当前位置:范文派>教学范文>教学计划>高一数学教学计划

高一数学教学计划

时间:2024-05-01 20:30:03 教学计划 我要投稿

高一数学教学计划合集15篇

  日子在弹指一挥间就毫无声息的流逝,我们的工作同时也在不断更新迭代中,立即行动起来写一份计划吧。好的计划是什么样的呢?以下是小编精心整理的高一数学教学计划,欢迎阅读,希望大家能够喜欢。

高一数学教学计划合集15篇

高一数学教学计划1

  教学目标 :

  (1)理解子集、真子集、补集、两个集合相等概念;

  (2)了解全集、空集的意义,

  (3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

  (4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

  (5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

  (6)培养学生用集合的观点分析问题、解决问题的能力.

  教学重点:子集、补集的概念

  教学难点 :弄清元素与子集、属于与包含之间的区别

  教学用具:幻灯机

  教学过程 设计

  (一)导入 新课

  上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.

  【提出问题】(投影打出)

  已知 , , ,问:

  1.哪些集合表示方法是列举法.

  2.哪些集合表示方法是描述法.

  3.将集M、集从集P用图示法表示.

  4.分别说出各集合中的元素.

  5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.

  6.集M中元素与集N有何关系.集M中元素与集P有何关系.

  【找学生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(笔练结合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (笔练结合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.

  (二)新授知识

  1.子集

  (1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

  记作: 读作:A包含于B或B包含A

  当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

  性质:① (任何一个集合是它本身的子集)

  ② (空集是任何集合的子集)

  【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

  【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

  因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的'子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

  (2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

  例: ,可见,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:对于两个集合A与B,如果 ,并且 ,我们就说集合A是集合B的真子集,记作: (或 ),读作A真包含于B或B真包含A。

  【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

  【提问】

  (1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

  (2) 判断下列写法是否正确

  ① A ② A ③ ④A A

  性质:

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,则 A;

  (2)如果 , ,则 .

  例1 写出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集与真子集符号的方向。

  (2)易混符号

  ①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 R,{1} {1,2,3}

  ②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

  如: {0}。不能写成 ={0}, ∈{0}

  例2 见教材P8(解略)

  例3 判断下列说法是否正确,如果不正确,请加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 与 不能同时成立.

  解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

  (2)不正确.空集是任何非空集合的真子集;

  (3)不正确. 与 表示同一集合;

  (4)不正确. 的所有子集是 ;

  (5)正确

  (6)不正确.当 时, 与 能同时成立.

  例4 用适当的符号( , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)设 , , ,则A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

  【练习】教材P9

  用适当的符号( , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提问:见教材P9例子

  (二) 全集与补集

  1.补集:一般地,设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作 ,即

  .

  A在S中的补集 可用右图中阴影部分表示.

  性质: S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},则 SA={2,4,6};

  (2)若A={0},则 NA=N*;

  (3) RQ是无理数集。

  2.全集:

  如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.

  注: 是对于给定的全集 而言的,当全集不同时,补集也会不同.

  例如:若 ,当 时, ;当 时,则 .

  例5 设全集 , , ,判断 与 之间的关系.

高一数学教学计划2

  一、学生状况分析

  学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

  二、教材简析

  使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念。基本初等函数。函数的应用)。必修2有四章(空间几何体。点线平面间的位置关系。直线与方程。圆与方程)。

  三、教学任务

  本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成)。必修2在期末考试前完成(约在12月31日前完成)。

  四、教学质量目标

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

  2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  五、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的'教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

  分层推进措施:

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性。注意运用对比的方法,反复比较相近的概念。注意结合直观图形,说明抽象的知识。注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系。加强复习检查工作。抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

  6、重视数学应用意识及应用能力的培养。

高一数学教学计划3

  一、 指导思想:

  在新课程改革的教学理念下,以发展教育的观念为指引,以学校和教导处的工作计划为指南,改变教学观念,改进教学方法,更新教学手段,提高教学效率,提高学生的阅读能力、解题能力,促进学生学习态度、学习方式的转变,培养学生自主学习、积极探究、乐于合作的精神,注重学生数学素养的提高, 关注学生的思想情感和交流,培养学生的创新思维和创造能力,为学生的可持续发展奠定基础。新课标理念下的政治教学活动应该不同于传统的课堂教学,改变教师的教法和学生的学法是在教学活动中体现最新教学理念的关键。“导学案”应课堂教学改革与传统教学模式的矛盾而生,它既可以将学生自主学习引入正轨,又将学生可以自主探究理解完成的'知识点与题目在课下解决,这样,课堂上教师就有足够的时间与学生共同研究解决本节课的重点与难点,从而提高了课堂效率。我们应该认识到改革是教学的生命,课程改革与课堂教学改革是一个不断发展、不断探索的过程。在这个过程中,要求教师能够正确、深刻地理解新课程理念,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。 二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》必修1、必修2,根据必修1、2设计的导学案。它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性,辩证地分析和处理各种在课程改革中产生的观念和做法,树立正确的育人理念,开拓进取,不断寻求新的有效的方法促进学生的全面发展。

  三、学情分析:

  本学期任教高一(35、36)班的数学,(35、36)班是平衡班,部分学生学习数学的热情较高涨,比较自觉,能认真完成作业,但数学层次并不相同,部分同学基础薄弱,缺乏学习数学的方法。

  四、教学策略、教研活动:

  1、落实提高课堂效率,导学案的设计目的是为了将学生的导学案与教师的集体备课设计为一体,第一、课前预习。教师设计此部分内容之前必须针对本课

  题的三维目标与考纲认真备课,列出本节课的知识要点,对于重难点做特殊标记,并针对预习提纲给出的内容设计预习检测题,预习检测题难度不易过高,与本课题的重难点相关的知识点有选择性的录入此处,让学生在做此部分时不能感觉太简单了也不能感觉无从下手,要有一部分题目让他能够通过讨论探究完成。第二,探究活动。第三、课堂检测。此处设置的题目难度深度一定比预习检测部分要更难更深。此部分不要求所有的学生都在课前做。从此处开始分“才”完成,有能力的同学可以提前尝试着做,做题慢的同学可以先不必看,学生按照自己的情况自行决定。第四,拓展延伸。这里出现的题目属于拔高题,一般很少有学生在课前能够做对,所以此处也不要求学生课前做,当然不排除有的同学想要挑战一下,这是提倡并且大力表扬的。第五,反思总结。学生利用这部分一方面可以小结本节课的内容,另一方面可以对自己本课题从预习探究到课堂探究各个环节进行反思,便于日后改进。上课时要明确重点、难点,重点要突出,难点要分散,并且难点要解决好。课堂讲新课的时间一定要控制在20分钟之内,最好能在10分钟之内解决问题,多给时间学生练习或进行与学习有关的活动。

  2、做到课后教学反思

  上完课之后需要思考三个问题:我这节课上得如何有没有要纠正与改进的?有谁的课比我还优秀?怎样上这节课更好、最好?并在学案、备课笔记上做好记录,为以后的教育教学提供参考。

  3、落实好备课电子化,为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,备课组成员要积极借助网络信息收集和筛选资料存库,发挥集体智慧,在备课组会议上整理,及时应用到具体教学中。注重学案导学,编好用好导学案。

  4、积极听有经验的教师的课,认真改进课堂教学上的薄弱环节。注重研究教师如何讲、注重研究学生如何学,积极推进新课改,提高课堂效率。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生交流等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯。

  3、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  4、扎实基础的同时重视数学应用意识及应用能力的培养。

  5、落实抓好平时的一周一限时训练,一周一综合,注重知识的渗透 6、落实竞赛辅导:主要利用下午第三节时间,一个星期进行一至两次辅导。

高一数学教学计划4

  一、学生在数学学习上存在的主要问题

  我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:

  1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

  2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。

  4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。

  5、不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。

  二、教学策略思考与实践

  针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得一定效果。

  加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

  课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。

  上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

  及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。

  独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。

  解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

  系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。

  课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。

  1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。

  再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn。有q≠1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。

  2、讲。外国有一位教育家曾经说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的'同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。

  每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。

  例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。

  3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行“高、深、难”练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生“跳一跳可以摸得着”。一定要让学生在练习中强化知识、应用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点“弯路”,吃点“苦头”;另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。

  例如,高一(下)P26例5求证。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。

  4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的“最近发展区”更好地学习数学,得到最好的发展,制定“分层次作业”。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习情况,随时进行调整。

  5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的能力。

高一数学教学计划5

  一、学情分析

  这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习空间向量等内容的基础。

  二、教学目标

  1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法。

  2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。

  3. 进一步培养学生的空间想象能力与确定性思维能力。

  三、教学重点:在空间直角坐标系中点的坐标的确定。

  四、教学难点:通过建立空间直角坐标系利用点的坐标来确定点在空间内的位置

  五、教学过程

  (一)、问题情景

  1. 确定一个点在一条直线上的位置的方法。

  2. 确定一个点在一个平面内的位置的方法。

  3. 如何确定一个点在三维空间内的位置?

  例:如图,在房间(立体空间)内如何确定一个同学的头所在位置?

  在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数。那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数。要确定同学的头的位置,知道同学的头到地面的距离、到相邻的两个墙面的距离即可。

  (此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)

  教师明晰:在地面上建立直角坐标系xOy,则地面上任一点的`位置只须利用x,y就可确定。为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可。例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)。

  这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O-xyz,从而确定了空间点的位置。

  (二)、建立模型

  1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义。

  从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy平面,yOz平面,zOx平面。

  教师进一步明确:

  (1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系。

  (2)将空间直角坐标系O-xyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等。

  2. 空间直角坐标系O-xyz中点的坐标。

  思考:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?

  在学生充分讨论思考之后,教师明确:

  (1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z)。

  (2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.

  这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A (x,y,z)。

  教师进一步指出:空间直角坐标系O-xyz中任意点A的坐标的概念

  对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z)。

  (三)、例 题 与 练 习

  1. 课本135页例1.

  注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)。

  2. 课本135页例2

  探究: (1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?

  (2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?

  解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)。

  (2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)。

  3. 已知长方体ABCD-ABCD的边长AB=12,AD=8,AA=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。

  注意:此题可以由学生口答,教师点评。

  解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

  讨论:若以C点为原点,以射线CB,CD,CC方向分别为x,y,z轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?

  得出结论:建立不同的坐标系,所得的同一点的坐标也不同。

  [练 习]

  1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

  2. 已知:长方体ABCD-ABCD的边长AB=12,AD=8,AA=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。

  3. 写出坐标平面yOz上yOz平分线上的点的坐标满足的条件。

  (四)、拓展延伸

  分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标。

  六、评价设计

  1、 练习 : 课本P136. 1、2、3

  2、 课堂作业: 课本P138. 1、2

高一数学教学计划6

  教材分析:

  解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。

  学情分析:

  初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。

  学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。

  教学目标:

  ①知识与技能

  熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集

  ②过程与方法

  经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习

  ③情感、态度及价值观

  在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机

  教学重点:

  一元二次不等式的解法

  教学难点:

  解法的探索及发现,关键在于“识图能力”

  反思:

  今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:

  首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。

  其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。

  在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。

  教学程序:

  一、复习一元一次不等式及不等式组的解法

  以题组形式设计习题

  ①2x+3>7

  ②不等式组

  ③ax>b

  二、创设二次不等式的生活背景实例,引入课题

  采用课本上的实例,有关网络收费问题

  三、一元二次不等式的解法探索

  在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。

  由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。

  采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。

  之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的`解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。

  反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。

  四、练习环节

  可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。

  课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。

  五、课堂小结

  知识,思想、方法及感悟等

  六、课后作业

  ①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组

  ②课外思考题:

  1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同

  2已知不等式mx^2m2x+m>0的解集为R,求m的取值范围

  变式一:戓将R改为空集,此时结论如何

  变式二:仿上,自己改编条件,并解之。

  反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。

高一数学教学计划7

  一、设计理念

  新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。

  二、教材分析

  本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。

  三、学情分析

  【年龄特点】:

  假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。

  【认知优点】

  一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。

  【学习难点】

  但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。

  四、教学目标

  ? 知识与技能:

  1. 理解子集、V图、真子集、空集的概念。

  2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。

  3. 能够区分集合间的包含关系与元素与集合的属于关系。

  ? 过程与方法:

  1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、

  分析、归纳的能力。

  2. 培养学生用数学符号语言、图形语言进行交流的能力。

  ? 情感态度与价值观:

  1.激发学生学习的兴趣,图形、符号所带来的魅力。

  2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。

  五、教学重、难点

  重点:

  集合间基本关系。

  难点:

  类比实数间的关系研究集合间的关系。

  六、教学手段

  PPT辅助教学

  七、教法、学法

  ? 教法:

  探究式教学、讲练式教学

  遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。

  ? 学法:

  自主探究、类比学习、合作交流

  教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。

  八、课型、课时

  课型:新授课

  课时:一课时

  九、教学过程

  (一)教学流程图

  (二)教学详细过程

  1..回顾就知,引出新知

  问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?

  2.合作交流,探究新知

  问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?

  (1)A={1,2,3},B={1,2,3,4,5};

  (2)设A为新华中学高一(2)班女生的'全体组成集合;B为这个班学生的全体组成集合;

  (3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}

  【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的子集,记作:A?B(B?A),读作A含于B或者B包含A.

  在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:

  问题三:你能举出几个集合,并说出它们之间的包含关系吗?

  【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。

  问题四:对于题目中的第3小题中的集合,你有什么发现吗?

  【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。

  用集合的概念对相等做进一步的描述:

  如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。

  强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B

  【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。

  【师生活动】?,并规定空集是任何集合的

  4.思维拓展,讨论新知

  问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明

  【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是

  问题七:经过以上集合之间关系的学习,你有什么结论?

  【师生活动】:师生讨论得出结论:

  (1)任何一个集合都是它本身的子集,即A?A

  5.练习反馈,培养能力

  例1写出集合{a,b}的所有子集,并指出哪些是真子集

  例2用适当的符号填空

  (1)a_{a,b,c}

  (2){0,1}_N

  (3){2,1}_{X∣X2-3X+2=0}

  6.课堂小结,布置作业

  这节课你学到了哪些知识?

  小结 知识上:

  能力上:

  情感上:

  作业:必做题:P8,3

  思考题:实数间有运算,那集合呢?

  十、板书设计

  十一、教学反思

高一数学教学计划8

  高一年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。数学网高中频道整理了高一数学下册教学计划,希望能帮助教师授课!

  本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。

  一、指导思想

  以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。

  二、工作思路

  1.在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。

  2.以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。

  3.教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,

  三、教材分析(结构系统、单元内容、重难点)

  必修5:

  第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

  第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

  第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;

  必修2:

  第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;

  第二章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。

  四、学情分析

  经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。

  五、工作目标

  1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。

  2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。

  3、把对新课程标准的`学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。

  4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。

  六、具体措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一数学教学计划9

  本学期担任高一X1、X2两班的数学教学工作,两班学生共有X人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别X1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标.

  (一)情意目标

  (1)通过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求

  1、培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过三角函数求值与化简问题的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

  (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  二、教学要求

  (一)三角函数

  1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算.

  2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式.

  3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力

  4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆).

  5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A,ω、φ的物理意义.

  6.会由已知三角函数值求角.并会用符号arcsinx、arccosx、arctanx表示角。

  (二)平面向量

  1理解向量的概念,掌握向量的几何表示,了解共线问量的概念

  2掌握向量的加法与减法

  3掌握实数与向量的积,理解两个向量共线的充要条件

  4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

  5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件

  6掌握平面两点间的`距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式

  7掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力

  8通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力

  9通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流.

  三、教学重点

  1、掌握同角三角函数的基本关系式

  2.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图。

  4.掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形

  四、教学难点

  1.函数y=Asin(ωx+φ)的简图

  2.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象

  3.掌握正弦定理、余弦定理,并能运用它们解斜三角形

  五、工作措施.

  1、抓好课堂教学,提高教学效益。

  课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。

  (2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

  2、加强课外辅导,提高竞争能力。

  课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

  (1)加强数学数学竞赛的指导,提高学习兴趣。

  (2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

  (2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

  3、搞好单元考试、阶段性考试的分析。

  学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

  六、进度安排.

  第四章三角函数

  §4.1角的概念的推广………………………………………………………………………………2课时

  §4.2弧度制…………………………………………………………………………………………2课时

  §4.3任意角的三角函数……………………………………………………………………………2课时

  §4.4同角三角函数的关系…………………………………………………………………………2课时

  §4.5诱导公式………………………………………………………………………………………2课时

  §4.6两角和与差三角函数…………………………………………………………………………7课时

  §4.7二倍角公式……………………………………………………………………………………3课时

  §4.8三角函数的图象与性质………………………………………………………………………4课时

  §4.9函数y=sin(ωx+φ)的图象…………………………………………………………………3课时

  §4.10正切函数的图象与性质………………………………………………………………………3课时

  §4.11给值求角………………………………………………………………………………………4课时

  第五章平面向量…………………

  §5.1向量……………………………………………………………………………………………1课时

  §5.2向量的加法及减法……………………………………………………………………………2课时

  §5.3实数与向量的积………………………………………………………………………………2课时

  §5.4平面向量的坐标运算…………………………………………………………………………2课时

  §5.5线段的定比分点………………………………………………………………………………2课时

  §5.6平面向量的坐标运算…………………………………………………………………………2课时

  §5.7平面向量的数量积及运算律…………………………………………………………………2课时

  §5.8平面向量数量积的坐标表示…………………………………………………………………2课时

  §5.9正弦定理、余弦定理…………………………………………………………………………2课时

  §5.10解斜三角形应用举例…………………………………………………………………………2课时

  §5.11实习作业………………………………………………………………………………………2课时

  第六章不等式…………………

  §6.1不等式的性质…………………………………………………………………………………3课时

  §6.2均值定理………………………………………………………………………………………2课时

  §6.3不等式的证明…………………………………………………………………………………6课时

  §6.4不等式的解法…………………………………………………………………………………3课时

  期末复习20课时

高一数学教学计划10

  一、教材分析(结构系统、单元内容、重难点)

  必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

  第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

  第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

  必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;

  第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;

  第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;

  第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

  2.通过日常生活中的实例,了解数列的.概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

高一数学教学计划11

  一、教学分析

  1、分析教材

  本章教材整体主要分成三大部分:

  (1)、圆的标准方程与一般方程;

  (2)、直线与圆、圆与圆的位置关系;

  (3)、空间直角坐标系以及空间两点间的距离公式。

  圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。

  2、分析学生

  高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想

  3、教学重点与难点

  重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。

  难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。

  二、教学目标

  1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。

  2、掌握直线与圆的位置关系的判定。

  3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。

  4、培养学生科学探索精神、审美观和理论联系实际思想。

  三、教学策略

  1、教学模式

  本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的

  教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。

  2、教学方法与手段--充分利用信息技术,合理整合课程资源

  采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的'呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。

  四、对内容安排的说明

  本章分三部分:圆的标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。

  1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。

  通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

  2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

  (1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

  (2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

  3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

  用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:把代数运算结果翻译成几何结论。

  五、教学评价

  ㈠过程性评价

  1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

  2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

  ㈡终结性评价

  1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

  2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一数学教学计划12

  一、教材分析(结构系统、单元内容、重难点)

  必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

  必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的`位置关系;

  二、学生分析(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

  2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

  五、教学进度

  周次 课、章、节 教学内容 备注

  1 1.1,1.2 解三角形

  2 1.2 解三角形

  3 2.1,2.2 数列的概念与简单表示法,等差数列

  4 2.3 等差数列的前n项和

  5 2.4,2.5 等比数列及前n项和

  6 2.5 考试

  7 3.1,3.2 不等关系与不等式,一元二次不等式及其解法

  8 3.3,3.4 二元一次不等式(组)与简单线性规划问题,基本不等式

  9 考试,复习

  10 期中考试

  11 1.1,1.2 空间几何体的结构,三视图,直观图

  12 1.3 空间几何体的表面积与体积

  13 2.1,2.2 空间点、直线、平面的位置关系,直线、平面平行的判定及其性质

  14 2.3 直线、平面的判定及其性质

  15 3.1,3.2 直线的倾斜角与斜率,直线方程

  16 3.3 直线的交点坐标与距离公式

  17 4.1,4.2 圆的方程,直线、圆的位置关系

  18 4.3 空间直角坐标系

  19 复习

  20 考试

高一数学教学计划13

  一、教学思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书?数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的.学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性。注意运用对比的方法,反复比较相近的概念。注意结合直观图形,说明抽象的知识。注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系。加强复习检查工作。抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。

高一数学教学计划14

  教学计划可以帮助教师理清教学思路,提高课堂效率。

  ●教学目标

  (一)教学知识点

  1.了解全集的意义.

  2.理解补集的概念.

  (二)能力训练要求

  1.通过概念教学,提高学生逻辑思维能力.

  2.通过教学,提高学生分析、解决问题能力.

  (三)德育渗透目标 渗透相对的观点.

  ●教学重点 补集的.概念.

  ●教学难点

  补集的有关运算.

  ●教学方法 发现式教学法 通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.

  ●教具准备

  第一张:(记作1.2.2 A)

  ●教学过程 Ⅰ.复习回顾

  1.集合的子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的条件是什么?

  Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.

  请同学们由下面的例子回答问题: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分

  由此借助上图总结规律如下: 投影片:(1.2.2 B)

  Ⅳ.课时小结

  1.能熟练求解一个给定集合的补集.

  2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业

高一数学教学计划15

  教材教法分析

  本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.

  学情分析

  一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想.这两方面都为学习本课内容打下了基础.

  教学目标

  1.知识与技能

  ①通过具体情境,使学生感受建立空间直角坐标系的必要性

  ②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

  ③感受类比思想在探究新知识过程中的作用

  2.过程与方法

  ①结合具体问题引入,诱导学生探究

  ②类比学习,循序渐进

  3.情感态度与价值观

  通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.

  教学重点

  本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的.学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.

  教学难点

  通过建立恰当的空间直角坐标系,确定空间点的坐标。

  先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.

【高一数学教学计划】相关文章:

数学高一教学计划06-26

高一数学教学计划07-05

高一数学教学计划(15篇)12-24

高一数学教学计划15篇11-30

高一数学上册教学计划03-20

高一数学教学计划(汇编15篇)03-31

高一数学下学期教学计划03-20

高一数学教学计划(合集15篇)03-17

高一数学教学计划集锦15篇02-27

高一数学教学计划集合15篇03-01