当前位置:范文派>教学范文>教学计划>高二数学教学计划

高二数学教学计划

时间:2024-07-02 13:45:54 教学计划 我要投稿

高二数学教学计划18篇

  时间过得可真快,从来都不等人,我们又将接触新的知识,学习新的技能,积累新的经验,此时此刻需要为接下来的工作做一个详细的计划了。那么你真正懂得怎么制定计划吗?下面是小编为大家整理的高二数学教学计划,欢迎阅读与收藏。

高二数学教学计划18篇

  高二数学教学计划 篇1

  一、教学目标要求

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心, 具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,

  二、教材分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生"看个究竟"的冲动,以达到培养其兴趣的目的。

  2.通过"观察","思考","探究"等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  二学生情况分析:

  我班学生对整体来说数学比较重视,学习数学的风气比其他学科要好一些,上课该活跃时能活跃,能讨论,该安静时能安静。平时训练题都是有难度的,学生喜欢做难题,钻研讨论很热烈,但整体来说,成绩不稳定,上学期第一次月考平均分跌到年级居中上,我们的差距在填空和选择,我们上了一周空间向量课,其他班没上,会考和期末考试同时都要复习考试时,我们坚持两头兼顾同时抓,我们落后在基本知识,而且试题难度虽然不高相反中等同学这次的成绩倒超过了上面的同学,尤其是很多学生都考出了好成绩, 我是这个班的班主任,所以我关注的不仅仅是数学课,在课间或者其他时间接触的过程中发现我们班有好几个男同学特别活跃,精力非常充沛,课间经常追赶奔跑吵闹,这样的学生有利于活跃班级气氛,但自控能力差,他们都很聪明,但成绩都不太理想,如果长期不改正的'话,最后不仅影响他们自己的成长,也必将影响到整个班级。一学期下来,已经有了很大改观,所以我还将更多地关注这类学生,帮助他们纠正不良习惯,将精力集中到学习上来,从而改变整个班级的风貌。

  三、提高教学质量的具体措施。

  1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  2、详细计划,保证练习质量。教学中用配备资料,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容"滚动式"编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。

  3、抓好课堂,稳定数学优生,培养数学能力兴趣。要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的课余辅导十分重要。教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生,更不能忽视班上的学困生。

  四、教学进度表

  日期 周次 节/周 教学内容(课时)

  3月1日~3月7日 1 5 一元二次不等式(组)与简单的线性规划(5)

  8日~14日 2 6 基本不等式(3)测试与讲评(3)

  15日~21日 3 6 命题及其关系(3),充分条件与必要条件(2),简单逻辑连接词(1)

  22日~28日 简单逻辑连接词(2),全称量词与存在量词(2),复习(2)

  29日~4月5日 5 6 曲线与方程(2),椭圆(4)

  6日~12日 6 6 椭圆(2),双曲线(4)

  13日~19日 7 6 ,抛物线(4),复习(2)

  20日~26日 8 6 空间向量及其运算(5),立体几何中的向量方法(1)

  27日~5月2日 9 6 立体几何中的向量方法(4),小结与复习(2)

  3日~9日 10 6 期中考试

  10日~16日 11 6 ,段考讲评(2),变化率与导数(4)

  17日~23日 12 6 导数的计算(2)导数在研究函数中的应用(4)

  24日~30日 13 6 生活中的优化问题举例(4),定积分的概念(2)

  6月1日~7日 14 6 定积分的概念(2),微积分基本定理(2)、定积分的简单应用(2)

  8日~14日 15 6 复习与测试(4),合情推理与演绎推理(2)

  15日~21日 16 6 合情推理与演绎推理(2)、直接证明与间接证明(4)

  22日~28日 17 6 数学归纳法(3),复习(3)

  29日~7月4日 18 6 数系的扩充和复数的概念(3)、复数代数形式的四则运算(3)

  5日~11日 19 6 期末复习(6)

  12日~13日 20 6 期末考试

  高二数学学习方法

  1,培养良好的学习兴趣。

  两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

  (1)课前预习,对所学知识产生疑问,产生好奇心。

  (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

  (3)思考问题注意归纳,挖掘你学习的潜力。

  (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

  (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

  2、 建立良好的学习数学习惯。

  习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

  高二数学教学计划 篇2

  ※教学目标:

  知识与技能:

  1、掌握空间直角坐标系的建立过程和相关概念

  2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标

  过程与方法:

  1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。

  2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点

  的坐标确定的方法。

  情感、态度与价值观:

  1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。

  2、通过学生的自主学习和合作学习,培养学生合作精神。

  ※教学重、难点:

  重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示

  难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。

  ※教学准备:

  教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐

  晶体模型的投影片

  学生准备:直尺和正方形纸片

  ※教学过程:

  (一)问题情境、导入课题

  【投影】问题1、数轴Ox上的点M,用代数的方法怎样表示呢?

  问题2、直角坐标平面上的点M,怎样表示呢?

  问题3、怎样确切的表示室内灯泡的位置?

  (学生复习回顾后回答问题1和问题2,思考、讨论后回答)

  【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。

  2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)

  (二)师生互动、探究新知

  1、空间直角坐标系的建立

  【投影】问题4、空间中的'点M用代数的方法又怎样表示呢?

  (教师设问)空间直角坐标系该如何建立呢?

  【投影】(1)直角坐标系的建立过程

  如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的长为单位长,建立三条数轴: x轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-xyz,其中点O 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz平面、zOx平面.(引导学生仔细观察和理解)

  【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度

  ②任意两条确定一个平面,共有三个平面,称坐标平面

  ③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)

  【投影】(2)空间直角坐标系的画法

  (3)右手直角坐标系

  2、空间点的坐标表示

  【投影】合作探究:

  有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?

  (设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空

  间直角坐标系中点与三维有序实数组之间也有一一对应关系

  吗?(学生自行阅读教材P134)

  【点拨】是一一对应关系。

  3、坐标平面及坐标轴上的点的特征

  【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y

  (师生共同完成后,投影幻灯片)

  【投影】想一想?

  在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面

  内的点的坐标各有什么特点?

  (学生思考、讨论后教师总结)

  (三)典型例题、解释应用

  【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的

  坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.

  (解的分析和过程见投影)

  【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2

  原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.

  目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求

  点的坐标.

  (解的分析和过程见投影)

  ( 四)随堂练习、巩固新知

  练习1、教材P136练习第2小题

  (五)课堂小结、温故知新

  1、空间直角坐标系的建立

  2、空间直角坐标系的画法

  3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系

  (六)布置作业

  教材P136练习第1、3小题。

  (七)板书设计:

  4.3.1空间直角坐标系

  一、空间直角坐标系的建立

  1、建立过程

  2、空间直角坐标系画法

  3、空间直角坐标系是右手系

  二、空间坐标系中点的坐标表示方法

  三、坐标系中特殊点的坐标特征

  1、坐标轴上点的坐标特征

  2、坐标平面上点的坐标特点

  四、例题分析

  高二数学教学计划 篇3

  一、指导思想:

  在学校教学工作意见指导下,在学部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体目标如下。

  1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二。学生基本情况

  高二理科学生共有500人,学生学习数学的气氛不浓、基础很差。由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,高一数学成绩充分反映没有尖子生,成绩特差的学生也有不少,有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。

  三、教法分析:

  1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的'学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2。通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、教学措施:

  1、认真落实,搞好集体备课。每2周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  2、详细计划,保证练习质量。教学中用配备资料《学海导航》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。实行以竞赛带培优,让有能力的同学更上一层楼。实行专人负责,定时间、定地点、定人数、定内容,的学校安排。我们高二段统一由戴文生老师负责,争取在明年的市数学竞赛中取得好的成绩。

  5、段考制度创新。由于高二分科,我校实行分层教学,今年段考实行文理分别负责,重点班和次重点班、普通班的分别考试。对重点班要加深难度,拓展宽度,争取在高二使学生的数学能力有较大的提升。其他班级要夯实基础,实现会考新的突破,为高三学习打下基础。

  高二数学教学计划 篇4

  一、指导思想

  (一)《普通高中数学课程标准(实验)》

  1、课程的基本理念:

  构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识;与时俱进地认识"双基";强调本质,注意适度形式化;体现数学的文化价值;注重信息技术与数学课程的整合;建立合理、科学的评价体系。

  2、课程目标:

  (1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  (2)提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  (3)提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  (4)发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

  (5)提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  (6)具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的'理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (二)20xx年普通高等学校招生全国统一考试数学(文科)(广东卷)考试说明

  1、能力要求

  能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

  (1)空间想象能力:

  (2)抽象根据能力:

  (3)推理论证能力:

  (4)运算求解能力:

  (5)数据处理能力:

  (6)应用意识:

  (7)创新意识。

  2、个性品质要求

  个性品质是指考生个体的情感、态度和价值观,要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

  3、难度比例

  试题按其难度分为容易题、中等题、难题,试卷包括容易题、中等题和难题,以中等题为主,试卷的难度系数在0.55左右。

  二、教学工作目标

  (一)隐性目标

  1、努力实现《普通高中数学课程标准(实验)》中对课程目标中的六点说明;

  2、发展学生的能力:

  (1)空间想象能力:

  (2)抽象根据能力:

  (3)推理论证能力:

  (4)运算求解能力:

  (5)数据处理能力:

  (6)应用意识:

  (7)创新意识。

  3、培养学生的个性品质:如具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。能克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

  (二)显性目标

  力求使每位学生都获得必要的数学基础知识和基本技能,理解基本的数学概念,数学成绩有所提高,对数学更加感兴趣。结合我所教的两个班的实际,我希望高二14班的数学成绩能在期中、期末中的平均分排在全级前4名,高二15班的数学成绩有所进步,能在期中、期末平均分的排名中排在全级前8名。

  三、学生基本情况分析

  两个班均属普通班,学生基础不好,接受能力差,甚至出现厌学情绪,特别是15班的好几位学生,基本不学数学。所以上课难度有点大。

  四、具体措施

  为了达到上述教学目的,我将采取以下举措:

  (一)向学生介绍学习数学的方法,使同学们养成良好的学习习惯。

  1、提高听课的效率是关键。

  学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:

  (1)课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

  (2)听课过程中的科学。首先应做好课前的物质准备和精神准备;其次就是听课要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

  (3)特别注意老师讲课的开头和结尾。

  (4)积极思考每一道例题,记录下与老师不同的思路,要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

  (5)此外还要特别注意老师讲课中的提示。

  (6)最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

  2、做好复习和总结工作。

  (1)做好及时的复习。

  (2)做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。(3)做好单元小结。单元小结内容应包括以下部分:本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因。

  (二)改进教学方法及需要注意的问题

  1、改进教学方法,教好新教材

  (1)转变观念,提高对素质教育的认识。在使用新教科书时一定要改进教学方法,按《新大纲》的要求进行,控制教学要求,控制教学难度,确实从"应试教育"转变到贯彻素质教育的轨道上来。要应试,但必须从提高学生数学能力上下功夫.

  (2)要充分利用先进的教学手段,提高教学效益。新的教学手段必然促进教学方法的改革,必然带来新的教学效益。科学计算器已被列入初中的教学内容,高中相应的计算内容已充分使用科学计算器讲授,教师在教学中更应充分利用科学计算器,以提高教学效益,提高学生解决问题的能力。有条件的地方或学校,也要利用电子计算机和多媒体技术作为教学的辅助手段。

  (3)研究新教材 把握好教学中的“度”;研究知识结构,控制教学难度①重视知识的发生过程,淡化纯理论和学生难以接受的东西。②理解基础,重视基础③研究课本例题、习题,发挥例题、习题功能。

  (4)教学要从学生实际出发,教学要符合教育学心理学发展 认知发展,要经历多种水平,多种阶段。教师的教学要设计有直观性、启发性、使学生可接受性。(5)教师的教学要多应用数学发现和解释实际问题。

  (三)多读一些数学教育教学方面的书

  1、数学纵横,如:《华罗庚科普著作选集》、《数学的明天》、《生活中的数学》等等。

  2、波利亚理论与解题研究,如:《怎样解题》、《数学的发现》、《数学与猜想》。

  3、数学教育与数学教学,如:《孙维刚谈全班55%怎样考上北大考上清华》、《中国著名特级教师教学思想录〃中学数学卷》、《杨象富数学教学经验》等等。

  4、趣味数学,如:《关于无穷大的文化史, 计算出人意料,站在巨人的肩膀上》、《趣味数学辞典》、《数学游戏新编》等等。

  5、知识性读物,如:《从杨辉三角谈起》、《谈谈不定方程》、《抽屉原则及其他》等等。

  6、数学竞赛,如:《数学奥林 匹克教程》、《数学竞赛导论》、《历届全国高中数学联赛试题详解》等等。

  7、初等数学研究,《初等数学研究文集》、《初等数学研究的问题与课题》、《不等式研究》等等。

  高二数学教学计划 篇5

  一、指导思想

  努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的.教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。

  高二数学教学计划 篇6

  教学目标

  1.通过实例理解样本的数字特征,如平均数,方差,标准差.

  2.能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释.

  重点难点

  重点(1)用算术平均数作为近似值的理论根据.(2)方差和标准差刻画数据稳定程度的理论根据.

  难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系).(2)通过实例使学生理解样本数据的方差,标准差的意义和作用.

  教学过程

  算术平均数和加权平均数

  (一)问题情境

  某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度.全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):

  9.62 9.54 9.78 9.94 10.019.66 9.88

  9.68 10.32 9.76 9.45 9.99 9.81 9.56

  9.78 9.72 9.93 9.94 9.65 9.79 9.42 9.68 9.70 9.84 9.90

  问题1:怎样用这些数据对重力加速度进行估计?

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median).

  一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数

  一组数据中出现次数最多的那个数据叫做这组数的众数,

  算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数.

  问题2:用这些特征数据对总体进行估计的优缺点是什么?

  21世纪教育网

  用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系.对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响.

  用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”.

  用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”.

  平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:

  任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.

  问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?

  处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小.

  (x-a1)2+(x-a2)2+…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.

  所以当x=a1+a2+…+ann时离差的平方和最小.

  (二)数学理论

  故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:

  -a=a1+a2+…+ann.

  (三)数学应用

  例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些.

  甲班:

  112 86 106 84 100 105 98 102 94 107

  87 112 94 94 99 90 120 98 95 119

  108 100 96 115 111 104 95 108 111 105

  104 107 119 107 93 102 98 112 112 99

  92102 93 84 94 94 100 90 84 114

  乙班

  116 95 109 96 106 98 108 99 110 103

  94 98 105 101 115 104 112 101 113 96

  108 100 110 98 107 87 108 106 103 97

  107 106 111 121 97 107 114 122 101 107

  107 111 114 106 104 104 95 111 111 110

  分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可.

  解:用科学计算器分别求得

  甲班的平均分为101.1,

  乙班的平均分为105.4,

  故这次考试乙班成绩要好于甲班.

  此处介绍Excel的处理方法.

  例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的`同学有25人,16岁的同学有6人, 求全班的平均年龄.

  解:13×4+14×15+15×25+16×64+15+25+6

  =13×450+14×1550+15×2550+16×650

  这里的450,1550,2550,650,其实就是13,14,15,16的频率.

  [数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.

  睡眠时间 人 数 频 率

  [6,6.5) 5 0.05

  [6.5,7) 17 0.17

  [7,7.5) 33 0.33

  [7.5,8) 37 0.37

  [8,8.5) 6 0.06

  [8.5,9] 2 0.02

  合计 100 1

  例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间.

  分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间.由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示.

  解法1:总睡眠时间约为

  6.25×5+6.75×17+7.25×33+7.75×37+8.25×6

  +8.75×2=739(h).

  故平均睡眠时间约为7.39h.

  解法2:求组中值与对应频率之积的和

  原式=6.25×0.05+6.75×0.17+7.24×0.33

  +7.75×0.37+8.25×0.06+8.75×0.02=7.39(h).

  答 估计该校学生的日平均睡眠时间约为7.39h.

  21世纪教育网

  例4.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入.

  分析:上述比就是各组的频率.

  解 估计该单位职工的平均年收入为

  12500×10%+17500×15%+22500×20%+27500×25%+32500×15%

  +37500×10%+45000×5%=26125(元).

  答估计该单位人均年收入约为26125元.

  例5.小明班数学平均分是78分,小明考了80分,老师却说他是倒数几名,你觉得这可能吗?(再看书P64思考)

  高二数学教学计划 篇7

  一、指导思想:

  以1215课堂教学模式为指引,以学校教导处、教研组、年级部工作计划为指南,加强高二数学备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。

  二、学情分析及相关措施:

  今年高二重新分班后我接了高二(1)和高二(13)一理一文两个班的数学教学,学生程度不是太好而且新来的学生需要适应过程,教学中要从学生的认知水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二与高一的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:

  (1)注意研究学生,做好高二与高一学习方法的衔接。

  (2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的.知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过周月考和单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备,用周周练及时的巩固复习所学内容知识点,以及一些常见的题型和方法。

  (5)合理利用晚自习的时间抓好尖子生与后进生的辅导工作,分析周周练的作业和课外辅导资料。适当安排时间将高一的重点内容带着学生们复习回顾。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  三、教学进度(草稿):

第1周







数学必修2:立体几何







1.1空间几何体的结构1.2空间几何体的三视图和直观图(1)(2)







第2周













1.2空间几何体的三视图和直观图(1)(2)







第3周







1.3表面积体积空间几何体的复习(1)(2)







第4周







2.1空间点、直线、平面之间的位置关系(1)(2)(3)(4)







(单元检测







第5周







2.2直线、平面平行的判定及其性质(1)(2)(3)(4)







第6周







2.3直线、平面垂直的判定及其性质(1)(2)(3)(4)(单元检测







第7周







2.3直线、平面垂直的判定及其性质(4)







空间点、线、面复习(月考)







第8周







选修2-1:空间向量







第三章3.1空间向量及其运算







第9周







空间向量及其运算3.2立体几何中的向量方法







第10周







期中考试







第11周







空间向量复习(单元检测







第12周







第一章常用逻辑用语:







1.1命题及其关系1.2充分条件与必要条件







第13周







1.3简单的逻辑连结词1.4全称量词与存在量词







第14周







常用逻辑用语复习(2课时)2.1椭圆(3课时)







第15周







2.1椭圆(3课时)2.2双曲线(2课时)







第16周







2.2双曲线(2课时)2.3抛物线(3课时)







第17周







2.3抛物线(1课时)2.4直线与圆锥曲线的位置关系(3课时)







第18周







曲线与方程(2课时)复习(单元检测







第19周







总复习







第20周







期末考试







  高二数学教学计划 篇8

  一、教材分析

  1、教材地位、作用

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3。2。1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标

  1、知识与技能目标

  ⑴、理解等可能事件的概念及概率计算公式;⑵、能够准确计算等可能事件的概率。

  2、过程与方法

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点

  重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程

  1、创设情境提出问题

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维形成概念

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)

  【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  【设计意图】这两个问题的设计是为了让学生更加准确的.把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较推导公式

  【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高

  【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理课堂小结

  1、本节课你学习到了哪些知识?

  2、本节课渗透了哪些数学思想方法?

  7、作业布置

  1、阅读本节教材内容

  2、必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  3、选做题课本134页习题B组第1题

  8、教学反思

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

  高二数学教学计划 篇9

  高二数学教学计划 篇10

  1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。

  2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

  3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

  4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的`运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  高二数学教学计划 篇11

  1。有助于学生数形结合思想的培养。

  解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

  2。是培养学生运算能力的重要载体。

  运算思想是数学中最重要的.思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  高二数学教学计划 篇12

  1。整体定位

  “解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

  “解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

  2。具体要求

  (1)直线与方程

  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  ③能根据斜率判定两条直线平行或垂直;

  ④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  ⑤能用解方程组的方法求两直线的交点坐标;

  ⑥探索并掌握两点间的距离公式、点到直线的'距离公式,会求两条平行直线间的距离。

  (2)圆与方程

  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

  ③能用直线和圆的方程解决一些简单的问题。

  (3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

  (4)空间直角坐标系

  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

  3。课标解读

  (1)要注重知识的发生与发展的过程

  解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

  数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

  比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

  (2)在高中阶段,直线的斜率一般一般有三种表示方式

  ①用倾斜角的正切

  这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

  这需要先引入0°到180°的正切函数的概念。

  ②用向量

  高二数学教学计划 篇13

  1。知识内容

  2。 章节安排

  本章教学时间约需18课时,具体分配如下:

  1 直线与直线的方程 8课时

  2 圆与圆的方程 5课时

  3 空间直角坐标系 3课时

  高二数学教学计划 篇14

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。立足我校学生实际,在思想上增强学生学习数学的积极性,在知识上侧重双基训练,加强对学生创新思维、知识迁移、归纳拓展、综合运用等能力的培养,全面提高学生的数学素养。

  二、学生基本情况分析

  由于高二进行文理分班,所教的文科实验班。学生的数学学习情况较好,学生较自觉,但是,学生对自己学习数学的信心不足,积极性和主动性需加强,在做题时的灵活性还不够,要加强举一反三的能力。

  三、教学目标

  针对以上问题的出现,在本学期拟订以下目标和措施。其具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  四、教法分析

  选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。通过观察思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五、教学措施:

  1.抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。

  ①扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。

  ②加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过知识的.产生,发展,逐步形成知识体系;通过知识质疑、展活迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2.加强课外辅导,提高竞争能力。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。①加强数学数学竞赛的指导,提高学习兴趣。

  ②加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。

  ③加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别或集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

  高二数学教学计划 篇15

  一、有计划的安排一学期的教学工作计划:

  新学期开课的第一天,备课组进行了第一次活动。该次活动的主题是制定本学期的教学工作计划及讨论如何响应学校的号召,开展主体式教学模式

  的教学改革活动。

  一个完整完善的工作计划,能保证教学工作的顺利开展和完满完成,所以一定要加以十二分的重视,并要努力做到保质保量完成。

  在以后的教学过程中,坚持每周一次的关于教学工作情况总结的备课组活动,发现情况,及时讨论及时解决。

  二、定时进行备课组活动,解决有关问题

  备课组将进行每周一次的活动,内容包括有关教学进度的安排、疑难问题的分析讨论研究,数学教学的动态、数学教学的改革与创新等。一般每次

  备课组活动都有专人主要负责发言,时间为二节课。经过精心的准备,每次的备课组活动都将能解决一到几个相关的问题,各备课组成员的教学研

  究水平也会在不知不觉中得到提高。

  三、积极抓好日常的教学工作程序,确保教学工作的有效开展

  按照学校的要求,积极认真地做好课前的备课资料的搜集工作,然后集体备课,制作成教学课件后共享,全备课组共用。一般要求每人轮流制作,

  一人一节,上课前两至三天完成。每位教师的电教课比例都要在90%以上。每周至少两次的学生作业,要求全批全改,发现问题及时解决,及时在

  班上 评讲,及时反馈;每章至少一份的课外练习题,要求要有一定的知识覆盖面,有一定的`难度和深度,每章由专人负责出题;每章一次的测验

  题,也由专人负责出题,并要达到一定的预期效果。

  四、积极参加教学改革工作,使学校的教研水平向更高处推进

  本学期学校全面推行主体式的教学模式,要使学生参与到教学的过程中来,更好地提高他们学习的兴趣和学习的积极性,使他们更自主地学习,学

  会学习的方法。积极响应学校教学改革的要求,充分利用网上资源,使用分组讨论式教学,充分体现以学生为主体的教学模式,不断提高自身的教

  学水平。

  高二数学教学计划 篇16

 

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的.概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

  高二数学教学计划 篇17

  一、指导思想

  1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力、使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力、

  2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神、

  3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观、

  二、目的要求

  1、深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响、

  2、因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的氛围、

  3、加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量、

  三、具体措施

  1、不孤立记忆和认识各个知识点,而要将其放到相应的`体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路、注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整、

  2、学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解、

  3、以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用、

  4、协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率、

  5、周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力、

  6、多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的、不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力 强、教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力、

  高二数学学习方法

  (1)制定计划明确学习目的。合理的学习计划是推动我们主动学习和克服困难的内在动力。计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

  (2)课前预习是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。

  (3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。上课专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。

  (4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。

  (5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。

  (6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

  (7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。

  (8)课外学习包括阅读课外书籍与报刊,课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

  高二数学教学计划 篇18

  一、教学内容与内容解析

  1.内容:

  统计,简单随机抽样,抽签法,随机数表法。

  2.内容解析:

  本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

  本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。

  本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量Xi与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,Xn为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.

  从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。

  二、教学目标与目标解析

  1.目标:

  (1)通过实例,了解学习统计的意义,了解统计学的基本内容和方法.

  (2)通过实例,了解随机抽样的必要性.

  (3)理解随机抽样的概念.这里随机抽样的概念在初中阶段学生已经学习过,但在此处学习正是体现知识的螺旋上升,这里提出的总体、个体和样本的概念应该更加理性.

  (4)通过实例分析随机抽样应满足的基本条件.作为教师要明确学习随机抽样的主要目的是用样本估计总体,要使所抽取的样本能估计总体,抽取数据的方法要根据对数据的要求而定,方法应该是量身定做的.

  (5)体会简单随机抽样的方法.教学过程应该充分体现学生的主体作用,不囿于教材顺序的限定,结合学生已有的知识结构,充分展示学生的学习经验和能力.

  2.目标解析:

  教学目标(3)和(4)是本节课的教学重点也是难点。我们要建立一种数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。借助学生已有生活常识,形成推理的直观认识;让学生通过自己动手体验数学的一种基本思维过程,经历人们学习和生活中经常使用的思维活动。

  教学目标(5)是学生初学时不易达到的目标,教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,是学生体会解决问题时应该关注的要点,体会简单随机抽样的方法.应用简单随机抽样的方法。

  三、教学问题诊断分析

  教学重点、难点

  重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比

  难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。

  本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的`重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

  如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

  四、教学支持条件

  本节课教学支持条件首先是学生已经学习过随机抽样的概念,因此教学可以在此基础上展开.教材例题的选取都来自于学生的生活经验,便于学生理解.可以通过投影和计算机,扩展学生收集数据的方法.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣.

  五、教学过程设计

  六、目标检测设计

  (1)利用随机数表法从40件产品中抽取10件检查。

  (2)分小组进行社会问题的实际调查,题目自拟。

  (设计意图:通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力;实习作业的设置为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。)

【高二数学教学计划】相关文章:

高二数学教学计划11-25

高二数学的教学计划08-28

新高二数学教学计划01-15

高二数学教学计划15篇12-23

高二数学教学计划(15篇)12-23

高二文科数学教学计划12-24

高二数学教学计划通用15篇10-20

高二数学教学计划合集15篇03-03

高二数学下学期教学计划07-03