初三上册数学教学计划范文汇总6篇
光阴迅速,一眨眼就过去了,教学工作者们又将迎来新的教学目标,让我们对今后的教学工作做个计划吧。那么教学计划怎么写才能体现你的真正价值呢?以下是小编收集整理的初三上册数学教学计划6篇,欢迎阅读与收藏。
初三上册数学教学计划 篇1
学习目标
1、进一步认识建立方程模型的作用,提高数学的应用意识
2、在用方程解决实际问题的过程中,提高抽象、概括、分析问题的能力
学习重、难点
重点:用一元二次方程解决实际问题
难点:正确寻找等量关系
学习过程:
一、情境创设
一根长22cm的铁丝。
(1)能否围成面积是30cm2的矩形?
(2)能否围成面积是32 cm2的矩形?并说明理由。
二、探索活动
分析情境问题可知:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是
____________。根据相等关系:矩形的长×矩形的宽=矩形的面积,可以列出方程求解。
思考:这根铁丝围成的矩形中,面积最大是多少?
三、例题教学
例 1 如图,在矩形ABCD中,AB=6,BC=12,点P从
点A沿AB向点B 以1/s的速度移动;同时,点Q从点B沿边BC
向点C以2/s的速度移动,问几秒后△PBQ的面积等于82?
分析:题中含有等量关系:S△PBQ =82,只要用点P运动的时间
来表示三角形各边的长并代入等量关系式即可得到相应的方程。
例 2 如图,在矩形ABCD中,AB=6cm,
BC=3cm。点P沿边AB从点A开始向点B以2cm/s
的速度移动,点Q沿边DA从点D开始向点A以1cm/s
的速度移动。如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)那么,当t为何值时,△QAP的面积等于2cm2?
四、课堂练习
1、P98 练习
2、思维拓展:
如图,有100m长的篱笆材料,要围成一矩形仓库,
要求面积不小于600m2,在场地的北面有一堵50m的旧墙,
有人用这个篱笆围成一个长40m,宽10m的仓库,但面积
只有40×10m2,不合要求,问应如何设计矩形的长与宽才能符合要求呢?
五、课堂小结
如何正确寻找实际问题中的等量关系?
六、作业
后进生:P98 练习 P99 习题4.3 6 优生:P99 习题4.3 6、7、8
初三上册数学教学计划 篇2
【学习目标】
1.了解整式方程和一元二次方程的概念 。
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
【重点、难点】
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定
【学习过程】
一、
知识回顾
1.什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________
二、
探究新知[一]
1.一元二次方程的一般形式是( )
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2).方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?
3).强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.
探究新知(二)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[学以致用:]
强化概念:
1. 说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知识总结:]
(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );
(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.如:(3x十2) 2=4(x-3)____________
诊断检测题一:
1.一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项.
2.方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.
3.方程mx2+5x+n=0一定是( ).
A.一元二次方程 B.一元一次方程
C.整式方程 D.关于x的一元二次方程
4.关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )
A.任意实数 B. m≠-1 C. m>1 D. m>0
5.方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6.把下列方程化成一般形式,且指出其二次项,一次项和常数项
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
诊断检测题二:
1.方程 的二次项系数是 ,一次项系数是 ,常数项是 .
2.把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;
3.一元二次方程 的一个根是3,则 ;
4. 是实数,且 ,则 的值是 .
5.关于 的方程 是一元二次方程,则 .
6.方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
初三上册数学教学计划 篇3
时间的脚步没有停歇,我们又迎来了新的学期。总结过去是为了积累更多的经验;计划将来是为了更好地工作。特制订本学期的初三数学教学计划。
一、指导思想:
通过九年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
二、基本情况分析:
新学期,根据九年级学生的实际情况,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,设计教学方法和培优补差计划,做好各方面的工作,使学生们迅速适应新一学期的学习环境,然后,尽快帮他们找到新的学习榜样,帮学生们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
三、教学内容
本学期的教学内容共六章:
第24章:圆;第22章:二次函数;第25章概率初步;
第26章:反比例函数;第27章:相似形;
第28章:锐角三角函数。
四、教学目标: 本学期的主要教学任务目标:
(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算, 逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
五、教学重点、难点
重点:
1、要求学生掌握证明的基本要求和方法,学会推理论证;
2、探索证明的思路和方法,提倡证明的多样性。
难点:
1、引导学生探索、猜测、证明,体会证明的必要性;
2、在教学中渗透如归纳、类比、转化等数学思想。
六、教学措施:
针对上述情况,计划在本学期教学工作中采取以下几点措施:
1、简要复习所有内容,特别是几何部分。
2、尽量采取多鼓励、多引导、少批评的教育方法。
3、尽量兼顾大多数学生,注重整体推进。
4、 坚持以课本为主,要求学行完成课本中的练习、习题(A组)、复习题(A组)和巩固与练习,学生做完后,教师做适当的讲评,不做繁、难、偏的数学题目。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
初三上册数学教学计划 篇4
一、基本情况:
本学期是初中学习的关键时期本学期我担任初三年级三(5、6)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
一、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
二、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的`必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
初三上册数学教学计划 篇5
教学目标:
1.知识与技能:
(1)能证明等腰梯形的性质和判定定理
(2)会利用这些定理计算和证明一些数学问题
2.过程与方法:
通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。
3.情感态度与价值观:
通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。
重点、难点:
重点:等腰梯形的性质和判定
难点:如何应用等腰梯形的性质和判定解决具体问题。
教学过程
(一)知识梳理:
知识点1:等腰梯形的性质1
(1)文字语言:等腰梯形同一底上的两底角相等。
(2)数学语言:
在梯形ABCD中
∵AD∥BC,AB=CD
∴∠B=∠C
∠A=∠D(等腰梯形同一底上的两个底角相等)
(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。
知识点2:等腰梯形的性质2
(1)文字语言:等腰梯形的两条对角线相等
(2)数学语言:
在梯形ABCD中
∵AD∥BC,AB=DC
∴AC=BD(等腰梯形对角线相等)
(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。
知识点3:等腰梯形的判定
(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。
(2)数学语言:在梯形ABCD中∵∠B=∠C
∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)
(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形
(4)说明:
①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。
②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。
【典型例题】
例1. 我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。
(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)
(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。
解:(1)略。
(2)DE=(AD+BC)
过D作DF∥AC交BC延长线于点F
∵AD∥BC,∴四边形ACFD是平行四边形
∴AD=CF, AC=DF
∵AC=BD
∴BD=DF
又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形
∵DE⊥BF,则DE=BF,
∴DE=(BC+CF)=(BC+AD)
例2. 如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m, 斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。
解:过点B作BF⊥CD于F
∵四边形ABCD是等腰梯形
∴BC=AD
∵BF=AE,BF⊥CD,AE⊥CD
∵Rt△BCF≌Rt△ADE
在Rt△BCF中,∠C=60°
∴∠CBF=30°
∴CF=BC即BC=2CF
∴BC2=CF2+BF2
即∴CF=2
∵AB∥CD,BF⊥CD,AE⊥CD
∴四边形ABFE是矩形
∴EF=AB=6m
∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)
例3. 已知如图,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F
(1)请写出图中4组相等的线段。(已知的相等线段除外)
(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。
解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG
(2)证明AG=BG,因为在梯形ABCD中,
AB∥DC,AD=BC,所以梯形ABCD为等腰梯形
∴∠GAB=∠GBA
∴AG=BG
课堂小结:
本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。
初三上册数学教学计划 篇6
基本情况:
本学期是初中学习的关键时期本学期我担任初三三年级(5、6)两个班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。
一、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
二、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
【初三上册数学教学计划范文汇总6篇】相关文章:
5.初三数学教学计划