当前位置:范文派>教学范文>教学设计>《比例》教学设计

《比例》教学设计

时间:2021-08-21 11:16:21 教学设计 我要投稿

《比例》教学设计

  作为一名为他人授业解惑的教育工作者,时常要开展教学设计的准备工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。写教学设计需要注意哪些格式呢?以下是小编精心整理的《比例》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

《比例》教学设计

《比例》教学设计1

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质。

  3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

  教学重点:

  理解并掌握比例的基本性质。

  教学难点:

  探究发现比例的基本性质。

  设计理念:

  本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

  教学步骤教师活动学生活动

  一、复习引新

  导入新课

  1、找找比比:

  (判断下面的比,哪些能组成比例?把组成的比例写出来。)

  3:518:300.4:0.21.8:0.9

  5/8:1/47.5:32:89:27

  学生独立完成,重点说说判断过程。

  2、今天我们继续研究比例的有关知识。

  学生练习

  学生回顾判断两个比能否组成比例的方法

  二、认识比例

  探索规律1、认识比例各部分的名称

  (1)介绍“项”:组成比例的四个数,叫做比例的项。

  (2)3:5=18:30学生尝试起名。

  师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

  3:5=18:30

  内项

  外项

  (3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

  出示:3/5=18/30

  (4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  2、教学例4

  (1)理解题意,信息搜索:

  提问:你能根据图中的数据写出比例吗?

  (2)、学生写不同比例:

  引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

  引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

  (3)、学生探索规律

  学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)

  (4)、写比例,验证规律:

  是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

  (5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

  4、练习:“试一试”判断能否组成比例。

  出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

  提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?

  学生练习:找出比例中的内项和外项

  6:5=36:30

  4:7=21:49

  学生自主表达,图中有哪些数据信息?

  学生独立思考,再小组交流

  学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()

  学生分析哪两个数是外项,哪两个数是内项。

  比较理解比例的基本性质

  学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  三、巩固练习

  拓展提高

  1、做“练一练”

  使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

  2、在()里填上合适的数。

  5:3=():6

  4:()=():5

  3、做练习十第1、2题学生尝试练习后交流讨论

  先让学生尝试填写,再交流明确思考方法。

  四、全课小结

  总结反馈通过今天的学习,你有哪些收获?

  把你发现规律的方法介绍给朋友、亲人。

  五、课堂作业练习十3、4题

《比例》教学设计2

  教学目的:

  1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

  2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

  教学重点:

  理解比例尺的意义

  教学难点:

  把线段比例转换成数值比例尺

  教学过程:

  一、激发兴趣,引入比例尺

  脑筋急转弯

  师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?

  生猜:蚂蚁可能在地图上爬。

  师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。

  师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

  二、动手操作,认识比例尺

  1、操作计算。

  师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

  ①橡皮长5厘米

  ②圆规长11厘米

  ③米尺长1米

  师:咦?怎么不画了?

  生:画不下。

  师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?

  生:可以把1米缩小若干倍后画在纸上。

  师:这个办法不错。就用这种方法画吧。

  学生画完,集体交流。

  师:你是用图上几厘米的线段来表示实际1米的呢?

  教师有选择的板书:

  师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

  师:你能用比表示出图上距离与实际距离的关系吗?

  教师指名回答,并板书计算过程。

  2、揭示比例尺的意义。

  (1)初步理解比例尺的意义

  师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)

  师:下面每位同学算出自己的比例尺。

  (生独立计算后汇报结果,师板书)

  师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

  师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?

  (学生做前先交流)

  师:大家交流一下,谁能告诉大家首先要做什么事情?

  师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。(板书1. 写出比。2. 单位统一。3. 化简比)

  学生汇报计算结果

  让能说说求一幅图的比例尺的方法是怎样的?

  对应练习:

  完成课本第49页“做一做”

  (2)联系生活,进一步理解比例尺

  师:你还在哪里见过比例尺?

  生1:大型建筑。

  生2:房屋装修。

  师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?

  (让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)

  三、认真比较,深刻理解

  1、比较比例尺,揭示数值比例尺的意义。

  师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?

  生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。

  师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。

  2、认识线段比例尺。

  师:把上面的线段比例尺改写成数值比例尺。

  1厘米:60千米

  =1厘米:6000000厘米

  =1:6000000

  小结:

  线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。

  3、认识把实际距离放大后的比例尺

  同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)

  (出示三年级科学书中蚂蚁图)

  师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?

  (学生尝试算出这幅图的比例尺,指名板演)

  出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。

  纵观这节课所认识的比例尺,思考下列问题:

  1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

  2、求比例尺时,通常要做什么?

  3、化简后的比例尺,它的前项和后项一般是什么形式?

  四、巩固练习,灵活运用

  1、小结看书。

  2、练习:

  (一)填一填

  (1)在比例尺是1:20xx的地图上,图上距离1厘米表示实际距离( )

  (2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。

  (3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是( )。

  (二)判断

  (1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

  (2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

  (3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 .

  六、谈学后体会。

  这节课你学到了什么?

《比例》教学设计3

  教学目标

  1、通过自主探究,学生能理解比例的基本性质,认识比例的各部分名称。

  2、学生能运用比例的基本性质正确判断两个比能否组成比例。

  3、激发学生学习兴趣。

  教学重点:

  1、认识比例的各部分名称。

  2、理解比例的基本性质。

  教学难点:

  会根据比例的基本性质正确判断两个比能否组成比例。

  知识链接:

  比例的意义

  教学过程:

  一、创设情境,明确目标

  1、什么叫比例?

  2、下面的比能组成比例吗?你是怎样判断的?

  2.4:1.6和60:40

  二、导学探究,建立模型

  (一)导学探究,解决问题

  1、导学提示,明确方向

  请自学教材41页例1之前的内容,然后小组合作,完成下面的问题。

  1)比例各部分的名称是什么?

  2)找出比例2.4:1.6=60:40的外项和内项,计算比例中两个外项和两个内项的积,你有什么发现?

  3)请自己任意举例,验证你的发现。

  4)试着总结比例的基本性质。

  2、自主学习,解决问题

  (二)展示交流,建立模型

  1、学生汇报,重点释疑

  1)组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  2)2.4∶1.6=60∶40

  两外项积是:2.4×40=96

  两内项积是:1.6×60=96

  2.4×40=1.6×60

  学生自主学习,解决问题。

  各小组代表汇报

  全班交流

  3)学生举例子,验证发现的规律。

  2、归纳小结,建立模型

  在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  三、练习检测,巩固应用

  1、填空

  1、组成比例的四个数,叫做比例的()。两端的两项叫做比例的(),中间的两项叫做比例的()。

  2.在比例里,()等于()。这叫做比例的基本性质

  3、在a:7=9:b中,()是内项,()是外项,a×b=()。

  4、一个比例的两个内项分别是3和8,则两个外项的积(),两个外项可能是()和()。

  2、判断

  (1)因为6×9=18×3,所以6∶3=18∶9()

  (2)在一个比例里,两个内项互为倒数,两个外项也应互为倒数。()

  3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  6∶3和8∶50.2∶2.5和4∶50

  四、回顾总结,反思提升

  这节课你有什么收获?

  先独立完成,再指名汇报,全班交流,集体订正。

  先判断,并说明理由。

  巩固学生对比例各部分名称的理解。

  巩固学生对比例的意义的理解。

  巩固学生能正确的应用比例的基本性质判断两个比能否组成比例

  板书设计

  比例的基本性质

  组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  教学反思

  1、在教学比例(特别是分数形式的比例)的各部分名称时,要特别强调哪是外项,哪是内项。

  2、本节课充分的体现了学生是学习的主人,提高了学生自主探究的能力。

《比例》教学设计4

  教学内容:解比例

  教学目标:

  1、使学生掌握解比例的方法,能正确解比例。

  2、体现数学服务于生活的思想。

  教学重点:掌握解比例的方法

  教具:实物投影

  教学过程:

  一、复习

  1、口答,说出下列方程的解答过程:

  2X=8x91/2=1/5x1/4。

  2什么是比例?比例的基本性质是什么?

  3把下面比例改写成两个数相乘的形式

  3:8=15:40,9/1.6=4.5/0.8

  二、新课

  1、出示图片,介绍这是法国著名上午埃菲尔铁塔,塔高320米,在北京世界公园里有一座塔的模型,高度32米,问模型与原来塔高度的比是多少?并化简成最简整数比。

  2、出事例题,读题并观察,两道题有什么相同点和不同点

  3、讨论,研究解题办法

  4、汇报分析不同的解法(此时揭示课题并说明什么是解比例)

  5、注意强调列式是两个比前后的一致性

  6、出示例31.5/2.5=6/X比较与例2的不同,明确解题思路

  7、小结:说明解比例的方法,解比例也就是解方程

  三练习

  1、求X的值1/2X=1/4x1/57.8:X=8.2:10

  2、书上练习第8题

  3、团结路图上距离与实际距离的比是1:30000,它的图上距离是六厘米,它的实际距离是多少米?

  4、小兰说她只用一把尺子,一根竹竿就能量出操场上旗杆的高度,你信吗?为什么?下课后尝试去测量。

  总结:这节课你收获了什么?怎样解比例?

《比例》教学设计5

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

  教学目标:

  ⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:

  进一步认识成正比例和反比例的量。

  教学难点:

  感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、教师谈话,揭示课题。

  ⑴教师谈话。

  教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。

  ⑵揭示课题。

  揭示课题——正比例和反比例。

  二、师生互动,合作交流。

  ⑴完成“练习与实践”第7题。

  呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?

  班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。

  ⑵完成“练习与实践”第8题。

  呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。

  第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;

  第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。

  ⑶完成“练习与实践”第9题。

  呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。

  班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。

  ⑷完成“练习与实践”第10题。

  呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:

  图上距离实际距离

  学校-少年宫4厘米?米

  学校-体育场3.5厘米?米

  学校-市民广场2.5厘米?米

  学校-火车站7厘米?米

  多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……

  解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。

  ⑸谈谈本节课的收获。

《比例》教学设计6

  【教材分析】

  《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:

  “2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。

  【教学目标】

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  【教学重点】探索并掌握比例的基本性质。

  【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。

  【教学设想】:

  1、教学情境的呈现

  创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。

  教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。

  2、教学方式的选择

  教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。

  比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。

  3、练习的设计

  (1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。

  (2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。

  (3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。

  (4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。

  【教学预设】

  一、认识比例各部分的名称

  1、呈现:4:5和8:10

  (1)认识吗?叫什么?

  (2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

  (3)求比值,判断两个比能否组成比例。

  2、介绍比例各部分的名称

  4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

  3、你能说出下面比例的内项和外项各是多少吗?

  (1)1.4:=:5(2)=

  二、探究比例的基本性质

  1、猜数

  呈现比例“12∶□=□∶2”。

  (1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……

  (2)这样的例子举得完吗?

  2、猜想

  仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)

  3、验证

  (1)是不是所有的比例都有这样的规律呢,有什么好办法?

  (2)你觉得应该怎样举例呢?

  (3)合作要求

  1)前后4个同学为一个小组;

  2)每个同学写出一个比例,小组内交换验证。

  3)通过举例验证,你们能得出什么结论?

  4、小结

  (1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

《比例》教学设计7

  教学目标:

  1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。

  2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

  教学重点:

  认识比例尺的意义。

  教学难点:

  求一幅平面图的比例尺。

  板书设计:

  比例尺

  (1)9.5厘米:95米=9.5:9500=1:1000

  6厘米:60米=6:6000=1:1000

  (2)19厘米:95米=19:9500=1:500

  12厘米:60米=12:6000=1:500

  图上距离 :实际距离=比例尺

  教学过程:

  (包括导引新课、依标导学、异步训练、作业设计等)

  一、生活原型再现

  师:(出示孙楠同学的照片)你们认识他吗?他是谁?

  生:孙楠。

  师:怎么可能呢?照片上的人这么小,怎么会是他呢?

  生:是缩小了……

  师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?

  生:不像他了,像丑八怪……

  师:那怎样才能像他呢?

  生:都要缩小。

  师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?

  生:不像,要缩小相同的倍数。……

  二、创设情境,以疑激思

  同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。

  出示:足球场:长 95米,宽60米。 学生作图。

  三、 独立探究,合作交流。

  1、通过学生讨论,引出学习要求。

  (1)确定图上的长和宽的长度;

  (2)画出足球场的平面图;

  (3)写上图上的长和宽的长度;

  (4)分别写出图上长、宽与实际长、宽的比,并化简。

  根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。

  2、学生小组学习。

  3、学生汇报设计思路。

  生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。……

  (根据学生的汇报板书)

  图上距离:实际距离

  (1) 9.5厘米:95米=9.5:9500=1:1000

  6厘米:60米=6:6000=1:1000

  (2) 19厘米:95米=19:9500=1:500

  12厘米:60米=12:6000=1:500

  4、揭示比例尺的意义。

  图上距离和实际距离的比,叫做这幅图的比例尺。

  图上距离 :实际距离=比例尺

  师:1:500的比例尺,说说你是怎样理解的?

  生:表示图上距离是实际距离的1/500;

  表示实际距离是图上距离的500倍;

  图上距离和实际距离的比是1:500;

  图上1厘米表示实际距离5米,

  介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。

  四、加深理解,拓展应用。

  (1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?

  (2)辨析:比例尺是一把尺吗?

  (3)比例尺一般出现在什么地方?(地图上或平面图上)

  (4)出示山东省主要城市位置图。

  师:在这张地图上,你去过什么地方?

  师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?

  生:比例尺。出示比例尺 1∶8000000

  生:图上距离。

  师:给你一把尺子能解决这个问题吗?

  学生尝试解决。

  交流:

  生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。

  生2:根据实际距离是图上距离的8000000倍,可以用

  5.5×8000000=44000000厘米=440千米

  生3:根据图上距离是实际距离的1/8000000,也可以用

  5.5÷1/8000000=5.5×8000000=44000000厘米=440米

  生4:老师,也可以用方程来解。

  解:设烟台到泰安的距离是x厘米。

  1:8000000=5.5:x

  x=44000000

  44000000厘米=440千米

  师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?

  生:4.4小时

  师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?

  一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”

  忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……

  五、反思体验 拓展完善

  1、学生谈自己的收获,总结本节课的内容。

  2、你还想知道什么?

  六、作业设计

  自主练习:2、3

  教学后记:

  (包括达标情况、教学得失、改进措施等)

  上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

  (1)在学生已有的经验上学习数学

  新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。

  (2)让学生经历了知识的形成过程

  只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

  (3)让学生密切联系了生活实际

  数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

《比例》教学设计8

  教学内容:

  九年义务教育六年制小学数学第十二册P63——64

  教学目标:

  1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

  2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

  3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

  教学重点:

  能认识正比例关系的图像。

  教学难点:

  利用正比例关系的图像解决实际问题。

  设计理念:

  数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题

  教学步骤教师活动学生活动

  一、复习激趣1、判断下面两种量能否成正比例,并说明理由。

  ◎数量一定,总价和单价

  ◎和一定,一个加数和另一个加数

  ◎比值一定,比的前项和后项

  2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

  学生口答

  想象猜测

  二、探究新知1、出示例1的表格(略)

  根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

  你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

  2、学生尝试画出正比例的图像

  3、展示、纠错

  每个点都应该表示路程和时间的一组对应数值。

  4、回答例2图像下面的问题,重点弄清:

  (1)说出每个点表示的含义。

  (2)为什么所描的点在一条直线上?

  (3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

  借助直观的图像理解两种量同时扩大或缩小的变化规律。

  学生到黑板上示范

  互相评价纠错

  学生讨论

  说说是怎样想的

  三、巩固延伸

  1、完成练一练

  小玲打字的个数和所用的时间成正比例吗?为什么?

  根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

  估计小玲5分钟打了多少个字?打750个字要多少分钟?

  2、练习十三第4题

  先看一看、想一想,再组织讨论和交流。

  要求学生说出估计的思考过程。

  3、练习十三第5题

  先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

  组织讨论和交流

  4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

  根据表中的数据,描出所对应的点,再把它们按顺序连起来。

  同桌之间相互提出问题并解答。

  独立完成,集体评讲

  想一想,说一说

  画一画,议一议

  学生设计,交换检查并相互评价

  四、评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

《比例》教学设计9

  教学目标

  1.知识技能

  结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。

  2.数学思考与问题解决

  经历自学和合作的过程,体验学习的快乐。

  3.情感态度

  培养学生自主参与的意识,培养学生观察、分析、概括的能力。

  教学重点

  通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。

  教学难点

  通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。

  教法学法

  讲授与自学相结合、自主学习法、合作学习法

  教学准备

  多媒体课件、学生自学卡

  教学过程

  一、回顾旧知,复习铺垫

  1.复习学过的有关比的知识。

  2.谈话引入新课。

  二、引导探究,学习新知

  1.教学比例的意义。

  同学们还记得这些图吗?请联系比的知识,想一想怎样的两张图片像,怎样的两张图片不像?

  你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。

  写出长与宽的比,并求出比值。完成学习卡的第一题。

  2. 初步感知比例的意义。

  (1)交流反馈。

  (2)引出比例的意义,

  因为这两个比的比值相等,所以我们可以写成一个等式,6:4=12:8,也可以写成6/4=12/8

  师:像这样表示两个比相等的式子叫做比例。(板书:比例)

  3.组织看书,认识名称

  我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。

  【设计意图:让学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。】

  4.利用新知,学以致用

  师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?

  (小组讨论,交流汇报)

  生汇报

  【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】

  5.内化意义,提高认识

  (1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?

  (2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”

  6. 引申应用

  学生自学数学书的16页的问题三。

  7. 比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  8. 教学比例的基本性质

  (1)教学比例各部分的名称。

  教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书P17,看看什么叫比例的项、外项、内项。

  指名让学生指出板书中的比例的外项、内项。

  (2)教学比例的基本性质。

  教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

  两个外项的积是80×5=400

  两个内项的积是2×200=400

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。

  通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?

  最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

  “如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:

  “这个比例的外项是哪两个数呢?内项呢?”

  “因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

  三、全课小结,提高认识

  通过这节课的学习,你们都有哪些收获?

《比例》教学设计10

  教学内容:比例的基本性质

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:比例的基本质性。

  教学难点:发现并概括出比例的基本质性。

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  2.4:1.6和60:40

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6=60:40

  内项

  外项

  (2)学生认一认,说一说比例中的外项和内项。

  如::=:

  外内内外

  项项项项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1)学生独立探索其中的规律。

  (2)与同学交流你的发现。

  (3)汇报你的发现,全班交流。

  板书:两个外项的积是2.4×40=96

  两个内项的积是1.6×60=96

  外项的积等于内项的积。

  (4)举例说明,检验发现。

  如::0.5=1.2:

  两个外项的积是×=0.6

  两个内项的积是0.5×1.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:=

  2.4×40=1.6×60

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5)归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  3.填一填。

  (1)=

  ()×()=()×()

  (2)0.8:1.2=4:6

  ()×()=()×()

  (3)4×5=2×10

  4:()=():()

  =

  4.做一做。

  完成课文中的“做一做”。

  5.课堂小结

  (1)说一说比例的基本性质。

  (2)你可以用什么方法来判断两个比能否组成比例?

  三、作业

  完成课文练习六第4~6题。

  课后记:

《比例》教学设计11

  尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

《比例》教学设计12

  教学目标:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.

  教学难点:利用反比例的意义,正确判断两个量是否成反比例.

  教法:自主探究,合作交流。

  学法:小组合作交流。

  教具:课件。

  教学过程:

  一、定向导学(5分).

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

  2、成正比例的量有什么特征?(口答)

  3、出示学习目标

  1、理解反比例的意义,能根据反比例的意义。

  2、正确的判断两种量是否成反比例。

  二、自主学习(15分).

  1、自学课本p47例2。

  思考:

  a、表中的两种量是( )和( )。这两种量是不是相关联?为什么?

  b、水的高度是随着( )的'变化而变化 ,水的高度越( )杯子的底面积就越( )。

  c、相对应的杯子底面积和水的高度的乘积分别是( ),一定吗?

  d、这个积表示( )表示它们之间的数量关系式是( )。

  (2)从中你发现了什么?这与复习题相比有什么不同?

  a、学生讨论交流。

  b、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

  三、合作交流(6分)

  1、成反比例的量应具备什么条件?

  2、数学书第48页的做一做,学生独立完成,集体订正。

  四、质疑探究(4分)

  举出生活中反比例关系的例子

  五、小结检测(4分)。

  1、说说反比例的意义,如何判断两种量是否成反比例。

  2、检测

  判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  3、第51页8题

  4、第51页9题

  六、堂清 (6分)

  p51练习九第10、11、12题。

  板书设计:

  成反比例的量

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  用字母表示: x×y=k(一定)

《比例》教学设计13

  教学内容:

  九年义务教育六年制小学数学第十二册P62——63

  教学目

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:认识正比例的意义

  教学难点:掌握成正比例量的变化规律及其特征

  设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

  一、复习铺垫激情促思

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、初步感知探究规律1、出示例1的表格(略)

  说说表中列出了哪两种量。

  (1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

  (2)引导学生观察表中数据,寻找两种量的变化规律。

  根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

  根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

  根据学生的回答,板书关系式:路程/时间=速度(一定)

  (3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

  (板书:路程和时间成正比例)

  2、教学“试一试”

  学生填表后观察表中数据,依次讨论表下的4个问题。

  根据学生的讨论发言,作适当的板书

  3、抽象表达正比例的意义

  引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:=k(一定)

  揭示板书课题。

  先观察思考,再同桌说说

  大组讨论、交流

  学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

  学生根据板书完整地说一说表中路程和时间成什么关系

  学生独立填表

  完整说说铅笔的总价和数量成什么关系

  学生概括

  三、巩固应用深化规律

  1、练一练

  生产零件的数量和时间成正比例吗?为什么?

  2、练习十三第1题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第2题

  先独立判断,再有条理地说明判断的理由。

  4、练习十三第3题

  先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

  分别求出每个图形的周长和面积,并填写表格。

  讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

  讨论、交流

  独立完成,集体评讲

  说明判断的理由

  说一说,画一画

  填一填,议一议

  讨论

  四、总结回顾评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

《比例》教学设计14

  【教学内容】苏教版P40页例3、练一练及练习九的3----7题。

  教学目标:

  1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2.通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  教学重点:理解比例的意义。

  教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、创设情境,导入新课

  师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)

  师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的,并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)

  师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)

  好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)

  2厘米

  3.2厘米

  4.8厘米

  3厘米

  6.4厘米

  4厘米

  9.6厘米

  6厘米

  二、新授

  师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?

  (学生板演,观察到比值相等,教师板书:两个比相等)

  师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)

  教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。

  请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)

  (教师再强调:一定是比值相等的两个比才能组成比例。)

  师:你还能从四面国旗中找出哪些比例?

  (学生写在练习本上,然后汇报。教师板书)

  师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)

  ?师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?

  学生从形式上区分:比由两个数组成;比例由四个数组成。

  学生从意义上区分:比表示两个数之间的倍数关系;比例表示两个比相等的式子。

  三、巩固应用

  (一)数的比例

  课本.40页练一练。(学生汇报比值是否相等,所以成不成比例。教师板书比例式)

  (二)形的比例

  出示两个具有放大关系的三角形

  3厘米

  5厘米

  4.5厘米

  7.5厘米

  师:哪位同学能分析一下这个图形?(学生讲这是两个相似的三角形,几个数字分别是它们的底和高。然后汇报比例)

  (三)生活中的比例

  师:通过刚才的几组题,我们进一步弄清了比例的意义,现在让我们一起来看看生活中的比例吧!

  1、课本41页第3题(学生独立完成,小组订正交流。)

  2、小明买了3本笔记本花了9元钱,李刚买了5本同样的笔记本花了15元。(你能根据题中的数据写出几组比例式吗?并说出理由。)

  四、总结

  师:这节课,大家都非常的积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)

  师总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识。

  五、课堂检测

  1、下面哪些组的两个比可以组成比例?如果能,在()打对号。

  10:2和35:42()0.6:0.2和:()

  :4和3:():和12:8()

  2、在下面的六个比中,选择两个比组成比例。

  ::4:71.4:2.8:10:15

  3、写出比值是的两个比,并组成比例。

  4、小强3分钟走了180米,小刚1小时走了3.6千米。小强说他们各自所走的路程和时间的比能组成比例,小刚说不能组成比例。请问:谁说的对?

  六、布置作业

  课本练习九4题、7题

《比例》教学设计15

  教学内容:

  北师大版小学数学第十二册第二单元第30—31页。

  教学目标:

  1让学生在实践活动中体验生活中需要比例尺。

  2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。

  3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  教学重点:正确理解比例尺的含义。

  教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  教学准备:多媒体

  教学过程:

  一、独立探究、合作生成

  教师:请同学们在自己纸上画出长9米,宽7米的教室地面来。

  学生1:(有学生会发出质疑)哪有那么大的本子?不够画怎么办?

  学生2:可以利用前面所学的知识————图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。

  教师:你的想法很对,跟笑笑同学的想法一样(用课件出示第31页笑笑家的平面图),在这幅图上你们发现了什么新问题?

  学生:在图的右下方有“比例尺1:100”

  教师:观察真仔细!比例尺1:100是什么意思?

  1学生讨论。

  2学生汇报:

  学生1:图上1厘米长的线段表示实际100厘米。

  学生2:图上距离是实际距离的1/100。

  学生2:表示实际距离是图上距离的100倍。

  3揭示比例尺的意义。

  教师:比例尺是表示图上距离与实际距离的比,这就是今天要学习的新知识——比例尺(板书课题)

  二、自然生成、进行应用

  1教师补充板书:图上距离∶实际距离=比例尺

  图上距离/实际距离=比例尺

  2教师:你们在什么地方看到过比例尺?

  学生1:在中国地图上。

  学生:在世界地图上。

  学生:在房屋设计图上。

  ……

  2教师:比例尺1∶300是什么意思?(注重意思的多样化)

  学生交流(略)

  3认识比例尺特征:

  (1)课件出示中国地图的比例尺、世界地图的比例尺……

  教师:通过观察,你们发现比例尺有什么特点?

  学生:地图上的比例尺一般写成前项是1的比

  4、运用知识,尝试解决问题:

  教师:现在请大家量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

  算一算笑笑卧室实际的长是()米,宽是()米,面积是()平方米。

  (1)学生独立完成。

  (2)汇报算法

  学生1:先量出卧室的长5厘米,实际长=5厘米×100=500厘米=5米

  学生2:量出卧室的长4厘米,实际宽=4厘米×100=400厘米=4米

  学生3:卧室的实际面积是5×4=20平方米

  三、解决问题、巩固提高

  1、算出笑笑家的总面积是多少平方米?

  2、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来。

  3按比例尺是1:200,画出我们教室的平面图。

  四、总结深化、活化知识

  这节课大家有哪些收获?

  五、研究性作业

  1完成第30页的思考题。

  2、试画自己家庭的住宅平面图,并计算一下每个房间的面积。

【《比例》教学设计】相关文章:

1.比例教学设计

2.《比例尺》教学设计

3.《正比例》教学设计

4.比例尺的练习课教学设计

5.《正比例函数》教学反思

6.北师大版数学《比例》教学反思

7.《白杨》教学设计

8.《蜜蜂》教学设计