圆的面积教案(精华)
作为一名教职工,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那要怎么写好教案呢?以下是小编精心整理的圆的面积教案,仅供参考,希望能够帮助到大家。
圆的面积教案1
第六课时:
组合图形的面积计算
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的`面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
<<<12>>>
学生回答后,教师板书
或
3.完成“试一试”。
(1)出示题目和图形,学生读题。
(2)提问:这个组合图形是由哪些基本图形组合而成的?
(3)半圆和正方形有什么相关联的地方?
学生交流后,明确:正方形的边长就是半圆的直径。
(4)思考一下,半圆的面积该怎样计算?
(5)学生独立计算。
(6)交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2 0
4.小结:圆、半圆和其他基本的平面图形组合在一起,产生了许多美丽的组合图形。在计算组合图形面积的时候,大家要看清,整个图形是由哪些基本的图形组合而成的,再进行计算。
三、巩固练习,加深理解
1.完成“练一练”。
(l)看图,弄清题意。
(2)提问:求涂色部分的面积,需要计算哪些基本图形的面积?
(3)第一个图形中,两个基本图形有什么联系?第二个图形呢?
明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。
(4)学生独立计算。
(5)集体交流。
2.完成练习十五第9题。
(1)学生先量出相关数据。
(2)根据数据独立完成计算。
(3)集体交流。
3.完成练习十五第13题。
(1)估计每种花卉所占圆形面积的几分之几。
(2)计算每种花卉的种植面积。
(3)集体交流。
4.完成练习十五第14题。
(1)学生根据图形做出直观的判断,并说说直观判断的方法。
(2)通过计算检验所做出的判断。
5.完成练习十五第15题。
(1)学生读题,观察示意图。
(2)提问:要求小路的面积实际就是求什么?求圆环的面积,必须知道什么
条件?题目中告诉了我们哪些条件?还有什么条件是要我们求的?
(3)学生独立计算。
(4)集体交流。
6.思考题。
(1)学生充分思考后再列式计算。
(2)组织交流。
四、课堂小结
师:这节课学习了什么内容?你有什么启发?
先由学生自主发言,然后教师补充完善。
板书设计:
①求出外圆的面积:3.14×102 =314(平方厘米)
②求出内圆的面积:3.14×62 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
简便计算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
圆的面积教案2
圆是小学阶段最后学的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。
教学内容
教科书第94页圆面积公式的推导,第95页的例3,练习二十四的第1~5题.
教学目的
使学生知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确地计算圆的面积.
教具、学具准备
教师仿照教科书第94页上的图用木板制作教具,准备长方形、平行四边形、梯形和圆形纸片各一个;学生把教科书第187页上面的图剪下来贴在纸板上,作为操作用的学具.
教学过程
一、复习
1.教师:什么叫做面积?长方形的面积计算公式是什么?
2.教师:请同学们回忆一下平行四边形、三角形和梯形的面积计算公式的推导过程.想一想这些推导过程有什么共同点?
二、新课
1.教学圆面积的含义及计算公式.
教师依次拿出长方形、平行四边形、三角形和梯形图,边演示(然后贴在黑板上)边说:“我们已经学过这些图形的面积,请同学们说一说这些图形的面积有什么共同的地方?”使学生明确:这些图形的面积都是由边所围成的平面的大小.
教师再出示圆,提问:这是一个圆,谁能联系前面这些图形的面积说一说圆的面积是什么?让大家讨论.最后教师归纳出:圆所围平面的大小叫做圆的面积.
教师:我们已经知道了什么是圆的面积,请同学们联系前面一些图形的面积公式的推导过程想一想,怎样能计算圆的面积呢?使学生初步领会到可以把圆转化成一个已学过的图形来推导圆面积的计算公式.
教师出示把圆平均分成16份的教具,让学生想一想,能不能把这个圆拼成一个近似什么形状的图形.如果学生回答有困难,可提示学生看教科书第10页上面的图,并让学生拿出学具,试着拼一拼,然后让拼得正确的同学到前面演示一下拼的过程,再让不会拼的同学拼一遍.
然后教师直接拿出把圆平均分成32份的教具拼成一个近似长方形,提问:“我们刚才把这个圆拼成了近似什么形状的图形?”(长方形.)请同学们观察一下,把这个圆平均分的份数越多,这个图形越怎么样?(引导学生看出平均分的份数越多,这个图形越近似于长方形.)拼成的近似长方形与原来的圆相比,什么变了?什么没变?(使学生看出形状变了,但面积没有变,圆的'面积等于近似长方形的面积.)
教师在拼成的近似长方形的右边画一个长方形,指出:如果平均分的份数越多,拼成的近似长方形就越接近长方形.提问:“请同学们观察一下,这个长方形的长与宽和原来的圆的周长与半径之间有什么关系?”使学生在教师的引导下看出:这个近似长方形的长相当于圆的周长的一半,如果圆的半径是r,即==πr;长方形的宽就是圆的半径.接着提问:这个长方形的面积是多少?这个圆的面积呢?
学生说,教师板书:圆的面积=πr×r=πr2
教师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2.
教师:我们现在已经知道了圆面积的计算公式,我们现在只要知道圆的什么就可以求出圆的面积?然后再让学生说一说圆面积计算公式的推导过程.
2.教学例3.
教师出示例3,指名读题,让学生试着做,提醒学生不用写公式,直接列算式就可以.
然后让学生对照书上的解题过程,看自己做得对不对;如果错了,错在什么地方.教师要强调指出:列出算式后,要先算平方,再与π相乘.最后小结一下解题过程.
三、课堂练习
做练习二十四的第1~5题.
1.第1题,让学生直接列式计算,指名板演,教师巡视,检查学生有没有把圆的面积公式写成圆的周长公式来计算,书写格式对不对,写没写单位名称.订正时了解学生还存在什么问题,及时纠正.
2.第2题,让学生独立做,教师巡视,除了注意学生在做第1题时易犯的错误外,还要检查学生有没有把第(2)小题的直径当半径直接计算的,订正时提醒学生做题时要认真审题.
3.第3题,让学生自己做,集体订正.
4.第4题,指名读题,让学生说一说这道题与第3题有什么不同的地方,能不能直接计算.使学生明确要先算出半径,再计算.
5.第5题,让学生读题,看着右面的示意图说一说题意,再让学生做,集体订正.
圆的面积教案3
教学目的:
1、使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、激发学生参与整个课堂教学活动的兴趣,让之在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。
3、培养学生进行讨论、操作、观察、比较、分析和概括的基本能力。
4、渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:圆面的割补及圆面积计算公式的推导。
教学难点:极限思想的渗透及圆面积公式的推导。
教具学具:多媒体课件;每人一把剪刀,4张圆纸片,1平方厘米的小正方形若干。
教学过程:
一、认识圆面积的内涵——提出问题
师:你认识圆吗?你已经知道了圆的那些知识?(生答。)回顾以前学的平面图形,你还想知道圆的什么知识?(圆的面积怎样求)
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?(教具:大圆)现在你能说出圆的面积指的是什么吗?
师:对,圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。
揭示课题:圆的面积
二、讨论操作——分析问题
1、想想猜猜,估计大小
先请看,这是一个圆,我们以它的半径为边画一个正方形。
媒体显示:
提问:正方形的面积怎样表示?(板书:r2)那么,请你想一想,与正方形比较一下,估计圆面积的范围?大约是正方形面积的多少倍呢?(老师把学生估计的答案都写在黑板上。)
师:很显然,猜想只能是个大概,要准确地求出圆的面积,还必须找到科学的方法才行。
2、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。
如想不出就回忆长方形、平行四边形、三角形的面积公式推导过程。
如有学生想出就让学生举手谈设想。①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
点出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
3、分组操作,反思求悟
把学生分组根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况,让学生在视屏展示台上展示自己的做法。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
4、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪、拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
媒体出示大小不一的两个圆(动态显现画的过程)。哪个面积大?为什么?也就是说圆的面积与什么有关?
得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。(学生还是很难剪拼出。如有拼出的就让他起来介绍剪拼方法,并在视屏展示台上展示;如没有教师就引导等分剪拼。)
看来剪和拼还很有点难度,让老师和你一起来研究探讨吧。
5、学生尝试加媒体显示,研究转化过程
首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。
(1)四分法 全体学生在老师的或学生的提示下剪、拼,然后根据情形实物投影、媒体显示。认识拼后有两条边直的,但是上下却凹凸不平弯弯曲曲,不过有点长方形的轮廓。
(2)八分法 让学生在四分法的基础上剪拼,再媒体显示,比较与四分法时的变化。让学生认识到与刚才拼成的差不多,但上下平多了,像长方形了。
(3)十六分法 直接媒体显示,上下更平,更像长方形 。
讨论:如果要让上下完全平,该怎么办呢?
媒体显示:三十二等分,对插。比刚才十六等分怎样?(更平更直,简直就是长方形。)
让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成长方形。
提问:谁能指出圆的边在长方形的什么地方?(学生指,在此作详细的指导。)
三、转化成长方形,研究推出圆面积公式——解决问题
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了长方形,大家现在能够找到圆面积的计算方法吗?
2、学生合作探究,推导公式。
(1)讨论探究,出示提示语:
长方形的长相当于圆的,宽相当于圆的?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)媒体演示公式推导过程(重点详细讲解。)
长方形的面积= 长 × 宽
圆的面积=圆周长的一半 × 半径
S = πr(C/2) r
3、揭示字母公式,验证猜想
S = π r2
让学生齐读公式,提问验证:这说明“S圆”是“r2”的多少倍?(板书:π≈3.14)
提问:要求圆的面积只要知道什么就行?(半径r)
四、在实践中巩固——应用问题
1、教学例3
一个圆的半径是5厘米,它的面积是多少平方厘米?
2、练习:
从自己身边找一个圆形物体,请你想办法求出它的面积。
五、课堂总结,渗透学法——研究性学习
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考及多媒体的帮助,把圆转化成已经学的长方形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
圆的面积教学反思
中塘小学:向庆航
圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的.认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:
一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性。
教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。
根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓
三、演示操作,加深理解
生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。 平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πr h=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r =πr2。 此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
圆的面积教案4
教材分析:
教材首先设计了估算飞标板面积的活动。呈现了两种估算方法:一是先估算每个小三角形的面积,再估算飞标板的面积;二是把飞标板剪开,拼成近似的长方形,然后利用长方形的面积公式计算出飞标板的面积。接着是,小组合作探索圆面积的计算公式,在试一试中,让学生用刚推导出的面积公式计算飞标板的面积。教学中要给学生充分的观察、动手操作和讨论交流的空间,使学生学会转化的数学方法,体会极限的思想。
学情分析:
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形面积时,已学会了用割、补、移等方法,把把新知识转化为旧知识,探究推导直线平面图形的面积。因此教学本课时,可引导学生用以前学的“转化”的数学思想来推导圆的面积公式,在推导学习中不仅扩大了学生的知识,提高学生分析、解决问题的策略,空间观念也得到进一步的发展,为以后学习圆柱、圆锥等知识打好良好基础。
教学目标:
知识与技能目标:
1、理解圆的面积计算公式的推导,让学生利用已有的知识,运用转化的思考方法,推导出圆面积的计算公式。
2、初步运用圆面积计算公式进行圆面积的`计算。
过程与方法目标:
通过教师设置问题情境————学生猜想————小组合作————表达交流————归纳总结,引导学生通过多次不同的实验,运用转化方法,通过多媒体课件演示,把曲线平面图形转化为直线平面图形,推导圆的。面积计算公式。
情感态度和价值观:
通过圆面的剪拼,境况学生操作、观察、分析的能力,渗透极限思想。
教学重难点:
教学重点:圆面积公式的推导。
教学难点:极限思想的渗透与公式的推导。
教学方法和手段:
教学方法:通过直观教具演示和课件展示,学生通过猜想然后再用合作学习法动手操作验证猜想,得出结论。
教学手段:利用游戏、媒体等手段激发学生思维,让学生亲自动手操作,感受学习的乐趣。
教具准备:
多媒体课件一套、圆形纸片。
学具准备:
两个完全一样的圆片、透明胶带、刻度尺、量角器、剪刀、小刀。
一、复习引入
1、幻灯片出示复习题目。
2、激趣导入
同学们,今天我请你们欣赏一幅图。请看!(课件出示)在欣赏图的同时,思考右面的问题。学生猜想牛最多吃多少草是什么的图形?(课件出示)是一个圆形,要求牛吃多少草也就是求圆的面积,引出圆的面积(板书课题)
【设计意图:兴趣是最好的老师。在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、合作探究,推导公式
1、圆面积定义
2、圆面积公式推导
那么怎样计算圆的面积呢?我们知道圆有大有小,如果用面积单位直接
去度量,显然是行不通的。请同学们回忆一下:平行四边形、三角形、梯形的面积分别是怎样计算的?
教师根据学生说的过程,通过课件演示出转化的过程。
【设计意图:平行四边形、三角形和梯形的公式推导过程是学生迁移的基础。这一环节的设计既为了勾起学生对已有知识的回忆,更是为了让后进生能够掌握新知打下良好的基础。】
想一想:这些图形面积公式的推导过程有什么共同点?(学生回答)
下面请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
(小组合作,探究交流。)
谁能告诉老师你们小组把圆转化成了什么图形?(小组汇报并展示所拼图形)
小组1:我们平均分成了8份,拼成的图形非常像平行四边形。
小组2:我们把圆平均分成了16份,拼成的图形也像个平行四边形。
小组3:我们把圆平均分成了16份,拼成的图形很像一个三角形。
小组4:我们拼的图形像个梯形。
小组5:我们平均分成了4份,拼成的图形像平行四边形
大家真了不起!把圆转化成了这么多近似的图形,观察所拼平行四边形的三种情况,请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
学生回答:分的份数越多越接近长方形。
下面请同学们仔细观察、分析拼成的长方形与圆的关系,小组讨论并思考以下几个问题:
(1)圆的面积与这个长方形的面积有什么关系?
(2)这个长方形的长与圆的周长有什么关系?
(3)这个长方形的宽与圆的半径有什么关系?
(4)如果圆的半径是r,这个长方形的长和宽各是多少?
(小组合作,探究交流,推导出面积公式)
小组内说一说圆面积计算公式推导过程,师板演。
小组合作推导三角形和梯形的面积公式,并汇报交流,师演示课件。
【设计意图:这节课的重点是圆的面积公式的推导,为了让学生在大脑中烙下深深的印痕,这一环节的设计让学生在课上多动手,去剪、去拼、去贴,多动脑,去思考圆的转化方法,这样学生在课上手脑并用,个个精神十足,根本不可能再出现课上走神的现象。】
小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)
三、实践运用,体验生活
那么圆的面积公式到底有什么用呢?
现在我们会求牛最多吃多少草吗?
四、课堂小结
这节课你有什么收获,学到了哪些知识?
五、课外思考。(幻灯片出示)
已知一个圆的周长,你能计算这个圆的面积吗?
圆的面积教案5
教学内容:教材67-68页。
教学目标:
1、认识圆的面积,探索并掌握圆面积计算公式,能正确运用圆面积公式解决简单的实际问题。
2、在探究圆面积计算公式的过程中,让学生初步感受极限的思想,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。
3、通过大胆猜想、动手操作等活动,激发学生学习数学的兴趣,培养学生的合作意识和探究精神;通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,同时渗透环保意识。
教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。
教学难点:理解圆的面积公式的推导过程。
教学准备:课件、圆形白纸、剪刀。
教学过程:
一、创设情景,生成问题
1、出示主题情景图:
①从图中你获得哪些数学信息?
②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?谁能上来指一指?
2、认识圆的面积:实际生活中还有许多类似的问题,如一根圆柱形钢材的横截面面积、圆形体育场的占地面积等都是指的圆的面积。拿出自己手中的圆,指一指哪是这个圆的面积?
3、说一说:什么叫圆的面积?
4、揭示课题:今天我们就来研究圆的面积。
二、探索交流,解决问题
1、旧知回顾:
回顾以前学过的平面图形面积公式的推导过程。(课件配合演示平行四边形、三角形、梯形的转化过程。)
指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了--将没学过的图形转化成已学过的图形。
2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?
3、操作探究:
(1)探究转化的方法。
①提出实验要求:今天我们一起来做个实验,请同学读读实验要求。
a.把圆分成若干(偶数)等份并剪开。
b.想办法拼成学过的'图形。
②动手实验,合作探究。
③分组汇报,展示成果(分层展示学生研究成果)。
第一层次:展示不同的转化图形,如平行四边形、长方形、三角形、梯形等。肯定同学们爱动脑筋,想出了多种不同的转化方法。
第二层次:展示不同的等份数拼成不同的平行四边形,感受极限的思想。
观察不同等份数拼成的不同图形,发现规律(课件配合演示,从将圆4等份、8等份……直到128等份,拼成的近似平行四边形到几乎拼成长方形,引导学生发现规律:随着分的份数越多,每一份就越小,拼成的图形也就越接近于长方形)。
(2)推导圆面积公式。
①比较转化后的图形与圆,你发现了什么?
既然图形面积没变,那能否根据学过的面积公式计算圆的面积呢?
②提出要求,合作探究。
③全班交流,根据学生叙述板书:
长方形面积=长×宽
圆的面积 =c2 ×r
=Лr×r
=Лr
4、小结:圆的面积与半径的关系是 S =Лr
三、巩固应用,内化提高
1、出示例1:读一读题中提供的信息,学生独立完成。
说说你是怎样想的?
2、出示例2:光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米。圆环的面积是多少?
(1) 认真读题,理解题意。
(2) 你认为怎样解决这个问题?学生回答,教师板书:大圆面积-小圆面积或外圆面积-内圆面积
(3) 学生尝试独立计算
(4) 汇报解答过程及结果,集体评价
(5) 出示算法二:这种解答方法行不行?与前一种比较,哪一种简单?
4、比较上面两道题,要求圆面积,可以通过哪些什么条件去求?通常都回到哪个公式计算圆的面积?
5、完成68页“做一做”;练习十五的1-4题
四、回顾整理,反思提升
今天我们学到了哪些新知识?你有哪些收获?(引导学生从知识、学习方法两个方面进行小结)
圆的面积教案6
教材分析
圆的面积是六年级上册的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习平面图形的规律和方法。学习本节内容后,为后面学习扇形统计图、以及圆柱、圆锥打下基础;同时,圆在现实生活中的应用也非常广泛,能够运用所学知识解决实际问题。
学情分析
学生对圆的.特征,多边形面积的计算已基本掌握,但对于像圆这样的曲线图形的面积,学生是第一次接触,如何把圆转化成直线图形具有一定的难度。学生对探究学习并不陌生,但在探究学习过程中,往往是盲目探究,因此,组织学习素材,让学生形成合理猜想,进行有方向的探究也是教学中关注的问题。基于以上的思考,特制定以下教学目标:
教学目标
1、正确理解圆的面积的含义;理解和掌握圆的面积公式,会运用公式正确计算圆的面积。
2、经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、渗透转化的数学思想和极限思想。体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点和难点
教学重点:运用公式正确计算圆的面积。
教学难点:圆面积计算公式的推导过程。
圆的面积教案7
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的.面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点: 圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
圆的面积教案8
教学目标:
1.使学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2.使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力.
教学过程:
一、导入新课
1.谈话:关于圆这个图形,我们已经认识了它的特征和画法,还掌握了它的周长公式,今天我们要继续学习圆的有关知识。那么你还想学习关于圆的哪些知识呢?(学生回答后揭示课题:圆的面积)
2.追问:你认为要学习圆的面积,我们需要研究哪些问题?
根据学生的回答重点整理出:(1)圆的面积公式是怎样的?(2)怎样推导出圆的面积公式?
二、教学例7
1.初步猜想:猜一猜圆的面积可能与什么有关?
2.实验验证:圆的面积与半径或直径究竟有着怎样的关系呢?我们可以来做个实验。
(1)教师逐步出示例题中的第一幅图:先出示正方形,再以。正方形的.边长为半径画一个圆。
提问:①图中正方形的面积与圆的半径有什么关系?②猜一猜,圆的面积大约是正方形的几倍?
(2)指出:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。
让学生观察例题中的下面两幅图,计算并填写图下的表格。
3.交流归纳:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?
学生交流中相机总结:(1)圆的面积是它的半径平方的3倍多一些。(2)圆的面积可能是半径·平方的丌倍。
三、,教学例8
1.谈话导人:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些。那么圆的面积究竟应该怎样来计算呢?我们继续学习。
2.操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。再让学生用预先已经平均分成l6份的圆,仿照教师的拼法拼一拼。
提问:拼成的图形像个什么图形?
追问:为什么说它像一个平行四边形?(拼成的图形上下的边不够直)
3.初步想像:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?用实物或投影演示,验证或修正学生的想像。
4.进一步想像:如果将圆平均分成64份、128份......也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
交流后,教师出示如教科书所示的箭头、省略号、长方形虚线框。
5.推导公式。
(1)拼成的长方形与原来的圆有什么联系?在小组里讨论交流。
交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆半径;长方形的长是圆周长的一半。
追问:如果圆的半径是厂,长方形的长和宽各应怎样表示?(重点引导学生理解c/2=2πr/2=πr)
(2)根据长方形面积的计算方法,怎样来计算圆的面积?
得出公式:S=πr。
追问:①看着公式再回忆一下刚才的猜想,圆的面积是半径平方的多少倍?②有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
6.做“练一练”。
核对答案后,先引导学生比较两题的不同之处,再引导学生总结已知直径求圆面积的方法。
四、教学例9
1.谈话导人:在日常生活中,经常会遇到与圆面积计算有关的实际问题:
2.出示例9。学生读题后,可以先问问学生有没有在生活中见过自动旋转喷水器,再让学生想像自动旋转喷水器旋转一周后喷灌的地方是什么图形,最后借助多媒体动画或挂图帮助学生理解喷灌的地方是一个近似的圆,圆的半径就是喷水的最远距离。
3.学生独立列式解答,并组织交流。
五、做练习十九的第1题
1.指名读题,并要求说说对题意的理解。
2.学生独立尝试解答。
3.反馈交流。对解答错误的学生帮助其分析错误的原因。
圆的面积教案9
教学目标:
1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点:渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学过程
一、尝试转化,推导公式
1、确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2、尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。
3、探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。
4、推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的`话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题
1、教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2、完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。
订正。
3、教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
交流,订正。
三、课堂作业。
教材第70页第2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
课后作业:完成数练第31页。
圆的面积教案10
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的`面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其
用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
等等
刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:分米) d=6(单位:分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考题:
已知正方形的面积是18平方米,求圆的面积。(如图)
课堂教学设计说明
1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
圆的面积教案11
教学内容:课本第94、95页例3 、例4。
教学目的:
1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
3、培养学生动手操作能力和逻辑推理能力。
教学重点:圆面积计算公式。
教学难点:圆面积计算公式的推导。
教具、学具:圆的面积演示教具,课件,每人两个大小相等的圆,分别平均分为16等份、32等份。
教学过程:
一、复习。
1.圆的有关概念
2.什么叫长方形的面积?
3.说出平行四边形的面积公式是怎样推导出来的?
我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)
二、新授。
1.圆的面积的含义。
问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)
以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2.圆的`面积公式的推导。
怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)
再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
向学生说明:如果分的等份越多所拼的图形就越接近长方形。
教师边提问边完成圆面积公式的推导:
①拼成的图形近似于什么图形?
②原来圆的面积与这个长方形的面积是否相等?
③长方形的长相当于圆的哪部分的长?
④长方形的宽是圆的哪部分?
长方形的面积=长*宽
圆的面积=c÷2*r
=2∏r÷*r
=∏r*r
=∏r2
用S表示圆的面积,那么圆的面积可以写成:S=∏r2
3.圆面积公式的应用。
出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?
学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:
=3.14*102
=3.14*100
=314(平方厘米)
答:它的面积是314平方厘米。
例题2:一个圆的直径是40米,它的面积是多少平方米?
40÷2=20(米)
3.14*202
=3.14 *400
= 1256(平方米)
答:这个圆的面积是1256平方米。
三、巩固练习。
1.半径2分米,求圆的面积。
2、圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)
3、绳长10米,问小狗的活动面积有多大?
四.发散思维:如下图:S正方形=3平方厘米,S圆=?
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=∏r2计算。
五、作业。
六、课后反思:
圆的面积教案12
【第一课时】 圆的面积
一、 教学目标
1.知识与技能
理解圆的面积的概念,理解和掌握圆面积的计算公式,并能正确计算圆的面积,解答有关的实际问题。
2.过程与方法
引导学生利用已有的知识,通过猜想、操作、验证、归纳等活动,经历圆面积计算公式的推导过程,培养学生观察、操作、分析、概括的能力,发展空间观念,渗透转化、极限等数学思想方法。
3.情感态度与价值观
通过自主探究圆面积转化的过程,培养学生大胆创新,勇于尝试,克服困难的精神,使学生体验成功的乐趣。
二、教学重点
正确计算圆的面积。
三、教学难点
圆面积公式的推导。
四、教学具准备
课件、学具。
五、教学过程
(一)情境导入
1.叙述:俗话说的好:“民以食为天”。餐桌是家家户户必不可少的。这不,小明家就新购置了一张圆形的餐桌。为了起到保护作用,妈妈给了他一个任务,让他去配一个与桌面相同大小的玻璃桌面。这可把小明难住了,这玻璃桌面该多大呢?【可使用圆的图片2】 同学们,要想帮助小明解决他的问题我们需要用到什么知识呢?
今天这节课我们就来学习圆面积的求法。(板书题目:圆的面积)
2.看到今天的课题,你都想知道什么?
3.什么是圆的面积?在哪?摸摸看。
(学生摸手中圆形纸片,并用手指出圆的面积)
过渡语:圆的面积怎样求呢?在这里,我们不妨先回忆一下其它图形面积的推导过程。
(二)复习旧知识
1.你还记得我们已经学过了哪些图形的面积求法吗?
(生:长方形、正方形、平行四边形、三角形、梯形)
2.回忆一下,平行四边形面积计算公式我们是怎样推导出来的?(课件演示)
3.问:其它图形呢?(学生简要叙述其他面积推导过程)
4.小结:这样看来,当我们遇到新问题时,往往可以借助已有的知识进行解决。
(三)学习新课
1.请你猜猜看,圆的面积公式应该怎么推导出来?
(生:转化成已知的图形进行推导)
2.怎么转化?想想办法。任意的分成几份行吗?
(生:沿圆的直径将圆平均分成若干份)
3.下面请大家动手实际拼摆一下,看看自己的想法能否实现。请看活动要求:
(1)以组为单位,先摆图形。
(2)看看拼出的图形的底和高与圆的关系,并推导圆的面积公式。
(3)有问题及时记录,以便讨论。
(学生动手拼摆并贴在白纸上)
4.你们遇到什么问题了吗?
(生:边不是直的,是弯的)。
5.谁能帮助他解决这个问题?
(学生谈自己的想法)
6.是的,边不是直的这可怎么办呢?我们已拼成长方形为例,当我们把圆平均分成四份,拼成的图形是这样的;把圆平均分成8份,拼成的图形是这样的;把圆平均分成16份,拼成的图形是这样的;把圆平均分成32份;拼成的图形是这样的。(课件展示)
【可使用圆的图片27】
7.同学们请你对比大屏幕上拼得的这几幅图,你有什么想法吗?
(学生谈自己的想法)
8.看来,把圆平均分的份数越多,曲线越接近于线段,拼得的图形越接近我们所学过的图形。当分成无数份时,曲线也就变成了直线。这个问题解决了么?下面继续小组合作,推导圆面积计算公式。
(学生谈自己的想法)
9.汇报不同推导方法:
转化成长方形的:
长方形的面积=a × b 圆的面积=c×r 2
=π r × r
=π r 2
转化成平行四边形的:
平行四边形的面积= a × h
圆的面积= c × r 2
=π r × r
=π r 2
转化成三角形的:
三角形的'面积= 1× a × h 2
圆的面积= 1c×4r 24
c× r 2 =
=π r 2
转化成梯形的: 梯形面积=1×(a+b)× h 2
15c3c×(+)×2r 21616
1c××2r 22
c× r 2圆形面积= ==
=π r 2
10.观察一下,这些推导过程有什么相同的地方?
(生:都是将圆转化成已知图形去推导的)
11.总结:由此可知,我们在推导圆面积计算公式的时候可以用全部的小扇形推导,也可以用一个小扇形推导,当然也可以用部分小扇形推导。
现在我们圆面积的计算公式已经推导出来了,小明的问题可以解决了我吗?要想解决它的问题我们需要知道哪些条件?(圆的直径、半径或周长)
(四)巩固练习
1.求圆的面积(单位:厘米)
r=3 答案:s=28.26(平方厘米)
d=20答案:s=314(平方厘米)
c=125.6答案:s=1256(平方厘米)
2.小明测量出桌面的直径是2米,你能算出玻璃桌面的面积吗?
答案:3.14×22 =12.56(平方米)
3.判断
(1)直径是2厘米的圆,它的面积是12.56平方厘米。()
(2)两个圆的周长相等,面积也一定相等。()
(3)圆的半径越大,圆所占的面积也越大。()
(4)圆的半径扩大3倍,它的面积扩大6倍。 ()
4.听故事解题:
巴依老爷买来一群羊。
巴依老爷说:“阿凡提,快把新买的羊赶倒圈里去”。
阿凡提说:“老爷,这个长方形羊圈太小了!”
巴依老爷:“什么,太小了?你不把羊全部赶进去,哼哼,你的工钱就别拿了!要不,你自己花钱买些材料,把羊圈围大些。”
阿凡提想:“该怎么办呢?怎么样才能既不花钱另买材料,又能够让羊圈的面积变大呢?”
同样聪明的同学们,你们能帮阿凡提想个办法吗?并且请你说明你的理由。
(五)小结
今天这节课你有什么收获?
【第二课时】 圆环面积
一、 教学目标
1.知识与技能
掌握圆环面积的计算方法,能灵活解决生活中相关的简单实际问题。
2.过程与方法
在经历画圆环、剪圆环的活动过程中,初步感受圆环的特点、形成过程,进而探索出圆环面积计算的方法。培养学生观察、动手操作、比较、分析、概括等能力。
3.情感态度与价值观
进一步体验图形与生活的联系,感受平面图形的学习价值,提高学习数学的兴趣。
二、教学重点
圆环的特征、圆环面积公式的推导及运用。
三、教学难点
灵活运用圆环面积的计算方法解决相关的简单实际问题。
四、教学具准备
课件、学具。
五、教学过程
(一)学习方法回顾、铺垫回忆一下
我们在推导圆面积计算公式时用到了什么学习方法?
(生:把圆形转化成学过的平面图形,利用旧知识推导出新知识。)
这也就是我们常说的遇到不会的想会的,把新知识转化成了旧知识解决。 板书:不会
想 会
新 旧
这节课我们继续用这种方法研究新问题。
(二)创设实际应用的问题情境
1.同学们你们喜欢看动画片吗?今天老师带来了几张光盘,看,这是什么?
(1)动画光盘(2)歌曲光盘
(3)空白封面光盘
2.想知道这张光盘的内容吗?我们一起来看看。
欣赏学生的校园活动照片。
这些照片见证了我们同学6年来快乐的校园生活,非常珍贵。想不想把它珍藏起来?老师打算把这些照片刻成光盘,等你们毕业时当毕业礼物送给你们好吗?
3.现在这张光盘的封面还空着呢,你想不想亲自为它设计一个有纪念意义的封面呢?要进行设计,咱们先了解一下哪部分是可以进行封面设计的。
4.小组内摸一摸准备的光盘实物,再让学生实投指一指。
师课件演示(由实物抽象出线条图形、涂色图形)【可使用圆动画14】
5.这个图形有什么特点?
生:由两个圆组成,它们的圆心是相同的。(课件点击出圆心)
6.师说明:这样两个同心圆所夹的部分我们把它叫做圆环。
板书课题:圆环
外面的圆我们叫它外圆,里面的小圆我们叫它内圆。两个圆周之间的距离我们叫做环宽。
圆的面积教案13
教材说明
教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。
这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力
。 教学建议
1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。
2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。
3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。
4.教学圆面积计算公式的推导过程时,可以让学生预先准备好一些圆形做学具。
在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的'周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。
5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。
6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。
7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:
①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;
②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;
③计算圆面积用面积单位,计算圆周长用长度单位。
8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。
9.关于练习二十四中一些习题的教学建议。
第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。
第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。
第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。
第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。
第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。
第15*题,是求组合图形面积的练习。
教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。
圆的面积教案14
第一单元圆的周长和面积
一.本单元的基础知识
本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。
二.本单元的教学内容
P2~22.本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。
三.本单元的教学目标
1.认识圆,掌握圆的'特征,知道是轴对称图形,会用工具画圆。
2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。
四.本单元重难点和关键
1.教学重点:求圆的周长与面积。
2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。
3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。
五.本单元的教学课时
13课时
圆的面积教案15
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的'高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
【圆的面积教案】相关文章:
圆的面积教案10-13
《圆的面积》说课稿12-17
《圆的面积》教学设计06-06
圆的面积的教学反思05-22
圆的面积教学反思04-12
《圆的面积》教学反思04-14
关于圆的面积教案范文合集5篇10-19
圆的面积教案范文集合五篇04-08
《圆的面积》教学设计最新05-08
《圆的面积》说课稿15篇03-02