【精选】数学教学计划集合5篇
时间就如同白驹过隙般的流逝,我们将带着新的期许奔赴下一个挑战,不如为接下来的教学做个教学计划吧。如何把教学计划写出新花样呢?下面是小编为大家收集的数学教学计划5篇,仅供参考,希望能够帮助到大家。
数学教学计划 篇1
指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
教学进度安排:
周 次 时 内 容 重 点、难 点
第1周
9.2~9.6 5 集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念
第2周
9.7~9.13 5 集合的基本运算
函数的概念、
函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用
第3周
9.14~9.20 5 单调性与最值、
奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义
第4周
9.21~9.27 5 指数与指数幂的运算、
指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念
第5周
9.28~10.4 5 (9月月考?、国庆放假)
第6周
10.5~10.11 5 对数与对数运算、
对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数
第7周
10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质
第8周
10.19~10.25 5 方程的根与函数零点,
二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;
第9周
10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
第10周
11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义
第12周
11.16~11.22 5 三角函数的诱导公式
三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性
第13周
11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响
第14周
11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型
第15周
12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算
第16周
12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系
第17周
12.21~12.27 5 平面向量应用举例,
小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力
第18周
12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系
第19周
1.4~1.10 5 简单的三角恒等变换
期末复习
数学教学计划 篇2
本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.
本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的.区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.
教法建议:
本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?
一.教学目标 :
1.使学生掌握定理及其推论;
2.掌握等腰三角形判定定理的运用;
3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征.
二.教学重点:定理
三.教学难点 :性质与判定的区别
四.教学用具:直尺,微机
五.教学方法:以学生为主体的讨论探索法
六.教学过程 :
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
1.定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.
(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.
已知:如图,△ABC中,∠B=∠C.
求证:AB=AC.
教师可引导学生分析:
联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.
(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.
2.推论1:三个角都相等的三角形是等边三角形.
推论2:有一个角等于60°的等腰三角形是等边三角形.
要让学生自己推证这两条推论.
小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.
证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.
3.应用举例
例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求证:AB=AC.
证明:(略)由学生板演即可.
补充例题:(投影展示)
1.已知:如图,AB=AD,∠B=∠D.
求证:CB=CD.
分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.
证明:连结BD,在 中, (已知)
(等边对等角)
(已知)
即
(等教对等边)
小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.
2.已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.
数学教学计划 篇3
一、教学要求
1、九年级(上)数学教材是全套教科书的基础内容,要注意教学目标的把握,注意好与小学知识的衔接。教材虽然淡化了有关概念的教学,但教师要注意分寸的把握,了解教科书的变化及用意。要抓住方程这条主线,带动有关知识的学习。相关整式知识要根据需要把握。对“图形认识初步”的教学要求也应突出基础性,要注意丰富学习资源,帮助学生建立空间观念。要注意“阅读与思考”“观察与猜想”“实验与探究”“信息技术应用”等内容的利用,适时安排,加深认识,开阔眼界,增长见识,提高运用能力。练习要适当、适度、适时,如有理数的运算,一元一次方程的解法,列式子表示数量关系,一些基本几何图形的表示方法,不同几何语言的相关转化等基础知识和基本技能,对后续学习具有重要作用,因此要注意掌握,打好学生基础。对课本中练习题,“复习巩固”“综合应用”“拓广探索”要把握练习的时机,对一些情境性强,建立模型要求高的习题,要注意培养兴趣,不搞一刀切。计算器运算使用要求学生学会,但不能代替笔算能力。总之,要打好基础,防止分化,落实目标。
2、初三(上)人教版教材,要求教师尊重教材的编写体系,对一些九年级学习过而掌握起来有难度的内容[如不等式(组)的应用问题],在初三教师要作必要的补充,加强必要的练习,要加强数学与生产实践的联系,加强“全等三角形”“轴对称”等图形的认识与了解。注意发展统计观念,培养统计意识。课堂教学中,要注意从身边的实际问题出发,和学生一起去探索,去发现数学问题。要妥善处理好落实基础与培养能力的关系,努力提高课堂教学的效率,反对把大部分练习留在课外,加重学生过重学习负担的做法,对单元练习与检测,要处理好分散与集中的关系,及时地查漏补缺。教师要研究各种课型的上法,最大限度地大面积巩固学生基础,且使学生用数学解决问题的能力,迈上一个新台阶。
3、九年级(上)数学教学,要努力处理好落实双基与培养创新精神与实践能力的关系,处理好学科知识内的逻辑联系,处理好学科知识与科技、社会生活、学生实际以及其他学科之间的关系。本学期要上完上册的六章内容,这六章内容要注意基础性和应用性,在课时安排上充分保证新授课的时间。防止偏、怪、难的重复训练,部分九(下)内容,如“直角三角形的边角关系”、“二次函数”部分内容适当提前,让出时间给下学期的全面复习。要注意不同学生的不同要求,对学有余力的学生,要加强指导,让其更好的发展。对大面积而言要注意降低起点,加强基础,加强主干知识的练习与巩固。
二、教学进度
九年级:期中考试前可授完第二章第三节。一般不落后于第二章第二节(考虑假期),期中考试后授完本册全部内容。
初三:期中考试前可授完第十三章第二节或第三节,期中考试后授完本册全部内容。
九年级:期中考试前根据各校进度授完九(上)三分之二左右内容,期中考试后授至九(下)第二章部分内容(具体以市调考进度为准)。
三、教研专题
1、数学教学目标分解与活动单元的设计与研究。
2、课型研究
3、教学模式与复习效益研究
4、中考数学命题研究
数学教学计划 篇4
一、学生基本情况:
175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。
二、高考要求
1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。
2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。
3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。
4、注重应用题的考查,20xx年文科试题应用有3道题,共28分。
5、注重学生创新意识的考查,注重学生创造能力的考查。
三、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:
基础练习 → 典型例题 → 作业 → 课后检查
(1) 基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。
(2) 典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4 为综合题,培养学生运用数学思想方法分析问题解决问题的能力。
(3) 作业:本节课的基础问题,典型问题及下一节课的预习题。
(4) 课后检查;重点检查改错本及复习资料上的作业。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5、发挥集体的力量,共同培养尖子学生。
6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。
数学教学计划 篇5
一、指导思想:
教材四年级数学下册,是以《全日制义务教育数学课程标准(实验稿)》的基本理念和所规定的教学内容为依据,在总结现行九年义务教育小学数学教材研究和使用经验的基础上编写的。编者一方面努力体现新的教材观、教学观和学习观,同时注意所采用措施的可行性。使实验教材具有创新实用,开放的特点。另一方面注意处理好继承与发展的关系,既注意反映数学教育改革的新理念,又注意保持我国数学教育的优良传统,使教材具有基础性,丰富性和发展性。
二、学情分析:
同学们对知识的掌握仍存在一些不利因素,有少部分同学们,由于知识脱节,单元知识能过关,但综合能力较差,对于概念理论知识理解过于肤浅,对知识运用也欠灵活,有一部分同学们学习态度比较浮躁,计算能力较差,还需进一步提高,应用题分析能力还可以,个别同学们仍需继续辅导。从同学们习惯方面看,有一部分同学们没有养成良好的学习习惯。
做题马虎,丢三落四,抄错数,不用直尺等许多学习习惯有待改善;还有个别同学们由于缺乏自信心。
三、教材分析:
本册教材包括:小数的意义和性质,小数的加法和减法,四则运算,运算定律与简便计算,三角形,位置与方向,折线统计图,数学广角和数学综合运用活动等。其中小数的意义与性质、小数的加法和减法,运算定律与简便计算以及三角形是本册教材的重点教学内容。教材编写特点
1、改进四则运算的编排,降低学习的难度,促进同学们的思维水平的提高。
2、认识小数的教学安排,注重同学们对小数意义的理解,发展同学们的数感。
3、提供丰富的空间与图形的教学内容,注重实践与探索,促进同学们空间观念的发展。
4、加强统计知识的教学,使同学们的统计知识和统计观念得到进一步提升。
5、有步骤地渗透数学思想方法,培养同学们数学思维能力和解决问题的能力。
6、情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发同学们的学习兴趣与内在动机。
四、教学目标:
1、理解小数的意义和性质,体会小数在日常生活中的应用,进一步发展数感,掌握小数点位置移动引起小数大小变化的规律,掌握小数的加法和减法。
2、掌握四则混合运算的运算顺序,会进行简单的整数四则混合运算;探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。
3、认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边和三角形的内角和是180°。
4、初步掌握确定物体位置的方法,能根据方向和距离确定物体的位置,能描述简单的路线图。
5、认识折线统计图,了解折线统计图的特点,初步学会根据统计图和数据进行数据变化趋势的分析,进一步体会统计在现实生活中的作用。
6、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
7、了解解决植树问题的思想方法,培养从生活中发现数学问题的意识,初步培养探索解决问题有效方法的能力,初步形成观察、分析及推理的能力。
8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
五、教学重点、难点:
1、小数的意义和性质,体会小数在日常生活中的应用,进一步发展数感,掌握小数点位置移动引起小数大小变化的规律,掌握小数的加法和减法。
2、掌握四则混合运算的运算顺序,会进行简单的整数四则混合运算,探索和理解加法和乘法的运算定律,会应用它们进行一些简便运算,进一步提高计算能力。
3、认识三角形的特性,会根据三角形的边角特点给三角形分类,知道三角形任意两边之和大于第三边以及三角形的内角和是180度。
4、初步掌握确定物体位置的方法,能根据方向和距离确定物体的位置能描述简单的路线图。
5、认识折线统计图,了解折线统计图的特点,初步学会根据统计图和数据进行数据变化趋势分析,进一步体会统计在现实生活中的作用。
6、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
7、了解解决植树问题的思想方法,培养从生活中发现数学问题的意识,初步培养探索解决问题有效方法的能力,初步形成观察、分析及推理的能力。
8、体会学习数学的乐趣,学习数学的兴趣,建立学好数学的信心。
9、养成认真作业、书写整洁的良好习惯。
10、在综合应用中,能运用学过的知识解决实际问题。
11、在实践活动中。初步了解分析研究问题的步骤和方法。
六、教学措施:
1、深入教材,认真备课,定好单元计划,提前一周备课。
2、注意新旧知识的联系,侧重发展同学们思维能力。
3、抓重点、难点、各个环节的突破。
4、重视同学们的智力开发,抓好素质教育,培养良好的学习习惯,重视课堂40分钟的利用,大面积提高教学成绩。
5、对同学们要高标准严要求,教给同学们科学的学习方法,充分利用教科书掌握例题、习题之间联系,举一反三,灵活学习,真正地把知识学会。
6、精心设计作业,有层次,讲究目的性、科学性。
7、抓好后进生的转化工作,耐心辅导,因材施教。
七、教学进度安排:
(略)
【【精选】数学教学计划集合5篇】相关文章: