高一数学教学计划模板七篇
时间的脚步是无声的,它在不经意间流逝,我们的工作又将迎来新的进步,此时此刻需要为接下来的工作做一个详细的计划了。拟起计划来就毫无头绪?以下是小编为大家收集的高一数学教学计划7篇,欢迎阅读与收藏。
高一数学教学计划 篇1
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的'教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
三、教学内容
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
1.1.1 | 集合的含义与表示 | 约1课时 | 9月1日 |
1.1.2 | 集合间的基本关系 | 约1课时 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本运算 | 约2课时 | |
小结与复习 | 约1课时 | ||
1.2.1 | 函数的概念 | 约2课时 | |
1.2.2 | 函数的表示法 | 约2课时 | 9月13日 | | 9月25日 |
1.3.1 | 单调性与最大(小)值 | 约2课时 | |
1.3.2 | 奇偶性 | 约1课时 | |
小结与复习 | 约2课时 |
第二章基本初等函数(I)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
2.1.1 | 引言、指数与指数幂的运算 | 约3课时 | 9月27日30日 |
2.1.2 | 指数函数及其性质 | 约3课时 | 10月8日10日 |
2.2.1 | 对数与对数运算 | 约3课时 | 10月11日14日 |
2.2.2 | 对数函数及其性质 | 约3课时 | 10月15日18日 |
2.3 | 幂函数 | 约1课时 | 10月19日24日 |
小结 | 约2课时 |
第三章函数的应用
1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1 | 方程的根与函数的零点 | 约1课时 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 约2课时 | 10月26日27日 |
3.2.1 | 几类不同增长的函数模型 | 约2课时 | 10月30日 | 11月3日 |
3.2.2 | 函数模型的应用实例 | 约2课时 | |
小结 | 约1课时 |
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
高一数学教学计划 篇2
一、基本情况
高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.
二、指导思想
全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。
三、工作任务和措施
任务:基础模块第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函数(11月份
第四章指数函数与对数函数(12月份-1月份
措施:
1.夯实三基
知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。因此,在教学中应注意:
A.教学面向全体学生。
B.重视概念的归纳、规律的总结、技能的训练。
C.重视知识的产生、发展过程。
D.加强知识过关检测,做好查漏补缺工作。
2.优化课堂教学结构
A.精心设计课堂教学:
B.课堂练习典型化;
C.教学语言精练化
D.板书规范化。
3.加强学习方法指导:
A.指导学生看书,培养学生主动学习的习惯。
B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。
4.加强学风建设与学习习惯的培养。
适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。
四、各章节授课具体时间安排:
(基础模块第一章集合(约12课时
(1理解集合、元素及其关系,掌握集合的表示法。
(2掌握集合之间的关系(子集、真子集、相等。
(3理解集合的.运算(交、并、补。
(4了解充要条件。
(基础模块第二章不等式(约12课时
(1理解不等式的基本性质。
(2掌握区间的概念。高一上数学教学计划高一上数学教学计划。
(3掌握一元二次不等式的解法。
基础模块)第三章函数(约20课时
(1理解函数的概念和函数的三种表示法。
(2理解函数的单调性与奇偶性。
(3能运用函数的知识解决有关实际问题。
(基础模块第四章指数函数与对数函数(约20课时
(1理解有理指数幂,掌握实数指数幂及其运算法则,掌握利用计算器进行幂的计算方法。
(2了解幂函数的概念及其简单性质。
(3理解指数函数的概念、图像及性质。
(4理解对数的概念(含常用对数、自然对数及积、商、幂的对数,掌握利用计算器求对数值的方法。
(5理解对数函数的概念、图像及性质。
(6能运用指数函数与对数函数的知识解决有关实际问题。
高一数学教学计划 篇3
指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的.逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
教研课题
高中数学新课程新教法
教学进度
第一周 集 合
第二周 函数及其表示
第三周 函数的基本性质
第四周 指数函数
第五周 对数函数
第六周 幂函数
第七周 函数与方程
第八周 函数的应用
第九周 期中考试
第十十一周 空间几何体
第十二周 点,直线,面之间的位置关系
第十三十四周 直线与平面平行与垂直的判定与性质
第十五十六周 直线与方程
第十八十九周 圆与方程
第二十周 期末考试
高一数学教学计划 篇4
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的.位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
五、教学进度
周次 课、章、节 教学内容 备注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 数列的概念与简单表示法,等差数列
4 2.3 等差数列的前n项和
5 2.4,2.5 等比数列及前n项和
6 2.5 考试
7 3.1,3.2 不等关系与不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(组)与简单线性规划问题,基本不等式
9 考试,复习
10 期中考试
11 1.1,1.2 空间几何体的结构,三视图,直观图
12 1.3 空间几何体的表面积与体积
13 2.1,2.2 空间点、直线、平面的位置关系,直线、平面平行的判定及其性质
14 2.3 直线、平面的判定及其性质
15 3.1,3.2 直线的倾斜角与斜率,直线方程
16 3.3 直线的交点坐标与距离公式
17 4.1,4.2 圆的方程,直线、圆的位置关系
18 4.3 空间直角坐标系
19 复习
20 考试
高一数学教学计划 篇5
教材分析:
解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。
学情分析:
初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。
学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。
教学目标:
①知识与技能
熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集
②过程与方法
经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习
③情感、态度及价值观
在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的.积极情感,增强了学习的内在动机
教学重点:
一元二次不等式的解法
教学难点:
解法的探索及发现,关键在于“识图能力”
反思:
今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:
首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。
其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。
在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。
教学程序:
一、复习一元一次不等式及不等式组的解法
以题组形式设计习题
①2x+3>7
②不等式组
③ax>b
二、创设二次不等式的生活背景实例,引入课题
采用课本上的实例,有关网络收费问题
三、一元二次不等式的解法探索
(1)
在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。
由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。
(2)
采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。
之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。
反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。
四、练习环节
可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。
课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。
五、课堂小结
知识,思想、方法及感悟等
六、课后作业
①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组
②课外思考题:
1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同
2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围
变式一:戓将R改为空集,此时结论如何
变式二:仿上,自己改编条件,并解之。
反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。
高一数学教学计划 篇6
一、指导思想:
在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的`兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
高一数学教学计划 篇7
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学建议
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。
三、教学内容
第一章集合与函数概念
1.通过实例,了解集合的含义,体会元素与集合的属于关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
4.在具体情境中,了解全集与空集的含义。
5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的'重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。
10.通过具体实例,了解简单的分段函数,并能简单应用。
11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。
12.学会运用函数图象理解和研究函数的性质。
课时分配(14课时)
第二章基本初等函数(I)
1.通过具体实例,了解指数函数模型的实际背景。
2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。
4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。
5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。
6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。
7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。
课时分配(15课时)
第三章函数的应用
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。
根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。
课时分配(8课时)
3.1.1 | 方程的根与函数的零点 | 约1课时 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 约2课时 | 10月26日27日 |
3.2.1 | 几类不同增长的函数模型 | 约2课时 | 10月30日 | 11月3日 |
3.2.2 | 函数模型的应用实例 | 约2课时 | |
小结 | 约1课时 |
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
【高一数学教学计划】相关文章:
数学高一教学计划06-26
高一数学教学计划07-05
高一数学教学计划10-12
高一数学上册教学计划08-25
高一数学教学计划15篇08-07
高一数学教学计划(15篇)09-07
高一数学教学计划集合15篇09-08
高一数学教学计划合集15篇05-01
高一数学教学计划集锦15篇08-01
高一数学教学计划(合集15篇)06-16