当前位置:范文派>教学范文>教学设计>圆锥的体积教学设计

圆锥的体积教学设计

时间:2023-02-02 14:03:28 教学设计 我要投稿

圆锥的体积教学设计15篇

  作为一名为他人授业解惑的教育工作者,时常需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。教学设计应该怎么写呢?以下是小编整理的圆锥的体积教学设计,欢迎阅读,希望大家能够喜欢。

圆锥的体积教学设计15篇

圆锥的体积教学设计1

  教学过程:

  一、复习导入。

  1、怎样计算圆柱的体积?(板书公式)

  2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?

  3、出示一个圆锥,请学生说说圆锥的特征。

  4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)

  二、动手测量,大胆猜想。

  1、动手测量,找圆锥和圆柱的底和高的关系。

  师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?

  2、学生动手测量,教师巡视。给予指导。

  3、交流得出结论:圆柱和圆锥等底等高。

  4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?

  三、实验操作,推导出圆锥体积计算公式。

  1、实验操作。

  师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。

  2、学生分组实验,教师巡视。

  3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?

  4、强调等底等高。

  5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)

  6、练习(出示)

  (1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。

  (2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。

  7、得出圆锥的体积计算公式。

  8、用字母表示圆锥的体积计算公式。

  三、巩固练习。

  1、计算下面圆锥的体积。(只列式不计算)

  底面积是6.28平方分米,高是9分米。

  底面半径是6厘米,高是4.5厘米。

  底面直径是4厘米,高是4.8厘米。

  底面周长是12.56厘米,高是6厘米。

  2、填空。

  a圆锥的体积=(),用字母表示是()。

  b圆柱体积的与和它()的圆锥的体积相等。

  c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

  d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。

  3、判断。(用手势表示)

  a圆柱体的体积一定比圆锥体的体积大()

  b圆锥的'体积等于和它等底等高的圆柱体的()

  c正方体、长方体、圆锥体的体积都等于底面积×高。()

  d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

  四、全课小结。

  师:今天这结课学习了什么?通过今天的学习研究你有什么收获?

  五、解决实际问题。

  在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)

圆锥的体积教学设计2

  教学过程:

  一、情境引入:

  (1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

  (2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

  (3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

  (4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)

  (5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)

  设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

  二、新课探究

  (一)、探究圆锥体积的计算公式。

  1、大胆猜测:

  (1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)

  (3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的.体积与这个圆柱的体积关系最密切?(学生答:等底等高的)

  (4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”

  (5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)

  2、试验探究圆锥和圆柱体积之间的关系

  我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

  (1)课件出示试验记录单:

  a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

  b、通过实验,你发现了什么?

  (2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

  (3)汇报交流:

  你们的试验结果都一样吗?这个试验说明了什么?

  (4)老师用等底等高的圆柱圆锥装红色水演示。

  先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?

  (教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)

  (6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)

  (这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

  3、公式推导

  (1)你能把上面的试验结果用式子表示吗?(学生尝试)

  (2)老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  (3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

  (二)圆锥的体积计算公式的应用

  1、已知圆锥的底面积和高,求圆锥的体积。

  (1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

  (2)提问:已知圆锥的底面积和高应该怎样计算?

  (3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

  2、已知圆锥的底面半径和高,求圆锥的体积。

  (1)出示例题:

  底面半径是3平方厘米,高12厘米的圆锥的体积。

  (2)学生尝试解答

  (3)提问:已知圆锥的底面半径和高,可以直接利用公式

  v=1/3兀r2h来求圆锥的体积。

  3、已知圆锥的底面直径和高,求圆锥的体积。

  (1)出示例3:

  工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  (5)提问

  4、已知圆锥的底面直径和高,可以直接利用公式。

  v=1/3兀(d/2)2h来求圆锥的体积。

  设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

圆锥的体积教学设计3

  教学目标:

  1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

  2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

  3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

  教学重点:通过实验的方法,得到计算圆锥的体积。

  教学难点:运用圆锥的体积公式进行正确地计算。

  教学准备:等底等高的圆柱和圆锥容器模型各一个。

  教学过程:

  一、复习导入

  师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

  1、圆柱体积的计算公式是什么?(指名学生回答)

  2、圆锥有什么特征?

  同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)

  二、探究新知

  课件出示等底等高的圆柱和圆锥

  1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

  学生回答:它们是等底等高的。

  猜想:

  (1)、你认为圆锥体积的大小与它的什么有关?

  (2)、你认为圆锥的`体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

  2、学生动手操作实验

  (1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

  (2)、通过实验,你发现了什么?

  小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

  3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积)

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?(板书:圆锥的体积= 1/3×底面积×高)

  师:用字母应该怎样表示?(V=1/3sh)

  师:在这个公式里你觉得哪里最应该注意?

  三、教学试一试

  一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

  四、巩固练习

  1、计算圆锥的体积

  2、判一判

  3、算一算

  4、拓展延伸

  五、总结

  通过这节课的学习,你有什么收获呢?

  六、板书:

  圆锥的体积=圆柱的体积×1/3

  圆锥的体积=底面积×高×1/3

  用字母表示V=1/3sh

圆锥的体积教学设计4

  教材内容的分析:本课“圆锥的认识和体积”是在学生学习了圆柱体积的基础上进行的。教学时首先认识、理解圆锥体的特征,直观又形象。然后通过用空心圆锥向空心圆柱的容器里倒水的实验得到圆锥的体积公式。进而培养学生的主动探究能力和合作精神。

  教学目标:

  (1)掌握圆锥特征、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题;

  (2)培养学生的观察、逻辑思维能力和初步的空间观念;

  (3)向学生渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的学习方法。

  教学重点:掌握圆锥特征、圆锥体积计算公式推导过程。

  教学难点:圆锥体积计算公式推导过程。

  教具、学具准备:等底等高的圆柱和圆锥空心实物,任意一个圆柱和圆锥,若干沙子或水。

  教学准备:圆锥水等底等高的圆柱、圆锥容器大三角板直尺

  教学过程:

  一、进入学习情境

  1.开始,回忆学过的立体图形,并板书圆柱的体积公式。今天我们来认识一种新的立体图形。

  2.观察课本实物图:铅锤、谷堆、冰激凌等。

  (1)这些物体的形状与圆柱体一样吗?哪里不一样?根据这些物体的形状,你们能给它们起个名字吗?(引导说出“圆锥”)

  (2)在我们的身边还有哪些物体是圆锥体?(学生举例如路障、喇叭、跳棋)

  3、师:你知道圆锥各部分的名称吗?圆锥有哪些特征?

  拿出圆锥模型,介绍圆锥的特征。

  (1)用手摸一摸圆锥,你发现了什么?

  (小组内先互相说一说,后师板书:

  1、圆锥有一个顶点

  2、圆锥只有一个底面,这个底面是个圆形。

  3、侧面是一个曲面,展开图是扇形。)

  从实物图中抽象出一个圆锥的立体图形来,教师画一个不带高的圆锥图。

  出示两个圆锥(一个高,一个矮),观察这两个圆锥,你发现了什么?是由圆锥的什么决定的?(板书:高)

  下面我们来研究圆锥的高。你想知道圆锥高的哪些知识?

  1、什么是圆锥的高?

  2、几条高?为什么只有一条高?

  3、怎么测量圆锥的高?)

  问:谁来回答第一个问题?(齐读板书)

  再看第二个问题(1条高)指出高,怎么画?为什么画虚线?所以我们一般用虚线表示。

  你认为测量时要注意什么?

  (2)明确并板书:圆锥的底面是个圆,圆锥的`侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。因为圆锥只有一个顶点,所以它只有一条高。

  4、了解了圆锥体的特征,我们再来研究圆锥体的体积公式。怎样计算一个圆锥物体的体积呢?我们学习圆柱体积公式的时候借助以前学过的长方体,今天我们学习圆锥体体积也可利用刚刚学过的圆柱体的体积,大家猜一猜,圆锥的体积与圆柱体积有什么关系?

  (板书课题:圆锥的体积)

  二、自主学习

  探索圆锥体积与圆柱体积的关系。

  1、师出示实验要求:把空圆锥装满水,倒入空圆柱中,测量高度,几次装满,统计次数填入实验报告单。

  2、汇报交流

  (1)小组讨论:通过刚才的实验和统计,你发现了什么?圆柱的体积和圆锥的体积有什么关系?是不是任意两个圆锥体和圆柱体就有这样的关系呢?再来看实验。

  (2)小组代表汇报交流:圆柱体积等于和它等底等高的圆锥体积的3倍,圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  教师强调等底等高这个前提条件

  3、概括圆锥体积公式:

  师:圆柱的体积是:体积=底面积×高用字母表示V=Sh那么和它等底登高的圆锥体体积是圆柱体积的三分之一怎样表示呢?

  圆锥体体积=1/3×底面积×高V=1/3sh

  三、实践运用

  根据这个公式我们可以解决一些实际问题

  1、一个圆锥形的零件,底面积是28.26平方厘米,高是14厘米,这个零件的体积是多少立方厘米?

  一生板演,汇报

  2、一个圆锥形,底面直径是4厘米,高6厘米,这个圆锥的体积是多少立方厘米?

  四、课堂练习

  (1)S=20平方米h=12米(2)r=10米h=15米

  (3)d=6米h=10米(4)c=62.8米h=9米

  五、小结:

  今天我们学习了圆锥体,你有哪些收获?

  学生汇报:1、圆锥体的特征

  2、圆锥体的体积公式

圆锥的体积教学设计5

  指导思想与理论依据:

  本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。

  教学背景分析:

  (一)教学内容分析:

  1、教材内容:

  本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。

  2、研读完教材后,自己的几个问题:

  (1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?

  (2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。

  (3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?

  (4)本节课的教学内容只能挖掘到圆锥的`体积吗?能不能再深入一些?

  3、自己的创新认识:

  首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。

  其次,是要提供给同学们一个可操作的空间。

  (二)学情分析:

  1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。

  2、自己的认识:(结合自己在讲课时发现的问题而谈)

  学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。

  (三)教学方式与教学手段分析:

  根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。

  (四)技术准备与教学媒体:

  在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。

  教学目标设计:

  (一)教学目标:

  1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。

  3、培养学生的观察、分析的综合能力。

  (二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积

  (三)教学难点:通过实验的方法,得到计算圆锥体积的公式。

圆锥的体积教学设计6

  第一课时

  教学目标:

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

  教学重点

  圆锥体体积计算公式的推导过程.

  教学难点

  正确理解圆锥体积计算公式.

  教学过程:

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  学生汇报实验结果

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  ……

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .

  板书:

  5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)算一算

  学生独立计算,集体订正.

  说说解题方法

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、课后反思

  第二课时

  教学目标:

  1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的.体积。

  2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。

  3、进一步熟悉圆锥的体积计算

  教学难点:

  圆锥的体积计算

  教学重点:

  圆锥的体积计算

  教学过程:

  一、基本练习

  圆锥体积计算公式

  相邻两个面积单位之间的进率是多少?

  相邻两个体积单位之间的进率是多少?

  二、实际应用

  占地面积是求得什么?

  三、实践活动

  四、课后反思

圆锥的体积教学设计7

  基本信息

  课题圆锥的体积

  作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学

  教材分析

  《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

  学情分析

  六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的'农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。

  教学目标

  1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

  2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

  3、体会数学与生活的密切联系,感受探究成功的快乐。

  教学重点和难点

  重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

  难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

  教学过程

  教学环节

  教师活动 预设学生行为 设计意图

  一、复习准备

  1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

  2、圆锥有什么特点?(同时出示幻灯)

  3、在这个圆锥体中,几号线段是圆锥体的高。

  4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

  2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

  3.学生手势出示

  4.想

  复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

  二、创设情境

  出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)

  引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

  三、学习新课

  1、猜想体积大小

  实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

  圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

  2、理解等底等高

  我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

  底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础

  3、猜想关系、实验验证

  同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

  谁来汇报一下,你们组是怎样做实验的?

  你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

  学生汇报

  用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

  4、总结公式

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  V锥=V柱×1/3=sh×1/3

  “sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

  5、全面验证

  是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

  (课件演示)等底不等高、等高不等底

  为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)

  在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

  6、圆锥体积公式的实际应用

  (1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

  (2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)

  (3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

  (4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

圆锥的体积教学设计8

  一、教学内容

  《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

  二、教材分析

  本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

  三、教学目标

  1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

  2、能运用公式解答有关的实际问题。

  四、教学重难点

  教学重点:圆锥体积的计算公式

  教学难点:圆锥的体积公式推导。

  五、课前准备

  课件

  六、教学过程

  一、谈话引入

  今天,我们来学习圆锥的体积公式是怎样推导出来的?

  二、自主探索,操作实验

  下面,我们一起来做个小实验

  (1)取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。

  (2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

  (3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh

  三、练习填空

  1、圆锥的体积=(),用字母表示是()。

  2、圆柱体积的与和它()的圆锥的体积相等。

  3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

  学生练习,教师总结。

  四、巩固练习:

  求下面各圆锥的体积,只列算式。(单位:厘米)

  观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

  五、运用所学的知识解决实际问题

  一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?

  学生思考,教师讲解:

  先求半径:18、84÷ 3、14 ÷ 2=3(米)

  再求底面积:3、14×3=28、26(平方米)

  求圆锥体积:1/3×28、26×6=56、52(立方米)

  最后求大米的重量:56、52×500=28260(千克)

  六、计算圆锥的体积所必须的条件

  学生思考,教师归纳总结

  计算圆锥的体积所必须的条件可以是:

  底面积和高

  底面半径和高

  底面直径和高

  底面周长和高

  只要知道啦其中的两个条件,就可以求出圆锥的体积。

  微课学习指导

  本微课的教学内容为《圆锥的`体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

  微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习巩固的过程。

  配套学习资料

  圆柱的体积公式

  圆柱的体积公式等于底面积乘高,用字母表示:V=sh

  微课制作技术

  1、使用ppt制作片头。

  2、使用手机摄录视频效果。

  3、使用Camtasia Studio软件和会声会影软件进行后期的混音制作和整合。

  4、使用格式工厂进行最后的格式转换。

  教学需求分析

  适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。

  学习内容分析:《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

  学习目标分析:

  (1)通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

圆锥的体积教学设计9

  一、教学内容:

  六年制小学数学教材第十二册第25-26页

  二、教学目标:

  1、知识技能目标:

  ◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

  ◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

  2、思维能力目标:

  ◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

  3、情感态度目标:

  ◆培养学生的合作意识和探究意识;

  ◆使学生获得成功的体验,体验数学与生活的联系。

  三、教学重点、难点:

  重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

  难点:探索圆锥体积方法和推导过程。

  教学过程:

  一、质疑引入

  1 圆锥有什么特征?指名学生回答。

  2 说一说圆柱体积的计算公式。

  (1)已知 s、h 求 v

  (2)已知 r、h 求 v

  (3)已知 d、h 求 v

  3 我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

  板书课题:圆锥的体积

  二、新课

  (一) 教学圆锥体积的计算公式

  1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?

  指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体- 长方体的体积公式----推导圆柱体公式)

  2、 教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?

  先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式

  〈1〉学生独立操作

  让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?

  〈2〉教师教具演示巩固学生的操作效果,cai课件演示

  a 屏幕上出示等底、等高

  b 等底、不等高

  c 等高、不等底

  实验报告单

  实验器材

  实验结果

  等底不等高的圆锥、圆柱

  等高不等底的圆锥、圆柱

  等底等高的圆锥、圆柱

  〈3〉引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的 1/3 (板书 )

  用字母表示圆锥的体积公式.v锥=1/3sh

  做一做:

  填空:

  等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的( ),圆锥的体积是圆柱的体积的( )已知圆锥的体积是9立方分米,圆柱的体积是( );如果圆柱的体积是12立方分米,那么圆锥的体积是( )。

  (二)运用公式,尝试练习

  1、要求圆锥的体积,必须知道哪两个条件?为什么要乘 1/3 ?

  试一试:

  一个圆锥体,底面积是19平方米, 高是12分米。这个圆锥的'体积是多少?《圆锥的体积》教学设计 相关内容:第四单元 圆 全单元教案六下第一单元 负数 教材分析《圆锥的认识》说课《分数乘分数》教后反思《纳税》教案 人教版第十一册教案百分数(五)折 扣圆柱的表面积第三单元分数除法:分数除法的意义和整数除以分数查看更多>> 小学六年级数学教案

  2、思考:求圆锥的体积,还可能出现那些情况?

  (如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)

  练一练

  3、求下面的体积。(只列式不计算)

  (1)底面半径是2 厘米,高3厘米。

  3.14×22×3

  (2)底面直径是6分米,高6分米 。

  3.14×(6 ÷2)2 ×6

  (3)底面周长是12.56厘米,高是6厘米

  3.14×(12.56 ÷6.28)2 ×6

  2、求下面各圆锥的体积如图(单位厘米)

  (1)底面直径是8分米,高9分米 (2)底面半径3分米和高7分米

  通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高

  a、底面积和高

  b、底面半径和高

  c、底面直径和高

  d、底面周长和高

  三、巩固练习

  1、判断:

  ⑴、圆锥的体积等于圆住体积的1/3。( )

  ⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3 ( )

  ⑶圆柱的体积比和它等底等高圆锥的体积大2倍。( )

  ⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的

  2、填空

  ⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是 18 立方米,圆柱的体积是( )。

  ⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是 12 厘米, 圆锥的高是( )。

  ⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是 314 平方米,圆锥的底面积是( )。

  3、拓展练习

  工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)

  (引导学生说出怎样测量沙堆的底面的周长、直径、和高。)

  用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

圆锥的体积教学设计10

  教学内容:

  九年义务教育六年制小学数学第十二册P32页。

  教学目标:

  1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

  2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

  3、进一步培养学生将所学知识运用和服务于生活的能力。

  教学重点:

  灵活运用圆柱圆锥的有关知识解决实际问题。

  教学难点:

  同教学难点。

  设计理念:

  练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

  教学步骤、教师活动、学生活动

  一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?

  2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

  (1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

  (2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

  (3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

  3.求下列圆锥体的体积。

  (1)底面半径4厘米,高6厘米。

  (2)底面直径6分米,高8厘米。

  (3)底面周长31.4厘米.高12厘米。

  4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

  学生独立练习,互相批改,指出问题。

  学生交流一下这几题在解题时要注意什么?

  二、丰富拓展、延伸练习。1.拓展练习:

  (1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

  (2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

  2.完成31页第5题。讨论下列问题:

  (1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

  (2)圆柱和圆锥体积相等、高也相等,圆柱的.底面积和圆锥的底面积有什么关系?

  3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

  学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

  三、充分提高,全面升华。

  1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

  2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

  3.讨论练习八蒙古包所占空间的大小的方法。

  (1)蒙古包是由哪几个部分组成的?

  (2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

  (3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

  4.交流一下本节课的收获。

  学生分组讨论后动手实践并计算。

  学生先交流。

  四、全课总结,内化知识。

  1.提问:

  (1)同学们掌握了圆锥体的哪些知识?

  (2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

  2.学有余力的同学思考38页思考题。

  3.作业:练习八6、7、8

  学生独立练习

圆锥的体积教学设计11

  教学内容:教材第31--32页,练习八第4一10题。

  教学目标:

  使学生进—步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决—些简单的实际问题;

  教学重点:进—步掌握圆锥的体积计算方法。

  教学难点:根据不同的条件计算圆锥的体积。

  预习作业:

  1、一个圆锥的体积是与它等底等高的圆柱体积的();,;

  2、圆柱的体积是它等底等高的圆锥体积的();

  3、练习八第4题、第6题、第7题和第8题

  教学过程:

  预习效果检测

  1、一个圆锥的体积是与它等底等高的圆柱体积的();

  2、圆柱的体积是它等底等高的圆锥体积的();

  3、把一个圆柱削成最大的圆锥,削去部分的体积相当于圆柱的相当于圆锥的()倍。

  二、基本练习

  1、提问:1)同学们想一想:圆锥的体积怎样计算?

  2)口答下列各圆锥的体积。

  ①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  2、完成练习八的第4题。

  让学生仔细读题,并独立完成习题。

  引导同学相互讨论,并说出解题思路。

  3、完成练习八的第5题。

  引导学生仔细观察题中的图形,并凭自己的感觉猜想哪个圆柱的体积与圆锥的体积相等。

  教师提醒学生:底面直径之间的倍数关系并不等于底面面积之间的倍数关系。请学生起来回答猜想的答案,给学生几分钟的时间,让学生利用已知的条件进行计算验证。

  老师和学生一起找出正确的答案是:底面直径9厘米,高4厘米的圆柱。

  4、完成练习八的第6题。

  让学生仔细读题,并完成第一小题。请学生起来说出解题的经过和步骤。老师根据学生的'发言总结:能削成最大的圆锥应是与这个圆形状的木料等底等高。

  让学生在小组内讨论第(2)小题。

  让学生自由发言,并板书讨论出的有关数学问题再让大家起进行解决,比如:削去的木料体积是多少?

  削去的木料体积是圆锥体积的几倍?

  削去的木料体积是整个木料的几分之几?

  …………

  5、完成练习八的第7、8、9题。个别板演,全班齐练,小组讨论,集体评讲与小结。

  6、完成练习八的第10题。引导学生合作学习,并在小组内对测量和计算的方法进行讨论,选择最优方法,让学生在课后进行实验。

  7、完成思考题。

  让学生仔细读题并在小组内讨论解题的方法。请学生起来说出小组讨论的结果,老师对学生的发言进行总结,并引导学生进行如下的推想:当圆锥的高是4.2厘米时,如果圆柱的高也是4.2厘米时,那么圆锥与圆柱的体积比是1:3;因此圆柱的高必须是4.2厘米的2倍,也就是8.4厘米。同理,圆柱的高是4.2厘米时,圆锥的高必须是4.2厘米的一半,也就是2.1厘米。

  课堂小结

  通过刚才的练习,想必大家对于圆锥体积公式的运用有了一定的了解,对于一些细节问题都能够很好的注意,你能告诉大家你学习的收获吗?让学生自由发言,老师补充总结。

  三、当堂达标检测

  1、《补充习题》相关练习;2、反馈纠正。

  教学反思:

圆锥的体积教学设计12

  【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

  (1)底面积是5平方厘米,高是6厘米。

  (2)底面半径4分米,高是10分米。

  (3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是v=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的'对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  (1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

  (2)、求圆锥的体积(看图)

  (3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2、填空。

  (1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

  3、选择

  (1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

  (2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

  四、课堂总结

  师:今天,我们学习了什么内容?怎样计算圆锥的体积?

  对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

  五、布置作业

  课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  【教学重点】

  圆锥的体积计算。

  【教学难点】

  圆锥的体积公式推导。

  【教学关键】

  圆锥的体积是与它等底等高的圆柱体积的三分之一。

  【教具准备】

  多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

  【学具准备】

  空心圆锥和圆柱实物各一个,沙土若干。

圆锥的体积教学设计13

  教学内容:

  九年义务教育六年制小学数学第十二册第48-50页。

  教学目的:

  1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  教学重点:

  圆锥的体积计算。

  教学难点:

  圆锥的体积公式推导。

  教学关键:

  圆锥的体积是与它等底等高的圆柱体积的二分之一。

  教具准备:

  投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

  学具准备:

  等底等高的圆柱和圆锥空心实物各一个

  教学过程:

  一、复习

  1.圆柱的体积公式是什么?

  2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?

  [说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  板书:圆锥的体积

  [说明:设疑激趣,激发学生探求新知识的欲望。l

  二、新课教学

  师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

  投影出示下图:

  师:圆锥的底面是什么形状?

  生:圆锥的底面是圆形的。

  师:对。什么是圆锥的高呢?

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师演示:将刚才出示的圆锥图上的'高往外移,标上字母h,如图所示:

  师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

  生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

  师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)

  师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?

  投影出示下列图形:

  生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

  师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

  生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

  师:说得有道理。你能不能将这个圆锥摆正。

  (一名学生到前面旋转投影片,将圆锥图形一一摆正)

  师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

  [说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的强化目的。]

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)

  生:它们的底面是相等的。

  师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)

  生:它们的高也是相等的。

  师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1.实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?

  2.圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  3.圆锥的体积怎么算?体职公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的

  器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?

  生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。

  师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是V=1/3Sh。

  师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。

  (请两名学生上讲台示范实验)

  师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。

  生齐答:不是。

  [说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。

  求与下面圆柱等底等高的圆锥体的体积。

  1.圆柱体的体积是3立方厘米;

  2.圆柱体的体积是2.4立方分米;

  3.圆柱体的体积是1/2立方米;"

  生答略。

  师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  师:现在我们一起来做填表练习。

  出示小黑板:

  1. 填表:

  底面积S (平方米) 高h(米) 圆锥的体积(立方米)

  15 9 ()

  16 0.6 ()

  师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2.求下面各圆锥的体积。

  (1)半径是3米,高是2米。

  (2)直径是4分米,高是6分米。

  (3)周长是6,28厘米,高是3厘米。

  3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  [说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]

  师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。

圆锥的体积教学设计14

  教学内容:

  小学数学人教版第12册42页—43页

  教学目标:

  1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

  2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

  3、培养学生个人的自主学习能力和小组合作学习的能力。

  教学重点和难点:

  掌握圆锥体体积公式的推导。

  教具准备:

  1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。

  2、多媒体课件设计

  教学过程设计

  (一)复习准备:

  1. 怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)

  2. 一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

  3. 圆锥有什么特征?

  学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。

  (二)导入新课

  今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)

  (三)进行新课

  1、 探讨圆锥的体积公式

  教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

  学生回答,教师板书:

  圆柱------(转化)------长方体

  圆柱体积公式--------(推导)长方体体积公式

  教师:借鉴这种方法, 为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

  (1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

  (学生得出:底面积相等,高也相等。)

  底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底 等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)

  教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3)学生分组做实验。

  A. 谁来汇报一下,你们组是怎样做实验的?

  b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

  (学生发言:圆柱体的体积是圆锥体体积的3倍)

  同学们得出这个结论非常重要,其他组也是这样的吗?

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

  为什么你们做实验的`圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  呢?(在等底等高的情况下。)

  (老师在体积公式与“等底等高”四个字上连线。)

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  今后我们求圆锥体体积就用这种方法来计算。

  (四)巩固反馈

  1.口答。填空:

  v (立方米)

  v (立方米)

  60

  52

  126

  4.5

  2.出示例题学生读题,理解题意,自己解决问题。

  例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  A 学生完成后,进行小组交流。

  B 你是怎样想的和怎样解决问题。(提问学生多人)

  C 教师板书:

  ×19×12=76(立方厘米)

  答:它的体积是76立方米

  3.练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  4、出示例2:要求学生自己读题,理解题意思。

  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

  (1)提问:从题目中你知道什么?

  (2)学生独立完成后教师提问。并回答同学的质疑:3.14×( )×1.2× 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

  5、比较:例1和例2有什么地方不同?

  (1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。

  我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

  四、巩固练习:

  1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

  2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。。

  (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )

  ⑴ 立方米 ②3a立方米 ③ 9立方米

  (2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米

  (1)6立方米 (2)3立方米 (3)2立方米

  2、 学生操作:

  看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

  指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。

  五:这节课你有什么收获?

  六、作业:书本44页第3、4、5。

  板书: 圆柱体的体积=底面积×高

  例1: ×19×12=76(立方厘米)

  答:它的体积是76立方米

  例2:(1)麦堆的体积:

  3.14×( ) =12.56(平方米)12.56× ×1.2=5.024(平方米)

  (2)小麦的重量:5.024×735=3692.64(平方米)≈3693(平方米)

  答:它的体积是76立方米

圆锥的体积教学设计15

  1、认知目的:

  (1)让学生认识圆锥,掌握它的特征。

  (2)理解圆锥的体积计算公式的推导,并能灵活运用公式计算圆锥的体积。

  2、能力目的:

  发展学生的空间观念,培养学生观察,动手操作,总结规律的能力。

  3、情感目的:

  创造和谐的师生关系,调动学生的非智力因素,激发学生的学习兴趣。

  教学重点:

  建立圆锥体的表象,概括圆锥体的特征,并能运用公式计算圆锥体的体积。

  教学难点:

  理解等底等高的圆锥体和圆柱体的关系,以及圆锥体积公式的推导过程。

  教学准备:

  1、多媒体计算机软、硬件一套。

  2、学生实验用圆柱、圆锥容器十套,红色溶液一桶。

  3、幻灯机,圆锥体实物如:小丑帽、重锤等。

  教学过程:

  一、复习准备:

  1、圆柱的体积计算公式是什么?

  2、已知一个圆柱的半径是2厘米,高是5厘米,它的体积是多少?

  二、导出新课:

  我们已经学习过了长方体和正方体及圆柱体的体积,在实际生活中,经常会遇到另一种物体(出示圆锥体实物如:小丑帽、重锤),这种形体叫圆锥体。你们在生活中见过这样的物体吗?(请学生回答)这节课我们重点研究圆锥的体积。(板书课题:圆锥的体积)

  三、新授:

  1、学生通过对圆锥实物及电脑图形的观察,多角度多种实物中得到对圆

  锥感性认识,在建立了感性认识的基础上,师生共同总结出圆锥的特征是:它只有一个底面;这个底面是一个圆;它有一个顶点。

  教师拿出已准备好的圆锥教具,将其一分为二,叫学生观察圆锥的高,指出从顶点到底面圆心的距离叫圆锥的高。

  2、绍各部分的`名称(用电脑出示圆锥图形)

  3、圆锥体积公式的推导:

  通过分组实验让学生自己发现圆柱、圆锥在等底等高时的体积关系。在实验前教师提出实验的要求和实验要解决的问题。

  问题:(1)圆锥与圆柱是否等底等高?

  (2)倒了几次才能倒满空圆柱?

  (3)这个实验说明等底等高的圆柱、圆锥体积有怎样的关系?

  要求:(1)分五人一组,相互合作,共同完成实验。

  (2)教师每组给一个中空、未封底的圆锥,学生自己动手制作一个与它等底等高的圆柱。制作的圆柱也不封底。

  (3)将圆锥装满溶液,然后倒入圆柱里,装满圆柱为止。

  实验结束后,让学生自己总结得出结论,教师根据学生得出的结论得出Ⅴ锥=

【圆锥的体积教学设计15篇】相关文章:

圆锥的体积说课稿11-10

圆柱的体积教学设计08-19

圆锥的认识教学反思09-17

《圆柱的体积》教学反思11-14

圆柱的体积教学反思06-12

《圆锥的认识》数学教学反思10-10

卖炭翁教学设计《卖炭翁》教学设计11-13

教学设计模板-教学设计模板07-16

课程设计教学设计12-26

《雷雨》教学设计02-01