当前位置:范文派>教学范文>教学计划>高二数学教学计划

高二数学教学计划

时间:2022-12-23 10:30:24 教学计划 我要投稿
  • 相关推荐

高二数学教学计划15篇

  光阴的迅速,一眨眼就过去了,我们的工作又进入新的阶段,为了今后更好的工作发展,此时此刻我们需要开始制定一个计划。好的计划都具备一些什么特点呢?以下是小编帮大家整理的高二数学教学计划,仅供参考,大家一起来看看吧。

高二数学教学计划15篇

高二数学教学计划1

  一、指导思想

  以培养创新型人材为目标,以联合办学为契机,深入钻研教材,靠集体智慧处理教研、教改资源及多媒体信息,根据我校实际,合理运用现代教学手段、技术,提高课堂效率。

  二、目标要求

  1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

  2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

  3.本期的专题选讲务求实效。

  4.继续培养学生的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

  5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

  三、教学措施:

  一、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

  二、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

  三、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

  四、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高二数学教学计划2

  一、目标要求

  1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

  2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

  3.本期的专题选讲务求实效。

  4.继续培养学的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

  5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

  二、教学措施:

  1、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

  2、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

  总结:以上就是下学期高二必修数学教学计划,希望对您的教学有所帮助。

高二数学教学计划3

  一、指导思想:

  本 学期,我们高二数学组全体成员将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为 重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。提高数学教学质量,努力让本组数学教师成为有思 想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

  二、目标任务:

  1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

  2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

  3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

  4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

  5、 加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照个人研究、同伴交流、达成共识、主备撰写、实践改进、 反思提高的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。 是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。

  三、具体措施:

  1、把握教材关:

  认 真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采 取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的 教育教学心得。

  2、规范日常工作:

  严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。高二上数学教学新计划高二上数学教学新计划。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。

  3、教师角色的变化:

  全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在讲的基础上扶着学生、牵着学生去掌握知识,而是要将知识放给学生,放心、放手地让学生自主学习。

  总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。

  本学期,我主要从以下几个方面抓好教学:

  一做好常规教学工作,落实教学五个环节(备课、上课、作业、辅导和考评)。

  1.精心上好每一节课

  备课时从实际出发,精心设计每一节课,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

  2.严格控制测验,精心制作每一份复习资料和练习

  教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。试题的制作注重考试质量和试卷分析,定期进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。

  3.做好作业批改和加强辅导工作

  教师的工作对象是活生生的对象──学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教师的下班辅导更为重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。充分利用自习时间,对优生,指导与鼓励他们冒尖,适当开展培优竞赛辅导引导学生做好自主学习;对后进生要多进行个别的辅导,不仅给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变要我学为我要学。

  二、加强科研促教,大胆探索教学新模式

  积极响应学校开展构建自主学习模式的课题研究活动,研究学生的学法,使教学工作真正做到

  ①培养兴趣,多激发学生提出自己的问题,想自己的问题;

  ②教会想,会思考从而实现自己扩大知识量,增加思维量。

  探索学生自主学习的具体做法,重视实践学习与探究反省、联系与总结的过程,对于数学问题的学习,积极引导学生用做─比─问的方法来学习。做就是自己先审题、分析、试做,目的是训练和检查自己独立分析和解决问题的能力;比就是把自己的分析、做法同老师或书上的方法对比,找出优劣,发现问题;问就是提问题,总结经验:

  ①解法是怎样想出来的?关键是哪一步?自己为什么没想出来?

  ②能找到更好的解题途径吗?

  ③这个方法能推广吗?

  ④通过解这个题,我应该学到什么?

高二数学教学计划4

  一、学生基本情况

  261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

  二、教学要求

  (一)情意目标

  (1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验发现 挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

  (6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)通过对个性特征的分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  三、教材简要分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。20xx年高二下数学教学计划20xx年高二下数学教学计划。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。

  四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

  五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。

  7、加强数学研究课的教学研究指导,培养学识的动手能力。

  六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

高二数学教学计划5

  一、指导思想:

  全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。

  二、教学具体目标

  1、期中考前完成必修3、选修2-3第一章

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  三、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,强调了问题提出,抽象概括,分析理解,思考交流等研究性学习过程。具体特点如下:

  1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2、“问题性”:专门安排了“课题学习”和“探究活动”,培养问题意识,孕育创新精神。

  3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4、“时代性”与“应用性”:教材中有“信息技术建议”和“信息技术应用”,以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  5、“人文应用价值性”:编写了一些阅读材料,开拓学生视野,从数学史的发展足迹中获取营养和动力,全面感受数学的科学价值、应用价值和文化价值。

  四、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法

  6、重视数学应用意识及应用能力的培养。

  六、教学进度安排(略)

高二数学教学计划6

  教学目标;

  (1)了解频数、频率的概念,了解全距、组距的概念;

  (2)能正确地编制频率分布表;会用样本频率分布去估计总体分布;

  (3)通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法、

  教学重点:正确地编制频率分布表、

  教学难点;会用样本频率分布去估计总体分布

  内容分析

  1、在统计中,用样本的有关情况估计总体的相应情况大体上有两类:一是用样本的频率分布去估计总体分布;二是用样本的某种数字特征去估计总体相应数字特征。本节课解决前者的问题。

  2、讨论样本频率分布的内容在初中”统计初步”中进行了简要的介绍,由于很长时间没有接触这方面知识,因此有必要通过一例重温频率分布有关知识,突出掌握解决问题的步骤,使学生了解处理数据的具体方法。

  3、介绍历史上从事抛掷硬币的几个案例,学习科学家对真理执着追求的精神。

  4、频率分布的条形图与直方图是有区别。条形图是用高度来表示频率,直方图是用面积来表示频率。

  教学过程

  1、引入新课

  (1)介绍对“抛掷硬币”试验进行研究的科学家。

  (2)本次试验结果。

  (3)画出频率分布的条形图。

  (4)注意点:①各直方长条的宽度要相同;②相邻长条之间的间隔要适当。

  (5)结论:当试验次数无限增大时,两种试验结果的频率大致相同。

  2、总体分布

  精确地反映了总体取值的概率分布规律。研究概率分布往往可以研究其频数分布、频率分布,及累积频数分布和累积频率分布。后者作为阅读教科书内容。

  3、复习频率分布

  (演示)问题:有一个容量为20的样本,数据的分组及各组的频数如下:

  [12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5

  [21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5

  (1)列出样本的频率分布表和画出频率分布直方图。

  (2)频率直方图的横轴表示___________;纵轴表示___________。频率分布直方图中,各小矩形的面积等于___________,各小矩形面积之和等于___________。频率直方图的主要作用是___________。

  讲解例题

  为了了解学生身体的发育情况,对某重点中学年满17岁的60名男同学的身高进行了测量,结果如下:

  身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68

  人数 2 1 4 2 4 2 7 6

  身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77

  人数 8 7 4 3 2 1 2 1 1

  (1)根据上表,估计这所重点中学年满17岁的男学生中,身高下低于1、65m且不高于1、71m的约占多少?不低于1、63m的约占多少?

  (2)画出频率分布直方图,说出该校年满17岁的男同学中身高在哪个范围内的人数所占比例最大?如果该校年满17岁的男同学恰好是300人,那么在这个范围内的人数估计约有多少人?

  (过程略)

  注意点:主要包括两部分:前面重点讲解如何根据数据画出频率分布的直方图,后面重点讲解如何根据样本的频率分布去估计总体的相关情况。

  (a)计算最大值与最小值的差

  (b)确定组距与组数。

  组距的确定应根据数据总体情况,自主选择。本题将组距定为2较为合适,因而组数为11。

  (c)决定分点。

  分点要比数据多一位小数,便于分组。分组区间采用左闭右开。

  (d)列出频率分布表(见教科书)。

  (e)画出频率分布图(见教科书)。

  4、得到样本频率后,应对总体的相应情况进行估计

  5、课堂练习

  教科书习题 1、2第2题。

  板书设计

  一、概念理解 二、应用

  1、频数、频率的容量的关系 例

  2、频率的取值范围 三、小结

  3、分布频率分布表

  四、作业

高二数学教学计划7

  一、教材依据

  本节课是湘教版数学(必修三)第二章《解析几何初步》第二节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题——求直线方程问题。在引入,过程中要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用“数形结合”的方法建立起代数问题与几何问题间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

  七、教学过程

  问 题

  师生活动

  设计意图

  1、在直线坐标系内确定一条直线,应知道哪些条件?

  学生回顾,并回答。然后教师指出,直线的方程,就是直线上任意一点的坐标 满足的关系式。

  使学生在已有知识和经验的基础上,探索新知。

  2、直线 经过点 ,且斜率为 。设点 是直线 上的任意一点,请建立 与 之间的关系。

  学生根据斜率公式,可以得到,当 时, ,即

  (1)

  教师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程。

  培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标 满足的关系式,从而掌握根据条件求直线方程的方法。

  3、(1)过点 ,斜率是 的直线 上的点,其坐标都满足方程(1)吗?

  学生验证,教师引导。

  使学生了解方程为直线方程必须满两个条件。

  (2)坐标满足方程(1)的点都在经过 ,斜率为 的直线 上吗?

  学生验证,教师引导。然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.

  使学生了解方程为直线方程必须满两个条件。

  4、直线的点斜式方程能否表示坐标平面上的所有直线呢?

  学生分组互相讨论,然后说明理由。

  使学生理解直线的点斜式方程的适用范围。

  5、(1) 轴所在直线的方程是什么? 轴所在直线的方程是什么?

  (2)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  (3)经过点 且平行于 轴(即垂直于 轴)的直线方程是什么?

  教师学生引导通过画图分析,求得问题的解决。

  进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式。

  6、例2、例4的教学。

  教师引导学生分析要用点斜式求直线方程应已知那些条件?题目那些条件已经直接给予,那些条件还有待已去求。在坐标平面内,要画一条直线可以怎样去画。

  学会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件:(1)一个定点;(2)有斜率。同时掌握已知直线方程画直线的方法。

  7、例3的教学。

  求经过点 ,斜率为 的直线 的方程。

  学生独立求出直线 的方程:

  (2)

  在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵。

  引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是点斜式方程的一种特殊情形。

  8、观察方程 ,它的形式具有什么特点?

  学生讨论,教师及时给予评价。

  深入理解和掌握斜截式方程的特点?

  9、直线 在 轴上的截距是什么?

  学生思考回答,教师评价。

  使学生理解“截距”与“距离”两个概念的区别。

  10、你如何从直线方程的角度认识一次函数 ?一次函数中 和 的几何意义是什么?你能说出一次函数 图象的特点吗?

  学生思考、讨论,教师评价、归纳概括。

  体会直线的斜截式方程与一次函数的关系.

  11、课堂练习第65页练习第1,2,3题。

  学生独立完成,教师检查反馈。

  巩固本节课所学过的知识。

  12、小结

  教师引导学生概括:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件?

  使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉。

  13、布置作业:第77页第5题

  学生课后独立完成。

  巩固深化

  八、教学反思

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的。

  本节课的基本题形:

  1、已知直线上一点及直线的倾斜角,求直线的方程并作图;

  2、已知直线上两点,求直线的方程并作图。教学时应注意让学生明确直线的倾斜角与斜率的关系,掌握过两点的直线的斜率公式,训练学生求直线方程的书写格式及直线的规范作图。

高二数学教学计划8

  (一)20xx年秋季班高二数学大纲

讲次高二理科
第1讲计数原理
第2讲概率初步
第3讲必修模块复习(一) (集合、函数)
第4讲必修模块复习(二) (三角函数与正余弦定理)
第5讲必修模块复习(三) (数列、不等式)
第6讲必修模块复习(四) (解析几何、立体几何、向量)
第7讲简易逻辑
第8讲轨迹与椭圆
第9讲双曲线与抛物线
第10讲直线与圆锥曲线
第11讲圆锥曲线综合
第12讲空间向量与立体几何
第13讲立体几何综合
第14讲知识点睛及期末考试
第15讲试卷分析及期末点拨

  (二)具体说明

  高二数学秋季主要学习两本书:必修3和选修2-1。选修2-1的讲义基本上与各学校同步,所以不再详说。必修3的前二章是算法和统计,内容以概念的介绍与了解为主,侧重于对知识本身的理解,在高考的考查时也只要求掌握最基本的内容,一般多以选择或填空的题型出现,比较简单。考虑这两章内容的性质与考查的难度,以及在暑期班已经预习的情况下,在秋季讲义中我们不专门安排对这两章的学习,学生只需掌握学校所学的基本内容即可。高考中这几部分内容的难度与考查的主要形式大家可以看后面附的20xx年新课标省份的高考题。对于算法中比较难掌握的程序语言等内容,高考中都不作要求。

  必修3的第三章内容是概率初步,涉及到基本事件空间,需要计算基本事件的数目时,如果没有计数原理的基础知识,计算和理解会比较肤浅,而且高考中的概率题(可参考附录中《概率》部分),大多都会与计数原理相结合,因此在学习概率前我们补充了计数原理的基础知识。计数原理和概率的更深入的内容,将在选修2-3中学习。

  学完概率初步后,接下来是高一所学内容的简单复习,力求做到温故知新。同时本学期后半部分2-1的任务非常繁重,需要学习两大块重点内容:圆锥曲线、空间向量与立体几何,这两块内容都是高考解答题的必考内容,占到解答题的1/3,并且解析几何常常以压轴题形式出现。这里对以前内容的复习也是利用前半学期比较轻松的时间,为后面2-1部分的内容作好充分的准备。

高二数学教学计划9

  一、学生基本情况

  261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

  二、教学要求

  (一)情意目标

  (1)经过分析问题的方法的教学、经过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)经过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)经过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)经过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)经过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)经过解析几何与不等式的一题多解、多题一解、经过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)经过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)经过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

  (6)经过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)经过对个性特征的分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、经过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  三、教材简要分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并经过分析标准方程研究它们的性质。

  四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

  五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、持之以恒与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,持之以恒学生主体性原则,持之以恒循序渐进原则,持之以恒启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、持之以恒向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、持之以恒学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。 7、加强数学研究课的教学研究指导,培养学识的动手能力。

  六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

高二数学教学计划10

  一.指导思想

  根据湖北省的新课改教学实施指导意见,结合我们学校的实际教学情况,发挥备课组的集体力量,全力以赴的完成本学期的教学任务。同时加强对新课改理念的学习,相互协作,积极面对新课改的要求。

  二.工作重点

  认真落实组里每位老师的课堂常规教学任务,努力加强老师的课外教学科研工作;积极学习新课改的理论知识,认真研究新教材的教法,做一个教学科研全方位的教师;同时发挥备课组全体成员的集体力量,积极研讨新教材的教学内容,全力提升高二年级的数学水平,缩小和其它学校的差距。

  三.具体措施

  (1)落实好组里每位老师的两节公开课的任务,按照先议教案,再听课堂,最后评价的程序严格落实到位。

  (2)充分利用每个星期二下午的集体备课时间,商讨教学中存在的问题,探究新教材的教法。同时争取机会出去学习教改名校的数学学科课改教学的经验。

  (3)做好每一次阶段性的考试工作,考前认真准备,阅卷客观公正,客观评价教学质量。

  (4)分班落实数学学科的培优补差工作,尤其是文科班数学的提升。

  (5)准备参加5月份的全国高中数学联赛的活动,积极安排年轻老师参加数学教学竞赛工作。

  四.教学进度

  (1)2,3月份,文科完成选修1-1和选修3-1,理科完成选修2-1和3-1的教学任务,建议把选修3-1的《数学史选讲》参插讲。

  (2)4月份,理科完成选修2-2,文科完成选修4-5

  (3)5月份,理科完成选修4-1,文科完成选修4-5。

  (4)6月份,理科完成选修4-4,文科开始期末考试的复习。

  说明:根据xx省新课程教学实施指导意见,本学期理科完成选修2-1和2-2的内容,文科完成选修1-2和1-1的教学内容,但是我们还是打算把选修3-1,4-5的内容都上完,为高三复习做好准备,从时间上看,文科的教学时间是充足的,但是理科的教学时间比较紧,希望各位老师合理安排好教学时间,确实落实好每章每节的教学任务。

高二数学教学计划11

  一、学术条件分析

  二年级五班有73名学生,

  八班有70名学生。这两个班是高二理科班的第三个班。大多数学生基础薄弱,学习兴趣低,甚至很多学生害怕数学。但是他们还是有一颗学好数学的心,也想融入到日新月异的数学世界中去,甚至想在每一次考试中领先。有鉴于此,通过正确引导,教学中适当调整难度,降低起点,一小步一小步,就能取得好成绩。

  二、教学计划

  1、加强自学。

  (1)加强教材的学习。课本是一切教学的起点,也是考试的归宿。任何一个数学知识点都会从课本上找到类型题或者类似的题或者它们的影子。教学知识的全面性和系统性直接决定于教材能否被透彻理解和专题研究。也决定了学习课本的必要性。

  (2)他山之石可以攻玉。由于生活环境、面对的对象、自身知识的局限等原因,自己的视野和起点有限,思考和解决问题的广度和深度也有限。所以多读一些教学参考书,吸收别人的经验,取长补短,对于增强教学的针对性和刺激性大有裨益。

  强化课程改革意识。新课程改革全面展开,其精神和思想具有独特的时代性、前瞻性和科学性。因此,加强新课程改革知识的学习,理解新课程改革理念,增强新课程改革意识,是时代和发展的需要。因此,要积极参与新课改的培训,把握新课改的精髓,并应用于实践。这样才能让我们的知识代谢。

  认真参与小组备课。珍惜每周一次的集体备课,充分利用这次集体备课的机会,向同龄人学习自己的不足或不擅长,积极落实小组内的各项安排,落实课时要求。

  增强听课意识。根据学校的要求,积极参与新课改年级的课堂听力活动,听取老师的意见,发现亮点,记录亮点,积累亮点,点亮亮点。

  2、把握课堂教学主战场,激发师生学习数学的积极性。

  (1)加强新课情景的创设,激发学生的学习热情。每一节新课的开发都有其现实意义、价值和趣味性。充分挖掘这些知识可以起到很好的启动作用。

  (2)选择一些例子。对于能学好的同学,就不说了;对于经过讨论能够解决的学生,给予适当的指导;对于在老师指导下完成的学生,慢慢地、仔细地讲,努力让每个学生都听得懂,学得好。我不说超出学生承受范围的话。

  课后认真安排作业。

  课后作业是课堂教学的反馈。作业质量能在一定程度上反映教学效果。所以作业安排需要科学,分层,多样化,知识点要全面。

  3、做好课后辅导。

  (1)充分利用晚自习给每个学生耐心、细致、全面的指导。让学生积累的问题得到彻底解决。

  利用自习课的时间,找到需要帮助的同学进行辅导。如果你不会背公式,掌握公式,交作业,就会被勒令补课。

  4、做好作业和考试反馈。

  现在学生的数学答案顺序不清,逻辑混乱,因果颠倒,这不是扎实的基础,也是思维上的缺陷。因此,在现阶段,有助于培养学生良好的数学思维,避免高考失分和未来生活的凌乱。

  5、培养学生对数学的兴趣,普及数学价值规律的应用。

  兴趣是有的,老师。数学难,很烦。哪里难,哪里烦?找到原因,对症下药,通过课堂移植有趣的中外数学知识,让学生认识到数学的价值,通过多媒体降低数学思维的难度,都是提高学生兴趣的途径

高二数学教学计划12

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的`有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划13

  一.指导思想

  高二文科第一学期包括了必修三和选修1-1两本教材,通过这一学期的教学,重点要培养学生利用数学各部分内容间的联系,特别是蕴含在数学知识中的数学思想方法,启发和引导学生学习类比、推广、特殊化、化归等数学思考的常用逻辑方法,使学生学会数学思考与推理,不断提高数学思维能力。

  二.学情分析

  本学期我担任高二(1、3)班的数学教学工作,在经历了文理科分科之后,我对两个班上所有学生的数学学习情况有了更进一步的了解。两个班中,女生占了将近70%,两个班的数学成绩可以说都很不理想,大部分的学生基础都很薄弱。一班的学生数学基础相对三班而言较好一点,但仍然缺乏自主学习的能力;三班中有很多的学生甚至有厌学、甚至弃学的现象。为了改变这种不良局面,使两班的学生成绩赶上来,针对学生的特点及班级的实际情况,特制订如下教学计划。

  三.教学内容分析

  本学期共有六章内容

  必修三

  1.算法初步

  2.统计

  3.概率

  选修1-1

  1.常用逻辑用语

  2.圆锥曲线方程

  3.导数及其应用

  本学期的重点章节为必修三中的概率和选修1-1中的圆锥曲线方程和导数及其应用,其它章节相对来说高考的要求较低一些。

  四.具体的教学措施

  1.深入钻研教材,以教材为核心,以纲为纲,以本为本深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。做到对知识全面掌握,从而在教学中能有的放矢。

  2.坚持向课堂45分钟要效益,立足课堂,加强课堂中的教学引导,激发和培养学生的学习兴趣和学习能力。

  3.坚持每章一测的原则,让学生通过不断地考试练习,从而能够熟练地掌握和应用所学的知识,并且为后续的学习做好铺垫。

  4.对学习能力较强、成绩较好的学生要加强其能力培养,为两年后的高考夯实基础。

  5.对学习成绩处在中等水平的学生要狠抓基础落实,使他们将知识掌握并且能够进行基本初等应用。

  6.对学习已经出现困难的学生则首先要求其掌握基础,能够对基础知识进行熟练掌握,并在此基础上进行提高。

  7.对于厌学、甚至弃学的学生则要从培养他们的兴趣入手,兴趣是最好的老师,让这些学生首先对数学产生兴趣才能够进行更进一步的学习。

  五.上学期工作中的优点和不足

  高一整个学年中每学期都有两本必修教材,时间紧,能够做到的就是保质保量地上好每一节课,课后的作业进行认真布置和批改,并且能够及时的对固学案上的较难题目进行详细的讲解。

  不足之处在于时间上的不足,导致不能够及时的对章节内容进行检测导致月考和期末成绩的不尽人意,部分学生也会产生懈怠的情绪。

高二数学教学计划14

  一、教学内容与内容解析

  1.内容:

  统计,简单随机抽样,抽签法,随机数表法。

  2.内容解析:

  本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

  本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。

  本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量Xi与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,Xn为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.

  从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。

  二、教学目标与目标解析

  1.目标:

  (1)通过实例,了解学习统计的意义,了解统计学的基本内容和方法.

  (2)通过实例,了解随机抽样的必要性.

  (3)理解随机抽样的概念.这里随机抽样的概念在初中阶段学生已经学习过,但在此处学习正是体现知识的螺旋上升,这里提出的总体、个体和样本的概念应该更加理性.

  (4)通过实例分析随机抽样应满足的基本条件.作为教师要明确学习随机抽样的主要目的是用样本估计总体,要使所抽取的样本能估计总体,抽取数据的方法要根据对数据的要求而定,方法应该是量身定做的.

  (5)体会简单随机抽样的方法.教学过程应该充分体现学生的主体作用,不囿于教材顺序的限定,结合学生已有的知识结构,充分展示学生的学习经验和能力.

  2.目标解析:

  教学目标(3)和(4)是本节课的教学重点也是难点。我们要建立一种数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。借助学生已有生活常识,形成推理的直观认识;让学生通过自己动手体验数学的一种基本思维过程,经历人们学习和生活中经常使用的思维活动。

  教学目标(5)是学生初学时不易达到的目标,教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,是学生体会解决问题时应该关注的要点,体会简单随机抽样的方法.应用简单随机抽样的方法。

  三、教学问题诊断分析

  教学重点、难点

  重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比

  难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。

  本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

  如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

  四、教学支持条件

  本节课教学支持条件首先是学生已经学习过随机抽样的概念,因此教学可以在此基础上展开.教材例题的选取都来自于学生的生活经验,便于学生理解.可以通过投影和计算机,扩展学生收集数据的方法.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣.

  五、教学过程设计

  六、目标检测设计

  (1)利用随机数表法从40件产品中抽取10件检查。

  (2)分小组进行社会问题的实际调查,题目自拟。

  (设计意图:通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力;实习作业的设置为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。)

高二数学教学计划15

  数学分析

  1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。

  2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

  3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

  4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  教育分析

  1。有助于学生数形结合思想的培养。

  解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

  2。是培养学生运算能力的重要载体。

  运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  课标解读

  1。整体定位

  “解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

  “解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

  2。具体要求

  (1)直线与方程

  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  ③能根据斜率判定两条直线平行或垂直;

  ④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  ⑤能用解方程组的方法求两直线的交点坐标;

  ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

  (2)圆与方程

  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

  ③能用直线和圆的方程解决一些简单的问题。

  (3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

  (4)空间直角坐标系

  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

  3。课标解读

  (1)要注重知识的发生与发展的过程

  解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

  数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

  比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

  (2)在高中阶段,直线的斜率一般一般有三种表示方式

  ①用倾斜角的正切

  这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

  这需要先引入0°到180°的正切函数的概念。

  ②用向量

  内容结构

  1。知识内容

  2。 章节安排

  本章教学时间约需18课时,具体分配如下:

  1 直线与直线的方程 8课时

  2 圆与圆的方程 5课时

  3 空间直角坐标系 3课时

【高二数学教学计划15篇】相关文章:

高二数学教学计划08-11

高二数学教学计划(15篇)12-23

高二文科数学教学计划12-24

高二上学期数学教学计划09-07

高二下学期数学教学计划07-01

高二音乐教学计划12-12

高二物理教学计划07-04

高二数学教学总结11-21

数学的教学计划11-03