当前位置:范文派>教学范文>教学设计>长方体和正方体教学设计

长方体和正方体教学设计

时间:2024-08-03 11:35:55 教学设计 我要投稿

长方体和正方体教学设计

  作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,教学设计是把教学原理转化为教学材料和教学活动的计划。那要怎么写好教学设计呢?以下是小编整理的长方体和正方体教学设计,欢迎阅读,希望大家能够喜欢。

长方体和正方体教学设计

长方体和正方体教学设计1

  教学基本

  内容六年制小学数学第十一册P25—26。

  教学目的和要求

  1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

  2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  3、培养学生初步的归纳推理、抽象概括的能力。

  教学重点

  及难点探索并掌握长方体和正方体体积的计算方法。

  长方体和正方体体积公式的推导。

  教学方法

  及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

  学法指导

  讨论交流,并认真听讲思考。

  集体备课个性化修改

  预习阅读书本25、26页,并初步理解解

  教学环节设计

  一、以旧引新

  师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

  要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

  二、探究新知

  1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

  师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

  师:将摆出的长方体放在桌上,并编号。

  请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

  引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

  问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

  师:通过刚才的`操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

  依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

  师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

  2、验证、交流后归纳出长方体的体积计算公式及字母公式。

  通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

  通过交流得出公式:长方体的体积=长×宽×高。

  问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

  交流得出:V=abh.

  3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

  师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

  交流得出:正方体的体积=棱长×棱长×棱长。

  重点理解的含义,进一步明确的读法、写法。

  做“试一试”。

  作业做“练一练”。

  做练习六第2题

  课堂作业:做练习六第1、2题

  板书设计

  执行情况与课后小结

长方体和正方体教学设计2

  长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

  一、重视引导学生经历知识的探究过程。

  究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

  二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的.能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

  三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

  四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

  总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?

  可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体和正方体教学设计3

  闫慧

  一、教学构思

  长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。

  二、教学目标:

  1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。

  2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的.能力。

  三、教学活动过程:

  (一)引导学生学习正方体表面积的计算方法 :

  1、回忆:上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?

  2、联想:拿起(一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?

  3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)

  4、教学例2:提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?

  (有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)

  师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。

  二、说明:

  我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。

  三、鱼缸的制作问题:

  1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)

  2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)

  3、教学例3

  四、(出示长方体模型,把它看成鱼缸的模型)

  1、鱼缸缺少哪个面的玻璃?(上面)

  2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)

  3、指名学生板演,集体订正。

  4、改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?

  学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。

  学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。

  学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同

  说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。

  五、练习

  书P42页练习二的第一、二 题。

  (要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)

  课后反思:

  一、积极参与,发现问题.

  在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。

  二、以事实为依据,解决问题

  在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。

  三、巩固知识,归纳要点

  改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。

  四、教学需改进之处:

  教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。

长方体和正方体教学设计4

  教学内容:

  人教版教材数学五年级下册29页到30页教学目标:

  1、探究、推导长方体和正方体体积的计算公式

  2、理解掌握并运用长方体和正方体体积公式解决实际问题

  3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力

  教学重点:

  理解掌握长方体和正方体体积的计算公式

  教学难点:

  长方体和正方体体积公式的推导

  教具准备:

  学生准备小正方体(多个)PPT

  教学过程:

  一、复习

  1、填空

  (1)()叫做物体的体积。

  (2)常用的体积单位有()()()

  2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的.多少。

  二、导入,确定学习目标

  1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)

  2、出示学习目标:

  (1)探究总结长方体和正方体的体积的计算方法

  (2)运用长方体和正方体体积的计算公式解决实际问题

  三、探究长方体体积的计算公式

  1、回顾“以旧学新”的几何问题研究方法

  以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。

  2、教师PPT演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。

  3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。

  4、出示小组研究提示

  (1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)

  (2)把不同的长方体的相关数据填入下表(29页表格)

  (3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?

  5、各小组学生合作学习后,让各小组汇报数据,汇总到一起填入表格,观察表格,总结长方体体积公式:长方体体积=长×宽×高用字母表示:V=abh

  6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。

  7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:V=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。

  四、练习

  1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)

  2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)

  3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)

  五、总结

  这节课你有什么收获?

  板书设计:

  长方体和正方体体积

  长方体体积=长×宽×高

  V=abh正方体体积=棱长×棱长×棱长

  V=a×a×a=a3

长方体和正方体教学设计5

  教学目标:

  1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

  教学重点难点:

  长方体和正方体表面积的含义及其计算方法的推导过程。

  教学准备:

  长方体、正方体模型。

  教学过程:

  一、猜测导入

  出示两个纸盒(一个长方体、一个正方体)。

  提问:长方体和正方体有哪些特征?

  谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?

  有什么方法可以证明你的`猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

  二、探究新知

  1、引导探究长方体表面积的计算方法。

  (1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

  (2)学生独立列式,指名汇报,并根据学生回答进行板书。

  解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

  解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

  答:至少要用148平方厘米的硬纸板。

  (3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?

  2、自主探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?

  (2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

  (3)组织交流反馈。

  3、揭示表面积的含义。

  谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?

  揭示:长方体或正方体6个面的总面积,叫做它的表面积。

  (板书课题:长方体和正方体的表面积)

  三、练习巩固

  完成课本“练一练”以及练习四第一、二、五题。

  四、全课小结

  谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?

  五、布置作业

  1、做练习四第三、四题。

长方体和正方体教学设计6

  教学内容:

  长方体和正方体的体积

  教学目标:知识与技能目标:

  1.理解长方体、正方体的体积计算公式的推导过程;

  2.能说出长方体、正方体体积计算公式,并会用字母表示;

  3.会正确计算长方体、正方体的体积,并联系简单的生活应用。

  过程与方法目标:

  1.通过拼搭,培养动手和动脑能力;

  2.通过公式的推导,培养迁移、类推能力和抽象概括能力。

  情感态度与价值观目标:

  在个人及小组的探究活动中,培养团队协作,勇于探索的品质。

  教学重点:

  理解掌握长方体和正方体体积的计算。

  教学关键:

  学生通过摆放、观察、比较、分析,明确“长方体的体积所含体积单位数正好是长、宽、高的乘积”。

  教学准备:

  1.多媒体课件。

  2.学具:每人一些单位1立方厘米的小正方体。

  教学过程:引言

  各位同学,各位老师大家好,今天,我们有幸来到这里共同学习一节数学课,我感到非常高兴。与其说是共同学习,也许不如说我们共同分享。其实,我是一个愿意和大家共同分享的人,因为“分享倍增快乐,合作迈向成功”(图片)同学是否愿意一起分享你们的聪明与智慧呢?(出示故事,学生阅读)

  问题:你认为她是一个怎样的小姑娘?

  师:对!聪明与勇敢是她最高贵的品质,值得我们尊敬与学习。

  那么,你想不想成为这样的人呢?老师有几条秘诀给大家共同分享。(出示图片)你们能做得到吗?愿意展现自己的聪明与勇敢与大家共同分享吗?看,聪明的学生就是这么任性,愿意倍增快乐,迈向成功。好!回答老师一个问。

  (问题2)为什么三个一齐就拉不上来呢?(引导学生说明三个一齐占的空间大或地方大)

  师:同学们,这就是聪明,这就是勇敢,我们分享了快乐,我们也会取得成功。这位同学的`回答,使我们这一节数学课从一个精彩迈向另一个精彩,因为他说出了我们数学生活学习中常用的也是非常重要的一个概念体积,什么是体积,体积就是物体所占空间的大小。(板书)这一节我们就来研究(板书:长方体与正方体的体积)。(上课)

  一、读题目,明目标。

  师:看到这个题目,你想知道什么呢?(教师引导学生明白)

  生:长方体的体积与哪些条件有关,长方体的体积如何计算。

  教师板书学习目标:

  1、长方体的体积与长方体的哪些因素有关?

  2、长方体的体积如何计算?

  师:下面就让我们共同分享我们的聪明与智慧吧

  二、探究活动

  探究活动一

  目标:长方体的体积与长方体的哪些因素有关

  材料:三本五年级数学书。

  要求:

  1、用三本相同的书通过摆、拼来说明此题。

  2、小组合作,有讲解,有观察,有记录。 3、将你们的成果写成结论,推荐学生讲解汇报。

  (教师巡视,对学生提出的疑问进行指导,引发学生对长方体问题的思考)

  学生汇报:长方体的体积与长方体的长宽高有关。因为宽和高不变,长增加,体积增加。同样,体积也增加。

  师:我们找到了体积变化的相关条件,那么怎样计算长方体的体积呢?

  探究活动二

  目标:长方体的体积怎样计算

  材料:长宽高1厘米的小正方体若干

  要求:

  1、组内学员要有分工合作精神,有观察,有记录。

  2、请你用1立方厘米的小正方体拼成几种不同的长方体。

  3、拼一种长方体,指出相对应的长宽高,并填写到表格中。

  4、分析表格中的数据,并得出有关体积的结论。(学生活动,教师巡视指导学生完成对体积的探究)

  学生汇报:要注重引导学生说出推导体积公式的过程,如:长方体的体积与长方体的长宽高相关,也就是说长宽高的某种运算就能得到体积,相乘得到长方体的积。又试用其他几个,也同样得到相同的结论。所以我认为:长方体的体积等于长宽高相乘。

  教师引导学生说完整,说明理由。并板书,学生齐读。

  师:我们在学习数学的过程中,往往要求我们将数学生活化,将生活数学化,学习数学就是为了解决数学问题,请看:

  探究活动三:

  目标:解决生活中的数学问题

  要求:

  1、认真审题,理解题目中的数字和问题。

  2、有疑问,可以在组内进行交流探讨。

  3、要写出计算公式,工整认真,格式要正确。学生汇报,展示自己的作业成果。

  师:每一组的同学都完成的很好,在组内进行了分享了自己对长方体体积的学习成果,帮助了别人,快乐了自己。但是在我们的生活中,有一类特殊的长方体,那么,它特殊在哪儿呢?看!

  探究活动四:

  目标:正方体体积的计算

  要求:

  1、认识正方体是长宽高都相等的特殊长方体。

  2、组内学生讨论,能自己推导出正方体的体积公式。

  3、能利用所学正方体知识解决数学问题。

  看同学们学得多好啊!可我国伟大的教育家孔子说过:学而时习之,意思是,我们学习了新的知识,就要及时有效地进行复习和应用,这样才能掌握地更好。

  三、巩固与练习

  1、完成对数学立体图形长方体和正方体体积公式的再认识。

  2、长方体和正方体体积的简单计算。

  3、作业:强化训练

  4、思考:组合图形的计算。

  四:总结

  快乐的时间就是那么的短暂,同学们这一节,我们不仅学会长方体和正方体的计算,而且学会了观察、思考、合作,更重要的是学会了分享,学会了合作。让我们重新审视我们先前说过的一句话:分享倍增快乐,合作迈向成功。

  谢谢大家!

长方体和正方体教学设计7

  教学目标:

  1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

  2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

  3、在把长方体体积计算迁移到正方体体积计算及公式归纳的`过程中,感受数学思考的条理性和数学结论的确定性。

  教学重点和难点:

  长方体和正方体体积的计算方法,以及其体积公式的推导。

  教学过程:

  一、复习引入

  (1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

  (2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

  二、学习新课

  探究正方体体积公式:

  问:通过计算2号长方体的体积你们发现了什么?

  引导学生明确:

  (1)这个长方体长、宽、高都相等,实际上它是一个正方体。

  (2)正方体体积=棱长×棱长×棱长(板书)

  (3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a

  教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

  三、议一议

  长方体和正方体的体积公式有什么相同点?

  长方体和正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高

  如果用S表示底面积,上面的公式可以写成:

  V=Sh

  四、巩固练习

  计算下面图形的体积

  板书设计:

  正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高

  V=a3 V=Sh

长方体和正方体教学设计8

  教学目标:

  1、使学生通过观察、操作等活动认识长方体正方体以及它的直观图,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,以及正方体和长方体的关系;

  2、使学生在具体情境中,经历猜想、操作、验证、讨论、归纳等数学活动,培养学生的观察、概括能力及空间观念,发展数学思考;

  3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  通过多种数学活动探究长方体、正方体的特征;充分认识直观图;理解长方体的长、宽、高与每个面的长、宽的区别。

  教学难点:

  充分认识直观图;建立“立体图形”的概念,形成表象.

  教学过程:

  一、以旧引新,激发兴趣

  1、图形王国里在开运动会,让我们一起去看看都有哪些图形参加?噢!来了很多的图形,谁给它们分分类?课件演示(说说分类的依据)。

  2、老师拿的这些物体属于立体图形中的哪一种?(长方体)

  引入:那对于长方体、正方体你了解多少呢?今天我们就再一次来领略,探究长方体、正方体的奥秘。(教师板书:长方体的认识)

  同学们举生活中长方体或近似长方体的例子。

  二、探究新知:

  (一)认识长方体特征:

  1、认识长方体各部分名称

  认识长方体的面、棱、顶点。

  让学生指着模型说一说哪些是面?哪些是棱?哪些是顶点

  2、认识长方体的特征(分组合作学习)

  (1)四人一小组合作,一边操作一边思考:

  师:同学们根据自己准备的`学具看一看数一数量一量剪一剪比一比小组合作学习。(教师对学生的操作应给予充分的肯定及鼓励。)

  (出示探究表):

  1、长方体有几个面?你是怎么数的?每个面是什么形状的?哪些面是完全相同的?你怎么知道的?

  2、长方体有几条棱?你是怎么数的?哪些棱长度相等?你怎么知道的?

  3、长方体有几个顶点?你来数一数。

  师:自己先看一遍,有不理解的吗?强调“完全相同”的含义,即形状、大小都相同。

  (2)学生以小组为单位讨论交流

  (3)老师找学生分组板书面棱顶点的特征。学生汇报结果。

  师:谁能把你们的学习结果汇报一下。

  生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。(面怎样数不重复不遗漏?)

  师:你们小组能派个代表给大家数一数这6个面吗?

  生数。师引导有序的数。

  师:你有这样的长方体吗?(有,出示)哪是相对的面?(指实物回答)

  生:长方体相对的面面积相等。

  师:说说棱的特点。

  生:长方体有12条棱。师:你来数一数吧。(棱怎样数不重复不遗漏?)生:??

  师:哪些棱长度相等?

  生:相对的4条棱长度相等。(教师演示“相对棱相等”)(如果学生表述不出来,引导学生回忆在概括哪些面完全相同时是怎样说的。)

  师:哪是相对的棱?生指。

  师2:你用什么办法来证明相对的棱长度相等?

  生1:用尺子量的。

  生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。师:噢,你用的是反证法来说明。

  师:谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)生数。

  3、认识长方体的长宽高。

  (1)小组合作以最快的速度做一个长方体。

  师:如果让你做一个长方体框架你打算准备几根小棒?(12根)12根一样长的小棒吗?生思考,汇报。

  (2)合作做一个长方体。思考:12条棱可以分为几组?

  (3)展示作品,并交流分组。

  (4)揭示长方体的长宽高。

  师指出:相交于一个顶点的三条棱的长度分别叫长、宽、高。通常把水平方向的两条棱中较长的叫做长,较短的叫做宽,把竖直方向的一条棱叫做高。(课件演示)拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。问:长方体有几条长几条宽几条高?

  (二)、认识正方体

  1、师:认识了长方体,那正方体它又有什么特征?它与长方体有没有关系呢?

  2、独立探索正方形特征:每个同学拿出自己的正方体纸盒,通过前面小组合作探索长方体特征的方法,自己独立探索正方形的特征,并完成提单上表格的内容。

  3、完成后指名回答,并板书。

  4、课件演示正方体的特征,加深对正方体特征的认识。

  (三)长方体、正方体的关系

  1、正方体、长方体相同点与不同点。

  (1)师:我们一对长方体、正方体进行了认识,认真观察课件上的表格,你发现了什么?

  (2)根据学生的回答,课件出示正方体、长方体相同点与不同点。

  2、长方体、正方体的关系

  (1)师:通过你们的观察和探究,长方体和正方体之间有何关系?

  (2)根据学生的回答,课件出示集合图。

  三、练习巩固,深化认识:

  引导学生认识特殊长方体面、棱特征,深化认识。

  1、完成练一练,先同桌交流在指名2人汇报。

  2、口答:说出下面每个长方体的长、宽、高各是多少.

  3、激疑:对于最后一幅图表述你有什么看法?

  (预设:最后一个图形不是长方体而是正方体,板书完整课题:正方体)

  4、问:你觉得用什么方法可以把一个长方体变换成正方体?

  长方体和正方体有什么样的关系

  四、巩固练习

  师:同学们,今天通过你们的合作探究,认识长方体和正方体的特征,大家都很棒。下面我们进行几个练习,检验一下同学们对所学知识的掌握情况。

  小小法官会判断。

  (1)长方体的六个面一定是长方形(×)

  (2)长方体有6个面,每个面有4条棱,共四六二十四条棱。(×)

  (3)一个长方体,它有两个面是正方形,那√)么它有四个面面积相等;

  ((4)长方体有6个面,12条棱,8个顶点。(√)

  一、填空题。

  1、长、宽、高都相等的长方体叫正方体,正方体是都特殊的长方体,6个面都是正方形,6个面的面积相等,12条棱的长度都相等。

  2、左图是正方每个面的面积是648厘米体,也叫做立方体平方厘米;每条棱厘米。是8厘米8厘米;它的棱长总和是96正方体棱长总和=棱长×1

  3、一个正方体的棱长总和是24厘它的棱长是8厘米米,2厘米。

  1、用铁丝焊成一个长20厘米,宽15厘米,高10厘米的长方体框架,至少需要铁丝多少厘米?6

  2、思考?一个长方体棱长之和是36厘米,长是4厘米,宽是3厘米,高是多少厘米?

  五、全课总结。

  很多时候,大家的进步就像一张纸,的厚度一样,微不足道,甚至难以发现,但我们不应该忽视它的存在,只要脚踏实地,日积月累,一定会收获更大成功,成功其实离我们很近,它就是点点滴滴人进步。

长方体和正方体教学设计9

  教学目标:

  1.知识技能:

  (1)掌握长方体和正方体表面积的基本计算方法。

  (2)能够根据给出的长方体的长宽高,确定与所求面对应的棱。

  (3)通过练习学会灵活地解决一些实际问题。

  2.过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。

  3.情感、态度与价值观:结合练习培养分析、解决问题的能力,以及良好的思维品质。

  教学重点和难点:

  教学重点:根据给出的长方体的长宽高,确定与所求面对应的棱。

  教学难点:运用长方体和正方体表面积的基本计算方法,灵活地解决实际问题。

  教学过程:

  一、基本练习回顾旧知

  课件出示长方体和正方体

  要求长方体或正方体的表面积必须知道什么?

  根据给出的数据可以求出哪些面的面积?

  要求表面积怎样列式计算?

  学生在练习本中列式计算→小组内互相检查→个别汇报

  二、变式练习探索本质

  课件出示图片

  在实际生活中,物体的表面并不总有6个面,老师带来了一幅图,请看,这些物体的表面各有几个面,缺少了哪个面?

  学生看图判断,口头回答

  同学们的判断真准确,也就是在解决有关长方体和正方体表面积有关问题时,我们首先要判断要求物体哪些面的面积,而不能盲目地列式。

  下面老师这里有2道题,请同学们先判断是求物体地哪些面,然后再列出算式。

  课件出示题目

  杂货店售米用的木箱(上面没有盖),长1.2米、宽0.6米、高0.8米,

  1.制作这样一个木箱至少要用木板多少平方米?

  2.如果把木箱放在地上,占地多少平方米?

  当我们求长方体的表面积的时候,首先要判断要求哪几个面的面积,缺少了哪个面;再确定所求的面对应的棱的数据,这样才不至于在计算中出现错误。

  3.如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

  抓审题,引导学生想出利用木箱的侧面展开图进行计算更简便。

  学生独立列式→同位互相检查→集体讲评

  下面这道题,你们又能不能找准求哪些面,对应哪些棱呢?能准确判断地同学请列出算式。

  4.在木箱的.四周贴上商标纸,宽度是0.2米,贴这个木箱要用商标纸多少平方米?

  学生尝试列式→提出审题困惑的地方→了解商标纸的“宽”实际上就是长方体的“高”发生了变化,长和宽都没有变

  我们刚才围绕售米用地木箱,解决了4道题,这4道题有的是求5个面的面积、有的是求1个面的面积,有的是求4个面地面积,所以我们再解决有关题目地关键在于判断要求哪些面,找准与面所对应的棱。

  三、检测练习巩固强化

  这是同学们在解决问题是出现的5种列式方法,请同学们当当小老师,判断对还是错,然后在小组中交流意见,说说理由。

  课件出示题目

  一个橡皮擦的外包装长3厘米、宽2厘米、高0.5厘米,做这样一个外包装至少要用硬纸多少平方厘米?

  (1)3×2×2+2×0.5×2()

  (2)(2×0.5+3×0.5)×2+5×2()

  (3)3×2×2+3×0.5()

  (4)(3×2+3×0.5)×2()

  (5)(2+0.5)×2×3()

  学生独立思考作出判断→进行小组交流→汇报

  三、综合练习发展提高

  同学们真不错,不仅能自己准确找到求哪些面的面积,还会对同学的错误进行判断说理,那你能够用你地本领解决下面地问题吗?

  课件出示题目

  学校要给美术室重新装修,美术室长8米,宽6米,高4米。

  1.工人叔叔给美术室的地面铺上地砖,铺地砖的面积是多少平方米?

  2.如果每平方米用4块地砖,至少需要准备多少块地砖?

  3.粉刷教室屋顶和四壁,除去门窗和黑板的面积20平方米,粉刷的面积是多少平方米?

  4.如果每平方米用涂料0.25千克,至少需要涂料多少千克?

  独立完成→小组中进行互评、说理→选取代表说说小组中出现的解决问题的方法有哪些。

  在解决实际问题的过程中,我们除了要准确地运用方法列式计算以外,还要考虑生活地实际情况,才能够合理地解决问题。

  四、全课小结

  同学们,我们今天学习了什么?你有什么收获?

长方体和正方体教学设计10

  一、教学目标:

  1、经历观察、交流、归纳等认识长方体和正方体特征的过程。

  2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

  3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。

  二、教学重点:掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。

  三、教学难点:形成长方体和正方体的概念,发展学生的空间观念。

  四、教学准备:每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。

  五、教学过程:

  (一)、创设情境

  师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)

  师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)

  师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?

  生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。

  师;看来同学们都是生活中的有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)

  (二)、认识特征

  1、师出示长方体模型。

  师:(师拿模型)关于长方体,你还知道些什么?

  生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)

  师:再看一看两个面相交处有什么?

  生:有一条边。

  师:我们把两个面相交的这条边叫做棱。(板书:棱)

  师:请同学们看一看三条棱相交处有什么?

  生:尖。(或点)

  师:三条棱相交的点叫做顶点。(板书:顶点)

  师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。

  学生按要求摸一摸。

  2、师:下面我们就从面、棱、顶点这三个方面来研究长方体的特征。自己数一数你手中的长方体有几个面?

  生:长方体有6个面。

  师:你们同意吗?谁来说一说你是怎样数的?

  生1:我是转圈数,再数左、右两边的两个面,共6个面。

  (边说边演示)

  生2:我是按上面、下面、前面、后面、左面、右面的'顺序数的,共6个面。

  (边说边演示)

  师:她按上、下、前、后、左、右的顺序数,这样既不重复,也不容易漏数,这个方法不错,你们认为这些面有什么特征?

  生可能回答:

  生1:这6个面都是长方形。

  生2:上、下两个面大小相等。

  生3:左、右两个面大小相等。

  生4:前、后两个面大小相等。

  生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)

  师:也就是说长方体的6个面不一定都是长方形,也有可能有两个面是正方形的,刚才同学们提到的上下面,前后面,左右面都是分别相对的,我们称它们为相对的面。那么上下面、前后面、左右面的大小是否真的相等呢?请同学们以同桌为单位,共同验证一下这些相对的面的大小是否真的相等呢?

  学生同桌合作交流并集体汇报:

  生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。

  生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。

  师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。

  师:我们也可以用剪的方法,就像这样(指课件)将各个面分开,然后看相对的面能否完全重合,由于时间关系,我们就不在课上完成了,

  下面我们来看一下大屏幕,(师用课件演示)

  通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)

  师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。

  3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?

  生:8颗珠子。

  师:这些珠子就是长方体的(顶点)

  师:那么长方体有几个顶点?

  生:长方体有8个顶点。

  师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。

  师:再数一数这个长方体用了几根小棒?

  生:用了12根小棒。

  师:这些小棒就是长方体的(棱)

  师:谁来说一下长方体有几条棱?

  生:长方体有12条棱。

  师:长方体的棱有什么特点?

  生1:这12条棱可以分成3组,相对的棱长度相等。

  生2:这12条棱可以分成3组,每组4条棱长度相等。

  师指名一生到前面演示

  (师用课件演示说明)

  师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。

  4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)

  学生观察,讨论。

  5、师:谁来说一说正方体有哪些特征?

  生1:正方体也有6个面,6个面都是正方形的。

  生2:正方体所有的面完全相等,

  生3:它有12条棱,所有的棱的长度都相等。

  生4:有8个顶点。

  师:同学们真聪明,下面咱们一起来看大屏幕。

长方体和正方体教学设计11

  一、教学内容

  1、长方体和正方体的认识

  2、长方体和正方体的表面积

  3、长方体和正方体的体积。

  二、教学目标

  1、通过观察和操作,认识长方体和正方体的特征以及它们的展开图。

  2、通过实例,了解体积(包括容积)的意义及度量单位(立方米、立方分米、立方厘米、升、毫升),会进行单位之间的换算,感受1m3、1dm3、1cm3以及1l、1ml的实际意义。

  3、结合具体情境,探索并掌握长方体和正方体的`体积和表面积的计算方法,并能运用所学知识解决一些简单的实际问题。

  4、探索某些实物体积的测量方法。

  三、编写特点

  1、注意联系生活实际。

  (1)结合学生熟悉的事物认识图形和概念。

  (2)注意用所学的知识解决实际问题。

  (3)选取具有鲜明时代特征的素材。

  2、更加重视对概念的理解。

  先通过“乌鸦喝水”的故事,以形象生动的方式,让学生初步感知物体占有空间。然后通过把石头放入有水的玻璃杯里的实验,让学生进一步体验物体确实占有空间,为引出体积概念做充分的感知准备。计算不规则物体的体积,让学生利用已建立的体积概念想到可以用排水法求得不规则物体的体积,加深对体积概念的认识。

  3、加强动手实践、自主探索,让学生经历知识的形成过程。

  本单元一些概念和计算方法都是通过学生动手操作、自主探索来学习的。如,长方体体积的计算方法,先让学生用1cm3的正方体拼摆出不同的长方体,通过对这些长方体的相关数据的观察、分析和归纳,自己发现长方体的体积与它的长、宽、高之间的内在关系,从而总结出长方体体积的计算公式。

  4、对一些内容进行了调整。

  不再安排对体积和表面积进行对比的例题。

  四、具体编排

  1、长方体和正方体的认识

  长方体、正方体的特征

  长方体、正方体的关系

  2、长方体和正方体的表面积

  表面积

  表面积计算

  3、长方体和正方体的体积

  体积和体积单位

  体积计算公式

  体积单位间的进率

  容积和容积单位

长方体和正方体教学设计12

  教学目标

  1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法、

  2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念、

  教学重点

  表面积的意义、

  教学难点

  长方体表面积的计算方法、

  教学过程

  一、复习准备、

  1、说出长方形面积的计算公式、

  2、看图回答、

  (1)指出这个长方体的长、宽、高各是多少?

  (2)哪些面的面积相等?

  (3)填空、

  这个长方体上、下两个面的长是( )宽是( )、

  左、右两个面的长是( )宽是( )、

  前、后两个面的长是( )宽是( )、

  3、想一想、

  长方体和正方体都有几个面?(6个面)

  二、揭示课题、

  今天这节课我们就来学习和研究有关这6个面的一些知识、

  三、教学新课、

  (一)长、正方体表面积的意义、

  1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、

  “左”、“右”、“前”、“后”标在6个面上、

  2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)

  3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?

  教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、

  (板书:长方体和正方体的表面积、)

  (二)长方体表面积的计算方法、

  例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的.硬纸板?

  1、这题的问题,实际上就是要我们求什么?

  2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?

  3、学生分组讨论、

  解法(一)

  6×5×2+6×4×2+5×4×2

  = 60+48+40

  = 148(平方厘米)

  解法(二)

  (6×5+6×4+5×4)×2

  =(30+24+20)×2

  = 74×2

  = 148(平方厘米)

  4、比较上面两种解答方法有什么不同?它们之间有什么联系?

  解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)、

  四、巩固练习、

  1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)

  2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?

  五、课堂小结、

  通过解答例1和做一做,你发现长方体表面积的计算方法吗?

  结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2

  =(长×宽+长×高+宽×高)×2

  六、课后作业、

  1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?

  2、一个长方体的形状大小如下图、

  (1)它上、下两个面的面积分别是多少平方分米?

  (2)它前、后两个面的面积分别是多少平方分米?

  (3)它左、右两个面的面积分别是多少平方分米?

长方体和正方体教学设计13

  教学目标:

  1.掌握长方体和正方体的特征,认识它们之间的关系。

  2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点:长方体和正方体的特征。

  难点:立体图形的识图。

  一、出示课题,学习目标

  掌握长方体和正方体的特征,认识它们之间的关系

  二、出示自学指导

  认真看课本认识长方体的特征和正方体的特征

  三、学生看书,自学

  四、效果检测

  (一)长方体的特征。

  ①长方体有几个面?面的位置和大小有什么关系?

  ②长方体有多少条棱?棱的位置、长短有什么关系?

  ③长方体有多少个顶点?

  小组讨论,然后完成p28的表格。请完整地说一说长方体的特征。

  明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  (二)正方体特征。

  对照长方体的特征学生自己研究正方体的特征。学生讨论、归纳后,教师板书:正方体面:6个完全相同的正方形。棱:12条棱长度都相等。顶:8个。讨论比较长方体和正方体的特征。

  相同点:面、棱、顶点的数量上都相同;

  不同点:在面的形状、面积、棱的长度方面不相同。

  教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。(正方体是特殊的长方体)

  五、巩固反馈:

  1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

  2、判断.正确的在括号里画√,错误的画×。

  (1)长方体的`六个面一定是长方形。()

  (2)正方体的六个面面积一定相等。()

  (3)一个长方体(非正方体)最多有四个面面积相等。()

  (4)相交于一个顶点的三条棱相等的长方体一定是正方体。()

  六、课堂总结:

  谁来说一说长方体和正方体的特征和它们之间的关系?

  七、作业设计:

  1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?

  2、完成p29的“做一做”。

  板书设计:长方体和正方体的认识比较长方体和正方体的特征。

  相同点:面、棱、顶点的数量上都相同;

  不同点:在面的形状、面积、棱的长度方面不相同

长方体和正方体教学设计14

  教学目标

  知识与技能

  (1)理解体积的含义。

  (2)认识常用的体积单位:立方米、立方分米、立方厘米。

  (3)能正确区分长度单位、面积单位和体积单位的不同。

  过程与方法

  (1)运用观察实验的方法理解体积的含义。

  (2)结合生活中的事物感知体积单位的大小。

  情感态度与价值观

  (1)发展学生的空间观念,培养学生的思维能力。

  (2)渗透事物之间普遍联系的辩证唯物主义。

  教学重点使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。

  教学难点帮组学生建立体积是1立方米、1立方分米、1立方厘米的大小的表象,能正确应用体积单位估算常见物体的体积。

  教学用具教师准备:盛有红色水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;投影仪和1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。学生准备:12个1立方厘米的正方体学具。

  教学过程

  一、揭示课题

  我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。

  二、探索研究

  1.实验观察

  观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?

  观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?

  观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?

  图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?

  结论:物体所占空间的大小叫做物体的体积。(板书课题:体积)

  加深理解:(1)你知道什么是长方体和正方体的'体积?(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?(3)做第30页的“做一做”。

  2.教学体积单位。

  (1)介绍体积单位。

  常用的体积单位有:立方米、立方分米、立方厘米。

  (2)1立方米、1立方分数、1立方厘米的体积各有多大。

  1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。②看看我们身边的什么的体积大约1立方厘米。

  1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。

  1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?

  (3)建立表象,感知大小

  投影显示第36页的第2题,让学生口答。

  3.长度单位、面积单位、体积单位的联系与区别。

  投影显示第31页的“做一做”的第一题,让学生说。

  三、课堂实践

  1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。

  2、做练习七的第3题,学生独立做后集体订正。

  四、课堂小结

  学生小结今天学习的内容。

  旁批:

  后记:

长方体和正方体教学设计15

  教学内容:

  第二单元《长方体和正方体》的整理复习,第十单元第20—24题及第30题。

  教学设想:

  组织学生根据提供的表格,自己整理、复习长方体和正方体的相关知识,掌握长、正方体的基本特征;正确计算长方体、正方体的棱长总和、底面积、表面积、不完全表面积和体积、容积;解决生活中的实际问题。进一步认识长方体和正方体之间的联系,会用底面积乘高计算体积,认识侧面积,会用侧面积加底面积计算表面积,并适当延伸推广到常见的圆柱体、多面柱体等。通过媒体演示,让学生感受点的运动形成线、线的运动形成面、面的运动形成体,初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。

  教学目标:

  1、学生应用表格法整理长方体正方体相关知识,掌握长正方体的基本特征。

  2、正确进行长正方体的有关面积和体积的计算。

  3、沟通长正方体之间的联系,适当延伸推广到各种柱体。

  4、初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。

  教学重点:

  整理掌握长正方体的特征,正确应用。

  教学难点:

  沟通长正方体的联系及推广延伸。

  课前准备:

  ppt课件

  教学过程:

  一、激趣导课

  1、出示:“xxx”一个点,问:同学们猜猜,这个“点”运动以后会留下什么?

  2、动画演示:点运动的过程和留下的痕迹。(直线、曲线、折线等)点运动成线。想象生活中点动成线的例子。(看到的喷气式飞机飞过留下的痕迹,流星、礼炮等的痕迹。)

  3、问:点运动成线,线运动成什么呢?请看动画演示:线运动的过程和留下的痕迹。(长方形、正方形、平行四边形、梯形、圆形等)线运动成面。想象生活中线动成面的例子。(用粉笔擦擦黑板就是线运动形成面、甩动竹杆、甩动系着球的短线)小球这个点运动得到一条曲线—圆周,这条短线运动得到一个面——圆面。(动画演示)

  问:面的运动又该成什么呢?猜猜看。

  生猜,师说,(长方体、正方体、圆柱体、圆锥体等)动画演示:面运动的过程和留下的.痕迹。面运动成体。想象生活中面动成体的例子。(一枚硬币在桌子上竖起旋转形成一个球等)

  4、师:点动成线,线动成面,面动成体,这就是数学知识之间的联系。我们要善于发现知识之间的联系,融会贯通地学习掌握知识。这学期我们主要学习了长方体、正方体的有关知识,今天我们一起来复习一下,(板书:长方体正方体的复习)。希望大家能把这部分知识和前面学习过的相关知识联系,也能和我们虽然没学过但生活中见到过的现象联系起来,梳理知识,把握联系,解决实际问题。

  二、梳理知识

  师:前面大家学的都不错,你能按照下面的表格把长方体正方体的知识梳理一下吗?(出示表格)

  学生可独立完成或者分组完成,小组交流,核对答案。

  指名汇报,自由订正。

  师:看得出来,同学们掌握的很好,我想运用这些知识解决生活中的一些应用也一定是小菜一碟吧。

  三、解决问题

  第一层次:练习课本第117页第20—22题

  学生独立完成,指名说出算式。核对答案。有错订正。

  第二层次:讨论

  提问:刚才这2个同学做得非常好,你能告诉大家在计算表面积和体积的时候有什么需要提醒大家的吗?可以结合我们当时学习时的具体题目对大家说说。

  讨论1:分清楚是计算表面积还是体积。

  提问:你认为怎么分清楚?根据题目意思或者问题单位来分清楚。(举例见前面第二单元中第32页第8、9题和第34页第5—7题。)

  讨论2:是计算底面积还是计算表面积。

  讨论3:如果是计算表面积还要注意是算几个面及计算哪几个面。

  教师小结:是的,计算表面积有时是算6个面的,我们通常称为计算表面积;对于没有6个面的,我们通常说不完全表面积,在计算的时候要注意是哪几个面,分别该怎样算。(第二单元第17 页第6题和第P18页第7、8题。)

  第三层次:分析

  谈话:看来很多同学关于长方体和正方体表面积计算掌握得不错,对下面这个实际问题你准备怎么解决呢?第118页第23、24题。

  学生先独立思考,写出方案或者算式,组内交流。

  加强联系。

  提问:现在再回头看这张表格,从这份表格你还能发现长方体正方体之间有什么联系吗?

  学生交流:正方体是特殊的长方体。(增加一行,填写在特征栏目)体积等于底面积乘高。(写在体积栏目)

  四、拓展练习

  1、出示第120页第30题。

  如果学生有困难,可以找一张硬纸照题中的要求做一做,然后思考:剪去的每个正方形的边长应该是几厘米?做成的长方体纸盒的长、宽、高分别是多少?

  2、一根长方体木料,它的长、宽、高分别是8分米、5分米和4分米。如果把它加工成一个最大的正方体木块,木料的利用率是多少?

  引导学生思考并理解“利用率”后再解答。

  3、把8个棱长都相等的正方体木块黏合到一起,成为一个大正方体木块。这个大正方体的表面积是96平方厘米,原来每个小正方体的体积是多少立方厘米?

  引导学生分析要求小正方体的体积必须先求出它的棱长,要求小正方体的棱长又可以根据大正方体的表面积来求。

  4、一个正方体玻璃缸,棱长6分米,用它装满水再把它倒入一个底面积为30平方分米的长方体水槽中。水槽里的水面高多少分米?

  引导学生分析根据正方体的棱长可以先求出水的体积,再求水面的高度。

  五、布置作业

  1、课内作业:第117、118页第23、24题、第120页第30题。

  2、课外作业:补充相关练习

【长方体和正方体教学设计】相关文章:

长方体和正方体教学设计08-28

长方体和正方体的认识教学反思07-26

长方体和正方体的认识教学反思10-29

长方体和正方体的体积说课稿08-15

长方体和正方体的认识教学反思15篇05-23

长方体和正方体的表面积教学反思10-07

长方体和正方体的表面积教学反思15篇11-06

长方体和正方体的表面积教学反思(15篇)08-17

数学长方体和正方体的认识教案06-29

[精]长方体和正方体的体积说课稿15篇10-23