当前位置:范文派>教学范文>教学设计>一个数除以分数教学设计

一个数除以分数教学设计

时间:2021-03-15 16:41:03 教学设计 我要投稿

一个数除以分数教学设计

  作为一名无私奉献的老师,时常需要准备好教学设计,教学设计是一个系统化规划教学系统的过程。如何把教学设计做到重点突出呢?以下是小编帮大家整理的一个数除以分数教学设计,欢迎大家分享。

一个数除以分数教学设计

一个数除以分数教学设计1

  教学目标

  1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解已知一个数几分之几是多少,求这个数的数量关系.

  2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.

  3.培养学生的计算能力及抽象、概括、分析、比较和综合的能力.

  教学重点

  使学生理解并掌握一个数除以分数的计算法则.

  教学难点

  用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题.

  教学过程

  一、复习引新

  (一)口算下面各题

  (二)口答分数除以整数的计算方法.

  (三)一个数的5倍是30,求这个数.

  二、讲授新课

  (一)教学例2

  例2.一辆汽车 小时行驶18千米,1小时行驶多少千米?

  教师提问:题中已知什么,求什么,怎样列式?

  质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(板书课题:一个数除以分数).

  教师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出

  小时行18千米?.(演示课件:一个数除以分数)

  观察:从图上看1小时里有几个 小时?(5个 小时)

  推想:要想求出5个 小时行驶多少千米?就必须先求出什么呢?( 小时行的路程)

  ( 小里有2个 小时,2个 小时行18千米,用182就可以求出 小时行驶的千米数)

  教师板书:

  (二)教学例3

  例3.小刚 小时走了 千米,他1小时走多少千米?

  1.分析:已知什么,求什么,怎样列式: .

  2.比较:和刚才的那道题目哪儿不一样?

  3.讨论:这道题如何解答,你从中悟出了什么道理?

  4.汇报: 求出 小时走的,1小时里有10个 小时,所以再乘10就求出1小时走的千米数.

  5.推导过程:

  (千米)

  6.教师提问:在这一过程中什么变了,什么没变?

  (三)总结计算法则

  教师说明:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了叙述方便,我们把被除数称为甲数,除数称为那乙数.

  甲数除以乙数(0除外),等于甲数乘乙数的倒数.

  (四)反馈练习

一个数除以分数教学设计2

  教学内容:九年义务教育六年制小学数学第十一册第33-35页例2、例3。

  教学目的:

  1.进一步理解分数除法的意义,沟通乘除之间的联系。

  2.掌握一个数除以分数的推理过程,运用转化的思想领会计算方法的来由。

  3.熟记一个数除以分数的计算法则,并能加以运用。

  4.培养分析、推理、辩证思维等能力。

  教学重点:运算法则。

  教学难点:推算过程。

  [评:目标表述具体、简便,便于检测和评估。]

  教学过程:

  一、复习引入

  1.复习。

  (1)说出各算式的意义和计算结果。

  ÷3 ÷4 ÷2 ×5

  (2)说出应用题的算式及所表示的意义。

  一辆汽车2小时行驶90千米,1小时行驶多少千米?

  (3)根据分数除法意义,把下面乘法算式改写出两道除法算式。

  45× =18 × =

  2.设问。

  (1)上面所写出的'除法算式中,哪个是分数除法?

  (2)我们已学习了分数除以整数的分数除法,那么,整数除以分数、分数除以分数的分数除法的计算方法是怎样的呢?

  3.揭题。

  今天这节课我们就来学习研究"一个数除以分数"的计算方法,看谁最先学会。

  [评:复习、设问、揭题紧密相联,设置新旧知识矛盾情境,激发学生学习动机。]

  二、新课教学

  1.讲解算理。

  (l)出示例2。

  (2)学生读题,理解题意。

  (3)列出算式:

  ①根据"速度=路程÷时间"应列出怎样的算式?

  ②板书:18÷

  ③想一想能不能按照分数除以整数的计算方法计算?

  (4)讨论算法。

  ①根据题意画出思路图:

  ②分析:

  a.已知 2/5小时行18千米,求1/5 小时行多少千米,该怎么算?(18÷2)

  b.18÷2,还可以写成什么算式?(18×1/2 )

  c. 1/5小时行"18×1/2 (千米)",求1小时行多少千米,又怎么样?(18×1/2×5)

  d.18× ×5中的"×5"是什么意思?

  e.这个算式还可以写成什么算式表示?

  ③板书:

  18÷2/5 =18×1/2×5=18×2/5

  ④观察思考:

  a.这个等式前后有什么变化?

  b. 与 是什么关系?

  c.由除法转化为乘法,说明了什么?

  d.从"18÷2/5 = 918 × 1"这个等式,可以得出什么结论?

  (5)教师小结:由上例可知整数除以分数可以转化为乘以这个分数的倒数。

  板书:18÷ =18× =45(千米) 答:(略)

  (6)做一做。

  12÷3/5 24÷2/3 1÷5/7

  [评:以除法转化为乘法为思路,引导学生分析、观察、思考,强化认识过程,注重理解,不轻易下结论。]

  2.研究算法:

  (1)出示例3:小刚3/10 小时走了14/15千米他1小时走多少千米?

  (2)学生自学,教师巡视。

  (3)指名学生板算:

  14/15÷3/10= 14/3×2/3=28/9=3又1/9(千米) 答:(略)

  (4)师生研讨:

  ①列算式的依据是什么?

  ②算式中的"÷ "为什么可以变成"× "?

  ③整数或者分数除以分数,计算时分别转化成什么样的计算?

  ④怎样验证这种计算结果是正确的?

  ⑤指名学生板算出验证过程:

  14 1 1 3

  × = × = ÷ = × =

  3 5 5 2

  ⑥分数除以分数的计算方法能用一句比较恰当的话来叙述吗?让同桌学生相互议论,再指名回答。

  ⑦教师板书:一个数除以分数,等于这个数乘以原分数的倒数。

  [评:采用让学生自学、尝试、验证的教学策略,充分发挥了学生的智能因素,调动了学生去主动获取知识的积极性。]

  3.概括法则。

  (1)出示: ÷9 9÷ ÷

  (2)学生独立计算。

  (3)指名学生在黑板上演算并说出计算方法。

  ÷9= 1× 3= 9÷ = 93× 1=12

  ÷ = 1× 2=

  (4)观察议论:

  ①上面三道题分别叫做什么除法题?

  ②上面三道题的计算方法与过程相同吗?为什么?

  ③想一想,计算分数除法能否找到一个统一的法则?如果有,那么这个统一的法则是怎样的?

  (5)启发概括:

  ①板书:甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

  ②齐读法则。

  4.看书质疑。

  5.强化论证。

  (1)启发思考:

  ①这个计算法则,除以上我们研讨的推导方法外,还有没有其它方法推导出来?

  ②当甲数除以乙数(0除外)时,除数是什么数算起来最方便?

  (2)师生共同议论:

  ①出示: ÷

  ②怎样使这个算式中的除数变成1?被除数应怎样?

  ③板书:( × )÷( × )= × ÷1= ×

  ④让学生各举一例动手验证一下。

  [评:利用知识间的联系,可以促进知识的发展。对法则的概括统一和进一步的强化论证法则,就说明了在数学中要善于捕捉这些联系规律,从而促进知识的沟通,促进学生对知识的深化理解。]

  三、巩固练习

  1.填空:

  (1)甲数除以乙数(0除外),等于( )。

  (2) ÷ = × (3) ÷ = ( )

  (4) ÷ =( )×( ) (5) ÷ =

  2.判断。下面各题如果有错误在( )更正。

  (l)9÷ = 93× 1= =6 ( )

  (2) ÷3= ×3= = ( )

  (3) ÷ = 1× 1=4 ( )

  (4) ÷ = 2× 1= = ( )

  3.口算抢答题:

  (1) ÷3 (2)3÷ (3) ÷

  (4) ÷ (5) ×2 (6)6×

  (7) ÷ (8) ÷

  4.记出下面各题的计算方法有什么不同。

  + - × ÷

  5.独立计算。

  ÷10 21÷ ÷ ÷

  [评:突出重点,抓住关键,练在点子上,层层推进,在运用法则过程中进一步强化认识,深化记忆,形成知识。]

  四、全课小结

  1.一个数除以分数包括哪些内容?

  2.一个数除以分数的计算法则是什么?

  五、布置作业(略)

  [总评:全课教学思路清晰,讲究课堂教学实效。按照学生的认识规律,强调对法则的认识过程,避免学生表面化、形式化的理解。同时在法则的揭示、分析、解决中发展了学生思维的内驱力,渗透了辩证观点的教育。]

【一个数除以分数教学设计】相关文章:

1.一个数除以小数教学设计

2.小学数学《分数除以分数》教学设计范文

3.《求一个数是另一个数的几分之几》教学设计

4.《分数乘法》教学设计

5.分数乘法教学设计

6.《小数除以整数》教学反思

7.分数的初步认识教学设计

8.《分数与除法的关系》教学设计