
(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。)
师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。)
生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?
师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。那么圆柱体的体积就应该用每个圆片的面积×圆的个数。圆的个数也就相当于圆柱的高。所以我认为圆柱体的体积可以用每个圆的面积(底面积)×高。
师:了不起的一种想法!(师情不自禁的鼓起了掌。)
生6:我看过爸爸妈妈“扎筷子”。把十双同样的筷子扎在一起就变成了一个近似的圆柱体。我们可以把每根筷子看成一个长方体,那么扎成的近似圆柱体的体积应该是这二十个小长方体的体积之和。又因为它们具有同样的高度,运用乘法分配律,就变成了这二十个小长方体的底面积之和×高。
师:你真会思考问题!
生7:我还有一种想法:学习圆的面积时我们知道,当圆的半径和一个正方形的边长相等时,圆的面积约是这个正方形的3.14倍。把叠成这个圆柱体的这无数个圆都这样分割,那么圆柱体的体积不也大约是这个长方体的体积的3.14倍吗?长方体的体积用它的底面积×高,圆柱体的体积就在这基础上再乘3.14,也就是用圆柱体的底面积×高。
生8:把圆柱体形状的橡皮泥捏成等高长方体形状的橡皮泥,长方体体积用底面积乘高来计算,所以计算圆柱体的体积也是用底面积乘高吧!
师:没想到一块橡皮泥还有这样的作用,你们可真是不简单!
……
整节课不时响起孩子们、听课老师们热烈的掌声。
过去的数学课堂教学,忠诚于学科,却背弃了学生,体现着权利,却忘记了民主,追求着效率,却忘记了意义。而这个片断折射出,新课标理念下的不再是教师一厢情愿的“独白”,而是学生、数学材料、教师之间进行的一次次真情的“对话”。
现从“对话”的视角来赏析这则精彩的片段。
一、“对话”唤发出学习热情。
《新课程标准》指出:有意义的数学学习必须建立在学生的主观愿望和知识经验的基础上,在这样的氛围中,学生的思考才能积极。在当今数字化、信息化非常发达的社会中,学生接受信息获取知识的途径非常多,圆柱体的体积计算方法对学生来说并不陌生,如果教师再按传统的教学程序(创设情境——研究探讨——获得结论)展开,学生易造成这样的'错误认识:认为自己已经掌握了这部分知识而失去对学习过程的热情。而本课,教学伊始,教师提问“圆柱体的体积如何计算”,让学生先行呈现已有的知识结论,在通过问题“你是怎样理解这个公式的呢?”把学生的注意引向对公式意义的理解,学生积极主动的投入思维活动,唤发学习热情。
二、“对话”迸发出智慧的火花
“水本无华,相荡而生涟漪;石本无火,相击始发灵光。”思维的激活、灵性的喷发源于对话的启迪和碰撞。本课如果按照教材的设计:通过把圆柱体转化为长方体,研究圆柱体和长方体间的关系,得出计算公式:底面积×高,经历这样的学习过程学生的思维是千篇一律的,获得的发展也是有限的。而这位教师对教材进行相应的拓展,先呈现公式,后提问“你是怎样理解这个公式的呢?”,使学生的思维沿着各自独特的理解“决堤而出”。
三、“对话”赢得心灵的敞亮和沟通
“真行!当然这仅是你的猜测,要是再能证明就好了。”“你真聪明!能用以前学过的知识解决今天的难题!”“你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。”……教师不断地肯定着学生的每一种观点,引燃学生的每一丝发现的火花;同时象一位节目主持人一样,平和、真诚,倾听、接纳着学生的声音,在课堂上,学生真是神了、奇了,说出一种又一种的方法,连听课老师也情不自禁的鼓起掌来。此情此景,我们不难看出,老师能注意蹲下身来与学生交流,注意寻求学生的声音,让学生在一种“零距离”的、活跃的心理状态下敞亮心扉,放飞思想,进行着师生“视界融合”的真情对话,赢得心灵的敞亮和沟通。
数学教学在对话中进行,展示着民主与平等,凸现着创造与生成。有效的对话中不仅有信息的传输,更有思维的升华;不仅能增进学生的理解,更能促进教师的反思;不仅有继承的喜悦,更有创造的激情。这则教学片断,有很多的精彩值得我们欣赏与赞叹。我想说:我的内心很受鼓舞,我会向这位老师学习,让自己的课堂也能成就精彩的时刻!
《圆柱的体积》教案5
设计说明
1.创设问题情境,激发学习兴趣。
兴趣是最好的老师。新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的问题情境,引导学生经过思考、讨论、交流,找到解决的方法。这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。
2.实践操作,促进知识迁移。
知识和经验的积累来源于大量的实践活动。动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。
课前准备
教师准备 圆柱的体积公式演示教具 多媒体课件
学生准备 圆柱的体积公式演示学具
教学过程
第1课时 圆柱的体积(1)
⊙创设情境,导入新课
1.出示一块圆柱形橡皮泥。
师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?
2.学生小组讨论交流并汇报。
预设
生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。
生2:可以把它放到量杯中,计算上升的水的体积。
3.引入新课。
解决生活中的问题有很多方法,需要我们去发现、去探究。这节课我们就共同去探究圆柱体积的计算方法。
设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。
⊙新知探究
1.利用知识的迁移,猜想圆柱体积的计算方法。
(1)提出猜想。
师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?
(形状变了,体积没变)
师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?
(2)学生讨论、交流。
2.探究算法。
(1)提出问题:能不能借鉴把圆转化为长方形的方法,把手中的圆柱形学具转化为长方体?
(2)动手操作:把圆柱转化为长方体。
(3)汇报交流:介绍自己的`转化方法。
(结合学生回答,课件演示转化过程:先沿圆柱底面的半径把圆柱平均分成16份,然后拼成一个近似的长方体)
(4)引导学生明确:由于我们分得不够细,所以看起来还不太像长方体;分得越多,拼成的立体图形就越接近长方体。(课件演示将圆柱分成更多等份并拼成一个近似的长方体的过程)
(5)汇报发现。
①拼成的长方体的体积与圆柱的体积有什么关系?
②长方体的底面积、高分别与圆柱的底面积、高有什么关系?
③长方体的体积等于什么?圆柱呢?
3.总结公式。
(1)圆柱的体积怎样计算?为什么?
(圆柱通过分割、拼组,可以转化成近似的长方体。这个近似的长方体的底面积与圆柱的底面积相等,高与圆柱的高相等。因为长方体的体积等于底面积乘高,所以圆柱的体积=底面积×高)
(2)说一说,怎样用字母表示圆柱的体积公式?
(学生反馈:V=Sh)
(3)如果已知d、r、C和h,怎样求圆柱的体积?
求圆柱体积的直接条件是S、h,间接条件是d、r和C,所以圆柱的体积公式也可以表示为V=πr2h、V=πh、V=πh。
(4)圆柱和长方体、正方体一样,都是直柱体,你能总结出求它们的体积的统一计算方法吗?
(直柱体的体积都等于底面积×高)
《圆柱的体积》教案6
教学目标
1.使学生理解和掌握圆柱的体积计算公式,能运用公式计算圆柱的体积、容积,解决一些简单的实际问题。
2.渗透极限思想,发展学生的空间观念。
3、培养学生仔细计算的良好习惯。
重难点
1、圆柱体体积的计算
2、圆柱体体积公式的推导
教学过程
一、复习导入
1.解答下面各题
(1)圆的半径是2厘米。圆的面积是多少平方厘米?
(2)一个长方体,底面积是20平方米,高是2米,体积是多少?
2.导入
我们以前学过了长方体、立方体的体积的计算方法,都可以用公式V=SH进行计算,圆柱体的.体积又该怎样计算呢?这节课我们一起来研究圆柱体体积的计算方法。(揭示课题)
二、探索新知
1.公式推导
(1)自学课本,初步感知圆柱是怎样转化成长方体的,让学生去发现两柱体之间的联系。
(2)操作研讨:演示操作,讨论:拼成的长方体跟圆柱体有什么异同点?
异:长方体变成圆柱体。同:体积、底面积、高都相同。
(3)比较归纳
在自学、操作、观察、讨论的基础上得出:
圆柱体体积=圆柱底面积圆柱的高
V=SH
2.公式应用
(1)例1.读题,学生独立解答,板演、反馈,说说列式依据与应注意的问题。(单位)
类似题练习:
书本试一试和练一练
请同学板演计算的过程,并说明列式的依据.同学之间评.
(3).深入练习,书本第5题.
(4)实际应用:
测量生活中常见圆柱物体:茶叶罐、搪瓷杯,学生自由选择。量底面直径和高,并计算它的体积.
三、课堂总结
回顾学习全过程,知道求圆柱体积所需要的条件。质疑问难。
四、布置作业
作业本一面。
《圆柱的体积》教案7
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题
1、计算圆的'面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题
《圆柱的体积》教案8
教学目标:
1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:用于演示把圆柱体积转化成长方体体积的教具、幻灯片。
教学过程:
一、迁移引入。
1、教师:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)
2、教师:如果这个长方体和正方体的底面积相等,高也相等,那么它们的体积也相等吗?为什么?
3、教师:现在又有一个圆柱体,并且圆柱的底面积和长方体与正方体的底面积相等,高也与它们相等,大家猜猜看,圆柱的体积会与长方体和正方体的体积也相等吗?(指名学生口答)用什么办法来验证呢?
4、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。
二、学习新课。
1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?
2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下。要求:
(1)你准备把圆柱体转化成什么立体图形?
(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。
学生交流,教师动画演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)
(3)教师说明:底面扇形平均分的`份数越多,拼成的立体图形就越接近长方体。
(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)
(5)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)
教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:
圆柱的体积 = 底面积×高
V =Sh
三、利用公式进行计算。
教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?
四、巩固应用。
1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。
五、小结。
教师:这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
《圆柱的体积》教案9
教学内容:
人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:
1.经历探究和推导圆柱的体积公式的过程。
2.知道并能记住圆柱的体积公式,并能运用公式进行计算。
3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。
4.激发学生的学习兴趣,让学生体验成功的快乐。
5.培养学生的转化思想,渗透辩证法和极限的思想。
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程
教具学具准备:教学课件、圆柱体。
教学过程:
一、复习导入
1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
2.回忆一下圆面积的计算公式是如何推导出来的?
(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。
3.课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1.学生猜想可以把圆柱转化成什么图形?
2.课件演示:把圆柱体转化成长方体
①是怎样拼成的?
②观察是不是标准的长方体?
③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
课件出示要求:
①拼成的长方体与原来的圆柱体比较什么变了?什么没变?
②推导出圆柱体的体积公式。
学生结合老师提出的问题自己试着推导。
4.交流展示
小组讨论,交流汇报。
生汇报师结合讲解板书。
圆柱体积=底面积×高
‖ ‖ ‖
长方体体积=底面积×高
用字母公式怎样表示呢? v、s、h各表示什么?
5.知道哪些条件可以求出圆柱的体积?
6.计算下面圆柱的体积。
①底面积24平方厘米,高12厘米
②底面半径2厘米,高5厘米
③直径10厘米,高4厘米
④周长18.84厘米,高12厘米
三、课堂检测
1.判断
①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。( )
②圆柱的底面积扩大3倍,体积也扩大3倍。( )
③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。( )
④圆柱体的底面直径和高可以相等。( )
⑤两个圆柱体的底面积相等,体积也一定相等。( )
⑥一个圆柱形的.水桶能装水15升,我们就说水桶的体积是15立方分米。( )
2.联系生活实际解决实际问题。
下面的这个杯子能不能装下这袋奶?
(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)
学生独立思考回答后自己做在练习本上。
3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
4.生活中的数学
一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。
①覆盖在这个大棚上的塑料薄膜约有多少平方米?
②大棚内的空间大约有多大?
独立思考后小组讨论,两生板演。
四、全课总结
这节课你有什么收获?
五、课后延伸
如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?
六、板书设计
圆柱体积= 底面积×高
长方体体积=底面积×高
《圆柱的体积》教案10
学习目标:
经历探究不规则物体体积的转化、测量和计算过程,在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。学习重点:应用圆柱的体积计算公式解决实际问题。
学习难点:理解瓶子的容积是由装水的圆柱的体积和倒置后无水的圆柱的体积两部分组成的。
学习过程
一.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?
1:瓶子还有多少水?(剩下多少水?)
2:喝了多少水?(也就是瓶子的空气部分。)
3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
二、小组交流、探究新知
1.独立思考、尝试解决问题
怎么求这个矿泉水瓶的容积?根据自己的生活学习经验来想办法解决,2.小组合作,探讨瓶子的容积计算方法
小组合作活动一:要求:小组内拿出课前准备的矿泉水,先请一位同学倒出一部分,再把你的想法在小组内交流交流。
交流:哪位同学上来把你们的想法给大家交流分享一下?(生上台演示讲解。)
3.总结板书:水的体积+空气部分体积=瓶子的容积。
三、同样的方法完成课本例题及做一做。
1.完成例7。指名学生上台板演,2.数学书P27做一做。
四、总结板书
水的体积+空气部分体积=瓶子的容积
形状变了体积不变
五、作业:课本29页练习第10题、13题。
教学反思
本节课是利用所学圆柱的知识解决实际问题。虽然备课时尽量考虑到可能出现的所有情况,但是实际上课的过程中还是出现了没有预料到的情况。
首先,小组合作的时候分组比较大:即有的学生真的参与进去了,有的学生却无事可干,因为计算量比较大,得到数据的同学忙着计算,没有接触到瓶子的同学没有计算的数据,也反映出我们平时小组合作时互相配合的良好习惯还没养成。如果我把小组设定为4人一组或2人一组的话,学生实际的参与程度会更高。
其次,本课的.教学过程中瓶子的容积计算方法的推导过程中,渗透了简便计算的方法,如果在理解底面积x(水的高+空气部分的高)这一步时,如果配上教具展示(把教具中圆柱形的水和倒置后圆柱形的空气部分剪下来,再拼接在一起,形成一个大圆柱。)学生更能理解空气部分体积+水的体积=底面积x(水的高+空气部分的高)表示的具体意义了。
最后,我感觉这节课注重了容积计算方法的推导过程,练习时间较少,还有更多不规则体积的计算,期待在以后的练习中,学生都能找到解决问题的方法!
《圆柱的体积》教案11
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
PPT课件 圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的`圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
《圆柱的体积》教案12
设计说明
本节课是在学生已经了解了圆柱的特征,掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。根据学生的认知水平和已有经验,本节课在教学设计上体现了以下几个特点:
1.创设问题情境,点燃探索激情。
基于“数学来源于生活,又应用于生活”这一理念,教学过程中通过呈现身边圆柱的体积问题,使学生感受到数学与现实生活的密切联系,认识到学习圆柱的体积计算公式的必要性,从而激发了学生的探究兴趣,使学习成为学生自觉的需求。
2.注重直观教学,引导合作迁移。
数学理论的表述往往是抽象的,它影响了学生数学思维的发展,而引导学生从观察和分析有关具体实物入手,就比较容易理解概念的本质特征。所以,教学中不但设计了通过排水法理解圆柱体积的实验,而且还借助教具演示、课件演示等直观教学手段帮助学生推导出圆柱体积的计算公式,使学生从感性认识上升到理性认识,体会到知识的由来。
3.渗透数学思想,发展数学思考。
在本节课的教学中,充分利用教材内容,对学生有效地进行转化思想的渗透,使学生在体会运用转化思想可以化难为易、化复杂为简单、化生疏为熟悉等作用的同时,参与数学活动,提高解决问题的能力。
课前准备
教师准备 PPT课件
学生准备 圆柱形实物
教学过程
⊙情境引入
1.操作感知体积的意义。
通过出示一个装了半杯水的烧杯,引导学生猜测:在烧杯中投入一个圆柱形物体,会有什么现象发生?
(水面升高或者水会溢出来)
师:为什么会有这种现象发生?
预设
生1:圆柱占有一定的空间。
生2:圆柱占据了原来水占有的空间。
生3:圆柱是立体图形,它具有一定的体积。
2.讨论、概括圆柱的体积的意义。
师:你认为什么是圆柱的体积?
(圆柱所占空间的大小,叫做圆柱的体积)
3.引入:这节课我们就一起来探究圆柱体积的计算方法。
(板书课题:圆柱的体积)
设计意图:通过操作、演示,使学生在猜测、观察、讨论中加深对抽象的“体积”概念的理解,自主概括出圆柱的体积的意义,为下面的探究活动做好充分的准备。
⊙自主探究
1.探究影响圆柱的体积大小的相关因素。
(1)课件出示两个大小不等的圆柱。
师:哪个圆柱的'体积比较大?为什么?
预设
生1:左面的圆柱的体积比较大,因为它高一些。
生2:右面的圆柱的体积比较大,因为它粗一些。
生3:不好比较。因为左面的圆柱虽然高,但比较细;右面的圆柱虽然粗,但比较矮。
(2)讨论、概括。
师:圆柱的体积的大小与哪些因素有关?
(圆柱的体积的大小与圆柱的高及圆柱的底面积的大小有关)
《圆柱的体积》教案13
教学内容:圆柱体积练习
教学目标:
1、使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积。
2、学会计算圆柱形容器的容积,并能应用于实际求出所容物体的重量,解决实际生活中的一些问题。
教学重点
圆柱体体积中的一些实际问题。
教学难点
圆柱体体积中的一些实际问题。根据不同的条件求圆柱的体积。
对策:
加强数学问题与生活问题的转化。根据圆柱的容积的计算方法,能解决求圆柱容积的实际问题。
教学预设:
一、复习。
1、求下面圆柱的体积(口头列式,不计算)
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:V=Sh)
2、复习容积。
(1)提问:什么是容积?它与物体的体积有什么区别?
我们是按什么方法计算容积的?
(2)第27页上第5题:先交流学生量的结果,板书几组数据,请学生分别计算。计算后交流解题思路:先求杯子的容积,再根据溶剂与重量之间的关系,计算出容纳物体的重量。
二、解决生活中的实际问题
1、第28页上第7题:先读题,思考理解:挤出的牙膏可以看成是直径为0.5或0.4厘米,高为2厘米的圆柱,从而想到这题计算求每天用去牙膏的体积的计算。
2、补充:一个圆柱形水池,从里面量底面直径为12米,深2.5米。
(1)在这个水池的底面和四周抹上水泥,抹水泥部分的面积是多少?
(2)这个水池最多能蓄水多少吨?(每立方米水重1吨)
学生读题后独立解答,再组织交流解题思路,帮助学生区分表面积与溶积的计算方法。
3、补充:一个用塑料薄膜覆盖的蔬菜棚,长10米,横截面是一个直径为6米的'半圆。
(1)覆盖在这个大棚上的塑料薄膜约有多少厘米?
(2)这个大棚的占地面积是多少?
(3)大棚的空间大约有多大?
通过这一组题,进一步让学生学习用数学知识解决生活问题,区别这3个问题的本质。
三、拓展练习:
1、补充:有两个底面积相等的圆柱,一个圆柱高为6分米,体积是48立方分米。另一个圆柱的高为5分米,体积是多少?
2、补充:有两个体积相等的圆柱,第一个圆柱和第二个圆柱高的比是4:7。第一个圆柱的体积是2.4立方厘米,第二个圆柱的体积比第一个多多少立方厘米?
3、第28页上的思考题
学生读题理解:(1)圆钢8厘米的体积就等于储水桶4厘米的体积;(2)水桶9厘米高的体积就等于这段圆钢的体积。
独立作业:第28页上的第6、8、9题。
《圆柱的体积》教案14
教学目标:
1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教 具:
圆柱的体积公式演示教具,圆柱的体积公式演示课件
教学过程:
一、教学回顾
1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入
(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?
(2)、我们都学过那些立体图形的.体积公式。
二、积极参与 探究感受
1、猜测圆柱的体积和那些条件有关。(电脑演示)
2、.探究推导圆柱的体积计算公式。
小组合作讨论:
(1)将圆柱体切割拼成我们学过的什么立体图形?
(2)切拼前后的两个物体什么变了?什么没变?
(3)切拼前后的两个物体有什么联系?
课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份??),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)
2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?
3、要用这个公式计算圆柱的体积必须知道什么条件?
三、练习
1、填空
(1)、圆柱体通过切拼转化成近似的 ( ) 体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体() 。因为长方体的体积等于( ),所以,圆柱体的体积等于( )用字母表示() 。
(2)、底面积是 10平方米,高是2米,体积是( )。
(3)、底面半径是2分米,高是5分米,体积是( )。 2讨论:
(1)已知圆柱底面的半径和高,怎样求圆柱的体积
V= 兀r2× h
(2)已知圆柱底面的直径和高,怎样求圆柱的体积
V=兀(d÷2)2×h
(3)已知圆柱底面的周长和高,怎样求圆柱的体积
V=兀(C÷兀÷2) ×h
3、练习:已知半径和高求体积,已知直径和高求体积。
四、小结或质疑
五、作业
板书设计:
圆柱的体积
长方体的体积=底面积x高
圆柱的体积=底面积x高
V=Sh
《圆柱的体积》教案15
【教材简析】:
本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
【教学内容】:
p19-20页的内容和例题,完成“做一做”及练习三第1~4题。
【教学目标】:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
【教学重点】:
掌握圆柱体积的计算公式。
【教学难点】:
圆柱体积的计算公式的推导。
【教学过程】:
第一课时
本册总课时:1—2课时
一、复习
1、长方体的体积公式是什么?(长方体的体积=长x宽x高,长方体和正方体体积的统一公式“底面积x高”,即长方体的体积=底面积x高)
2、什么叫做物体的体积?你会计算下面那些图形的体积?
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)
(2)拼成的近似长方体的底面积与原来圆柱的`底面积有什么关系?(相等)
(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)
(3)通过观察,使学生明确:
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积x高,所以圆柱的体积=底面积x高,v=sh
圆柱的体积计算公式是:
v=sh
2、课堂练习。
(1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)让学生解答和板算,最后师生共同完成、
解:v=sh
=75x90
=675(立方厘米)
答:它的体积是675立方厘米。
3、引导思考。
如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πrh)
4、作业。
【《圆柱的体积》教案】相关文章:
《圆柱的体积》教案04-01
《圆柱的体积》教案05-22
圆柱的体积说课稿02-16
《圆柱的体积》教学反思11-14
圆柱的体积教学设计08-19
《圆柱的体积》教学反思06-09
“圆柱的体积”教学设计06-05
圆柱的体积教学反思06-13
《圆柱的体积》教学反思【必备】07-08