当前位置:范文派>教学范文>教学设计>中学数学教学设计

中学数学教学设计

时间:2024-08-03 22:10:09 教学设计 我要投稿

中学数学教学设计

  作为一位杰出的老师,很有必要精心设计一份教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家整理的中学数学教学设计,仅供参考,欢迎大家阅读。

中学数学教学设计

中学数学教学设计1

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,

  y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的'值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函

  数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:

中学数学教学设计2

  教学目标

  1、了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2、 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3、通过加法运算练习,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。

  (二)知识结构

  (三)教法建议

  1、通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

  2、关于“去括号法则”,只要学生了解,并不要求追究所以然。

  3、任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的'代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4、先把正数与负数分别相加,可以使运算简便。

  5、在交换加数的位置时,要连同前面的符号一起交换。如12-5+7 应变成 12+7-5,而不能变成12-7+5。

中学数学教学设计3

  教学目标:

  1、理解切线的判定定理,并学会运用。

  2、知道判定切线常用的方法有两种,初步掌握方法的选择。

  教学重点:

  切线的判定定理和切线判定的方法。

  教学难点:

  切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一。

  教学过程:

  一、复习提问

  【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

  问题2.直线和圆有几种位置关系?

  问题3.如何判定直线l是⊙O的切线?

  启发:(1)直线l和⊙O的公共点有几个?

  (2)圆心O到直线L的距离与半径的数量关系 如何?

  学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)

  再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

  二、引入新课内容

  【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。

  证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。

  定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

  定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,

  求证:直线l是⊙O的切线

  证明:略

  定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A

  ∴直线l为⊙O的切线。

  是非题:

  (1)垂直于圆的半径的直线一定是这个圆的切线。 ( )

  (2)过圆的半径的外端的直线一定是这个圆的切线。 ( )

  三、例题讲解

  例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

  求证:直线AB是⊙O的切线。

  引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

  证明:连结OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直线AB经过半径OC的外端C

  ∴直线AB是⊙O的切线。

  练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

  练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

  求证:CD是⊙O的切线。

  例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

  求证:DE是⊙O的切线。

  思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

  四、小结

  1、切线的判定定理。

  2、判定一条直线是圆的切线的方法:

  ①定义:直线和圆有唯一公共点。

  ②数量关系:直线到圆心的距离等于该圆半径(即d = r)。

  ③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

  3、证明一条直线是圆的切线的辅助线和证法规律。

  凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

  五、布置作业:略

  《切线的判定》教后体会

  本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的`、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

  成功之处:

  一、 教材的二度设计顺应了学生的认知规律

  这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

  二、重视学生数感的培养呼应了课改的理念

  数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

  不足之处:

  一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

  二、课的引入太直截了当,脱离不了应试教学的味道。

  三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

  通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

中学数学教学设计4

  变式教学法的核心是利用构造一系列变式的方法,来展示知识的发生、发展过程,数学问题的结构和演变过程,解决问题的思维过程,以及创设暴露思维障碍的情境,从而形成一种思维训练的有效模式。它的主要作用在于凝聚学生的注意力,培养学生在相同条件下迁移、发散知识的能力。它能做到结构清晰、层次分明,使各层次的学生各有所得,尝试到成功的乐趣,并激发学生的学习热情,达到举一反三、触类旁通的效果,使他们的应变能力得以提高,进而提高教学质量。

  一、变式教学的功效

  1.克服思维的惰性状态,培养思维深刻性

  教师通过不断变换命题的形式,引申拓展,产生一个个既类似又有区别的问题,使学生产生浓厚的兴趣,在挑战中寻找乐趣,培养了思维的深刻性。

  2.克服思维的封闭状态,培养思维的广阔性

  教师在数学变式教学过程中,不仅只重视问题解决的结果,而且针对教学和重难点,精心调设有层次、有坡度的,要求明确、题型多变的.例(习)题。学生在讨论归纳中,启迪思维、开拓思路,在此基础上通过多次训练,既增长了知识,又培养了思思维能力。学生通过多次的渐进式的拓展训练,在不断探索解题捷径的过程中,使思维主广阔性得到不断发展,并渐入佳境。

  3.克服思维的保守状态,培养思维的灵活性

  变式教学通过一题多变、一题多解的训练,使学生从不同角度和侧面去思考问题,用多种方法解决问题,深化所学知识,帮助学生克服了思维保守性,培养学生灵活运用知识解决实际问题的能力,从而达到培养学生思维的灵活性的目的。

  4.运用变式教学,培养学生参与教学活动的持续的热情

  变式教学教学是对数学知识进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质,揭示不同知识点的内在联系的一种教学方式。通过变式教学,使一题多用,多题重组,常给人以新鲜感,能够唤起学生好奇心和求知欲,因而能够产生主动参与的动力,保持其参与教学活动的兴趣和热情。

  二、变式教学设计的原则

  1.适度适量的原则

  适度,即是变式设计不能过繁荣适量,即是变式内容设计不宜过多。要求过繁,学生思维往往会出现“卡壳”,使学生产生畏难情绪,影响问题我解决,降低学习效率,长期还会使学生产生逆反心理,对解题产生厌烦情绪,不利于学生主动探索精神的培养;内空过多,不但会再次造成是题海,还会增加无效劳动,加重学生的负担,使学生持续的兴奋强度降低。过繁过多的变式设计不仅对学生学习课内知识没有帮助,而且超出了学生的接受能力,教学效果也就自然大打折扣了。为此变式题要精选,要以不太难、不太繁但要学生动脑筋思考为度,使学生肯于思考,乐于思考,善于思考,从中发现规律。

  2.充分有效的原则

  抽象的知识不仅要通过熟悉的、广泛的、众多的事物才得以形成,而且在感性向理性的抽象思维活动中,教师除了提供常态的标准材料,还要变换材料的非本质属性,即提供充分的事物变式让学生感知、比较。否则,学生对事物进行抽象概括是容易造成知识内涵增加,外延缩小。

  三、变式教学的方式

  1.概念课中的变式教学

  概念,在数学课中的比例较大,初中数学教学往往是从新概念入手。正确理解概念,是学生学好数学的关键。概念教学有其特殊性,它要求不仅学生识记其内容,明确与它相关知识的内在联系,而且要能灵活运用它来解决相关的实际问题。概念往往比较抽象,从初中生心理发展程度来看,他们对这些枯燥的东西学习起来往往是索然无味,对抽象的概念的理解很困难。而采取变式教学却能有效地解决这一难题,使学生度过难关。教师应通过变式,或前后知识对比,或联系实际情况,或创设思维障碍情境,来散发学生学习兴趣,变枯燥的东西为乐趣。

  2.例题课中的变式教学

  有的数学教师在例题讲解方面采用的是“教师讲例题,学生仿例题”的公式化的教学,这种单纯性地讲授和简单地套用阻止了学生思维的发展。而教材中的例题富有典型性和深刻性,在中学数学教学例题变式教学这中,所选用的“源题”应以课本的习题为主,课本习题均是经过专家学者多次筛选后的题目的精品,我们没有理由放弃它。在教学中,我们要精心设计和挖掘课本的习题,也可以是其它的题目,如选自辅导资料的题目或历年高考、中考题等。编制一题多变、一题多解、一题多用和多题一解以提高学生灵活运用知识的能力。选取的范例应具有“四性”:针对性、基础性、灵活性和可变性。即对所学知识的训练有针对性;能用基本知识、基本方法加以解决;解法灵活多变;可以进行题目变式,联题成片。

  四、变式教学应注意的问题

  1.变式数量的确定

  数学变式的数量确定是一个首要的问题,原因是:第一,课堂时间有限,这个客观条件促使我们必须考虑问题变式的数量;第二,即使将数学学习时间拓展到课堂以外,我们也不可能提供并且教授学生关于某个特定数学内容的所有变式,因为不可能穷尽所有的变式,我们也没必要提供并且教授学生关于某个特定数学内容的所有变式。所以,数学教学就是教会学生通过体验有限变异这样一个过程学会面对未来变异的本领,其实这种理念在数学教学中早有体现,如学会迁移、举一反三、触类旁通、灵活运用数学知识和数学方法、通过解有限道题的练习获得解无限道题的能力就是这种理念的早期提法和朴素表达。

  2.变式问题的合理性

  由于变式数量的有限性,因此必须选择好的问题进行变式,这里所说的好的问题主要是指:一是问题必须包含合理的变异,所谓的合理,既指形式上的,又指内容上的,还指变异数量上的,形式应是有所变化的,内容应是能够接受的,数量应是恰如其分的;二是问题必须包含尽可能多的、不再重复的变异,只有这样,有限的问题才能包含尽可能多的变异,从而就构成有效的问题变式。

  总之,在数学课堂教学设计中,遵循学生认知发展规律,根据教学内容和目标设计变式训练,起到巩固基础、培养思维、提高能力的作用。特别是,通过设计变式训练培养学生敢于思考、敢于联想、敢于怀疑的品质,培养学生自主探究能力与创新精神,这应该是一名数学教师努力和不断的追求的远大目标。

中学数学教学设计5

  教学目标:

  一、知识与技能

  1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向

  量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。

  2.通过对向量的学习,学生初步认识现实生活中的向量和数量的本质区别.。

  3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。

  二、过程与方法

  引导发现法与讨论相结合,通过学生主动参与到课堂教学中,提高学生的学习积极性。在教师的.指导下,突出学生的主体地位与作用。

  三、情感态度与价值观

  通过对平面向量和数量的比较,培养学生发现客观事物的数学本质的能力,并且意识到数学与实际生活间的密切关系,发现数学知识来源于生活又运用于生活的特性。

  教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。

  教学难点:平行向量、相等向量和共线向量的区别和联系。

【中学数学教学设计】相关文章:

中学数学教学设计5篇01-22

中学数学教学计划范文06-29

中学数学教学工作总结06-20

中学数学教学工作计划09-26

头饰设计教学设计10-04

设计校园教学设计05-21

教学设计10-15

教学设计07-13

课程设计教学设计12-26