当前位置:范文派>教学范文>教学设计>乘方教学设计

乘方教学设计

时间:2023-05-02 08:26:24 教学设计 我要投稿
  • 相关推荐

乘方教学设计

  作为一名教职工,常常要写一份优秀的教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。怎样写教学设计才更能起到其作用呢?下面是小编为大家整理的乘方教学设计,希望对大家有所帮助。

乘方教学设计

乘方教学设计1

  教学目标

  掌握积的乘方法则,并能够运用法则进行计算。

  会进行简单的幂的混合运算。

  在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点

  积的乘方法则的运用。

  难点

  积的乘方法则的推导以及幂的混合运算。

  教学过程

  一、复习导入

  1.幂的乘方法则是什么?

  2.如果一个正方体的棱长为,那么它的体积是多少?

  如何计算呢?下面我们就来探索积的乘方的运算法则。

  二、新课讲解

  探究新知

  1.思考:

  前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?

  学生讨论,师生共同写出解答过程:

  2.发现:

  从上面的`计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。

  通过思考、交流,得出:(n是正整数)

  要求学生完成法则的语言叙述和推导过程。

  用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。

  推导过程:略

  3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?

  学生独立思考、互相交流,然后向全班汇报成果。

  三、典例剖析

  例1计算:

  师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的良好习惯。

  例2计算:

  先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。

  四、课堂练习

  基础练习

  1.计算:

  2.下面的计算对不对?如果不对,应怎样改正?

  3.计算:

  教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。

  提高训练:

  3.计算:

  五、小结

  师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  1.P40第3题

  2.计算:

乘方教学设计2

  【教学目标】

  知识目标:经历探索积的乘方的运算发展推理能力和有条理的表达能力。学习积的乘方的运算法则,提高解决问题的能力。进一步体会幂的意义。理解积的乘方运算法则,能解决一些实际问题。

  能力目标:能结合以往知识探究新知,熟练掌握积的乘方的运算法则。

  情感目标:提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心。

  【教学重点】

  会用积的乘方性质进行计算

  【教学难点】

  灵活应用公式。

  【课前准备】

  自学课本P143-144

  【教学课时】

  1课时

  【教学过程】

  一、课前阅读。

  自已阅读课本P143-144,尝试完成下列问题:

  (1)(2a)3;

  (2)(-5b)3;

  (3)(xy)2;

  (4)(-2x3)4

  二、新课学习。

  (一)引入:填空,看看运算过程用到哪些运算律?运算结果有什么规律?

  (1)(ab)2=(ab)÷(ab)=(a÷a)÷(b÷b)=a()b();

  (2)(ab)3_______=_______=a()b()。

  (3)(ab)n=______=_______=a()b()

  (二)阅读效果交流。

  1、运用乘方的意义进行运算。

  【教师点拨】关于第(2)、(3)运算,底数是ab,把它看成一个整体进行运算。用乘法交换律和结合律最后用同底数幂的乘法进行运算。

  2、在观察运算规律的时候,从底数和指数两方面考虑。

  【学生总结】我们可以得到的规律是:

  符号表示:一般地,我们有(ab)n=anbn(n为正整数)

  语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

  (三)阅读中学习。

  1、例1、(1)(-5bc)3;(2)(xy2)2;(3)(-2xy3)4.

  阅读后分析:本题是否是公式的直接应用?能否沿用公式的形式?

  阅读后讲解:注意系数也要乘方,注意符号。公式拓展:(abc)n=anbncn

  【教师点拨】在初学阶段,按照公式逐步运算。可与课前阅读题目相比较,考察题目间的联系和区别,运算的时候要注意符号。

  2、例2、2(x3)2÷x3-(3x3)3+(5x)2÷x7

  ①阅读后分析:从形式上看,是公式的扩展,包含了多种公式的应用。并包含了多种运算。

  ②阅读后讲解:学会举一反三用联系的观点看问题。运算顺序要遵循先算乘方,后算乘除,最后算加减。

  解:原式=2x6÷x3-27x9+25x2÷x7

  =2x9-27x9+25x9=0

  ③阅读后反思:A、形式上包含积的.乘方,也用到同底数幂的乘法。

  B、“积”的形式,可以是几个多项式相乘。

  C、用到整体思想。

  【教师点拨】公式的拓展应用,上述例题易错点有系数忘记乘方、负数的乘方所得结果的符号。运算时注意运算顺序。

  3、对应练习

  (-2x3)3÷(x2)2+x13

  ①阅读后分析:本题既有用到积的乘方,又考察了同底数幂的乘法。按照运算法则运算即可,注意系数和符号。

  ②阅读后讲解:一般的运算顺序是先算乘除后算加减,有乘方的先算乘方。

  ③阅读后反思:本题是公式的灵活应用,要求同学首先知道运算顺序,其次选对公式。

  【教师点拨】运算要认真仔细、熟记运算法则。

  三、课堂拓展练习。

  1、阅读下列材料,完成后面练习

  an÷bn=(ab)n(n为正整数)

  an÷bn=──幂的意义

  =──乘法交换律、结合律

  =(ab)n──乘方的意义

  【教师点拨】积的乘方法则可以进行逆运算。即an÷bn=(ab)n(n为正整数)。

  2、对应练习:

  例1、(0.125)7×88

  阅读后分析:仿照阅读材料,可做适当变形逆用公式。

  阅读后解答:

  解:原式=(0.125)7×87×8

  =(0.125×8)7×8

  =1×8

  =8

  对应练习(0.25)8×4102m×4m×()m

  【教师点拨】活用公式、逆用公式是本章的一个重点。

  例2、已知2m=3,2n=5,求23m+2n的值。

  阅读后分析:按照公式的逆用,求23m+2n的值,由已知条件不能求出m,n的值,因此可以想到将2m,2n整体代入,这就需要逆用同底数幂乘法的运算性质和幂的乘方的运算性质。

  阅读后讲解:学生黑板演示,学生纠错。

  2、综合题

  探讨如何简便运算:(0.04)20xx×[(-5)20xx]2

  解法一:(0.04)20xx×[(-5)20xx]2解法二:(0.04)20xx×[(-5)20xx]2

  =(0.22)20xx×54008=(0.04)20xx×[(-5)2]20xx

  =(0.2)4008×54008=(0.04)20xx×(25)20xx

  =(0.2×5)4008=(0.04×25)20xx

  =14008=12004

  =1=1

  【教师点拨】逆用积的乘方法则anbn=(ab)n可以化简一些复杂的计算。

  【解题后反思】:这些练习用到了哪些知识点,体现了哪些数学思想和方法?

  四、学习后小结。

  重新浏览教材,说一说你有什么收获。

  学生总结,教师强调三点:

  1、积的乘方法则:积的乘方等于每一个因式乘方的积。即(ab)n=an÷bn(n为正整数)。

  2、三个或三个以上的因式的积的乘方也具有这一性质。如(abc)n=an÷bn÷cn(n为正整数)。

  3、积的乘方法则也可以逆用。即an÷bn=(ab)n,an÷bn÷cn=(abc)n,(n为正整数)。

  【教师点拨】

  1、总结积的乘方法则,理解它的真正含义。

  2、幂的三条运算法则的综合运用

  五、课后作业。

  详见配套练习

乘方教学设计3

  【教材分析】《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  【教学目标】

  1.通过现实背景知道乘方运算与乘法运算的关系,理解有理数乘方的意义;知道底数、指数和幂的概念,会求有理数的正整数指数幂。

  2.培养学生观察、归纳能力;培养学生互相讨论、合作交流的能力;培养学生思考问题、解决问题的能力,切实提高学生的运算能力,培养学生勤思,认真和勇于探索的精神。

  3.感悟数学来源于生活,从而热爱生活;感悟数学符号的.简洁美;积极参加数学学习活动,增强自主学习、合作学习意识与习惯。

  【教学重点】正确理解乘方的意义,能利用乘方的运算法则进行有理数 的乘方运算。

  【教学难点】

  1、建立底数、指数、和幂三个概念,并会进行有理数的乘方运算。

  2、有理数乘方运算的符号法则。

  【教具准备】教具准备:多媒体课件一套。

  学具准备:每个学生一张纸。

  【教法分析】基于本节课内容的特点和初一学生的年龄特征,我以“探究式”体验教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下、同学的合作帮助下,通过探究发现,合作交流经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,学生的探索发现贯穿始中,整个过程侧重于学生能力的提高、思维的训练,情感的成功体验。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教

  【学法分析】从自己已有的知识经验出发,自主参与整堂课的知识构建。在各个环节中进行观察、猜想、类比、分析、归纳,以动手实践、自主探索为主,学会合作交流,在师生互动、生生互动中充分调动学习的积极性和主动性,使自己由“学会”变“会学”和“乐学”。

  【学情分析】学生在小学六年级已学习了一个数的平方、立方运算。前面又学习了有理数的乘除法运算,现在所学的有理数乘方,只是在小学所学正数范围扩充到有理数的范围。所以学生在教学活动中能大胆说出自己的体会。在动手,思考和合作交流的过程中,能主动探索,敢干实践,勇于发现。学生间的相互提问的互动的气氛较浓,有良好的学习氛围。

  【教学过程】

  一、创设情境

  问题1、请哪一位吃过兰州拉面的同学说一说拉面的制作过程?(结合学生口述过程)多媒体展示

  制作过程如下图(多媒体展示)

  教师设法引导学生将生活问题用数学的眼光来观察解决。

  引导:

  1、这样经过几扣可拉出64根?128根?

  2、能否用算式表示这种关系?

  这就是我们今天要研究的课题

乘方教学设计4

  教学目标

  1.知识与技能

  理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.

  2.过程与方法

  经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.

  3.情感、态度与价值观

  培养学生合作交流意义和探索精神,让学生体会数学的应用价值.

  重、难点与关键

  1.重点:幂的乘方法则.

  2.难点:幂的乘方法则的推导过程及灵活应用.

  3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,?要求对性质深入地理解.

  教学方法

  采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.

  教学过程

  一、创设情境,导入新知

  【情境导入】

  大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,?木星的`半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,?请同学

  解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为423?·v木星=(10)=?(引入课题).

  3 【教师引导】(102)3=?利用幂的意义来推导.

  【学生活动】有些同学这时无从下手.

  【教师启发】请同学们思考一下a3代表什么?(102)3呢?

  【学生回答】a=a×a×a,指3个a相乘.(10)=10×10×10,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,10×10×10=10因此(102)3=106.

  【教师活动】下面有问题:2222+2+=10,?6利用刚才的推导方法推导下面几个题目:

  (1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.

  【学生活动】推导上面的问题,个别同学上讲台演示.

  【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?

  【学生活动】归纳总结并进行小组讨论,最后得出结论:

  (a)=(am?am???am)?a???n个ammn???m?m?mn个m= amn.

  评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.

  二、范例学习,应用所学

  【例】计算:

  (1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.

  【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.

  【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(10)=×5=10;(3)(x)=x15n3n×3=x;3n(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.

  三、随堂练习,巩固练习

  课本p143练习.

  【探研时空】

  计算:-x·x·(x)+x.

  【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.

  【学生活动】书面练习、板演.

  四、课堂总结,发展潜能

  1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.

  2.知识拓展:这里的底数、指数可以是数,可以是字母,?也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,?一个是“指数相加”.

  五、布置作业,专题突破

  课本p148习题15.1第

  1、2题.

  板书设计

乘方教学设计5

  教学目标

  知识与技能:

  1、会推导幂的乘方法则,并还能运用幂的乘方性质进行有关计算。 2、幂的乘方与同底数幂的乘法的正确区分。

  过程与方法

  通过对现实事物如正方体的体积的认识初步了解幂的乘方的形式,体会幂的乘方的应用价值。

  情感﹑态度与价值观

  通过师生共同交流,学生自主发言,渗透数学知识解决实际问题,激发学生学习的兴趣,帮学生树立自信心。

  学情介绍

  从学生的认知规律看,他们已经学习了乘方的意义﹑幂的意义以及

  同底数幂的乘法,幂的乘方其实就是以上的结合,从教学中引导学生讨论交流。

  内容分析

  本节课是在前面学习的基础上进一步学习幂的乘方,让学生体会乘方运算是一种比乘法还要高级的运算,提高学生学习兴趣。

  教学重难点

  重点:幂的'乘方法则的理解和应用。

  难点:幂的乘方与同底数幂的乘法运算性质的区分。

  教学方法及教具准备

  教学方法:思考—探索—发现—归纳教具准备:多媒体演示

  教学过程

  一﹑复习

  1﹑学生叙述同底数幂的乘法运算法则,并用字母表示。 an=am+n(m﹑n都是正整数)

  2﹑am·

  用语言叙述为:同底数幂相乘,底数不变,指数相加。

  3﹑复习练习⑴102×104=xx⑵an+1×an—1=xx_ ⑶2×2=xx ⑷x·x·x·x=xx_ n n 2 2 2 2

  二﹑知识准备

  1﹑一个正方体的棱长是10cm,则它的体积是多少?103=10×10×10 2﹑一个正方体的棱长是102cm,则它的体积是多少?3﹑100个104相乘怎么表示?又该怎么计算呢?(104)100=104×104×?×104(100个104)4﹑猜一猜m ··a(乘方的意义)(am)100=am·am· =am+m+···m(同底数幂的乘法法则)=a 100m(乘法的意义)

  三﹑新授1﹑猜一猜

  (am)n=amn(m,n为正整数)推导:

  (am)n= am·am·

  ··am(n个am)=am+m+···+m(n个m)=a mn结论:幂的乘方的运算法则:(am)n=amn(m,n为正整数)用语言叙述:幂的乘方,底数不变,指数相乘。

  2﹑师生共同完成。(1)(103)5(2)(a4)2(3)(am)2(4)—(x4)3解:

  (1)原式=103×5=1015(2)原式=a4×2=a8(3)原式=a m×2 =a 2m(4)原式=—x12 3﹑学生练习

  (1)(106)2(2)(am)4m是正整数(3)—(y3)2(4)(—x3)2(5)(an)3(6)—(x2)m 4﹑判断正误,错误的请改正。

  (1)x·x=2x(2)x+x=x(3)a·a=a(4)—(a3)4=a12 4 2 6 2 2 4 3 3 3在讲解的过程中强调同底数幂的乘法与幂的乘方的区别,以及符号的注意。

  5﹑计算

  (1)x2·x4+(x3)2(2)(a3)3·(a4)3这两题是混合运算,先乘方后乘法。 6﹑公式的逆向应用m nn =an若(am)n=am则am =(am)n =(an)m例如:

  x12=(x2)() =(x6)()=(x3)() =(x4)()=x7?x()=x?x() a3m=(a3)()=(am)()=a3·a()=am·a() 7﹑公式逆用的例题

  1、若am=2,an=3,求① am+n的值。

  ② a 3m+2n的值。

  2、若9×27x= 34x+1,求x的值。

  四﹑知识比较五﹑板书设计六﹑课堂小结

  本节课学习了幂的运算的第二种,幂的乘方,掌握新知识的同时,

  但不能混淆,也就是说不要把幂的乘方与同底数幂的乘法搞混。另一方面掌握基本知识的同时也要学会灵活运用。

乘方教学设计6

  一、教学内容:

  八年级上册第十四章《整式的乘除与因式分解》第一节第二课时“幂的乘方”。

  二、教学目标:

  知识与技能目标:通过观察、类比、归纳、猜想、证明,经历探索幂的乘方法则的发生过程;掌握幂乘方法则;会运用法则进行有关计算。

  过程与方法目标:培养学生观察探究能力,合作交流能力,解决问题的能力和对学习的反思能力;体会具体到抽象再到具体、转化的数学思想。

  情感、态度与价值观目标:体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。通过老师的及时表扬、鼓励,让学生体验成功的乐趣。

  三、教学重、难点:

  重点:幂的乘方法则的生成及应用。

  难点:区别幂的乘方运算与同底数幂的乘法运算。

  四、教法与学法:

  教法:主要采用“引导探究法”——先创设情境让学生独立思考,再鼓励学生合作交流,探索其中的规律,获得新知,体验探索数学知识的快乐。

  学法:主要采用“研讨式学习”——让学生在自主探索、合作交

  流的活动中,体验探究的过程,主动建构知识,同时培养学生动口、动手、动脑的能力。

  教学手段:采用多媒体辅助教学。

  五、教学过程:

  本节课主要让学生在原有的认知基础上,主动建构新知,分以下几个教学活动完成:

  1、活动一:温故知新,铺垫新知。

  2、活动二:创设情境,探索新知。

  3、活动三:解决问题,应用新知。

  4、活动四:反馈练习,巩固新知。

  5、活动五:综合变式,拓展新知。

  6、活动六:学有所思,感悟新知。

  7、活动七:完成作业,回味新知。

  活动一:温故知新,铺垫新知

  1、知识回顾:口述同底数幂的乘法法则:am·an= am+n(m、n都是正整数)

  同底数幂相乘,底数不变,指数相加。

  2、计算:

  (1)a6·a2 = a8(2)x2·x3·x4 = x9(3)(-x)3·(-x)5=(-x)8=x8(4)a2·a3 + a4·a=2a5

  3、下面的计算对不对?如果不对应该怎样改正?(1)x3·x3= 2x3(2)x3 + x3= x6(3)a·a3 = a3

  4、若am=3,an=2,则am+n 。

  5、小结:同底数幂来相乘,底数不变指数加;用准法则是关键,正反两用才到家。

  活动二:创设情境,探索新知

  1、(a2)3和(am)3都表示一种什么运算?(乘方运算,而且是幂的'乘方运算)

  2、自主探索:先根据根据乘方的意义填第一个空,再根据同底数幂的乘法填第二个空,看看计算的结果有什么规律?

  (1)(32)3=32×32×32=36(2)(a2)3= a2·a2·a2= a6(3)(am)3= am·am·am = a3m(m是正整数)

  3、总结规律:

  (1)通过上面的练习,你发现了什么?(幂的乘方,底数不变,指数相乘)

  (2)对于任意底数a与任意正整数m、n,(am)n=?n个am(am)n =am 。am 。?。am(乘方的意义)n个m = am+m+?+m(同底数幂的乘法法则)= amn(乘法的定义)

  4、得出新知:幂的乘方的运算公式

  数学语言:(am)n = amn(m、n是正整数)

  文字语言:幂的乘方,底数不变,指数相乘。

  活动三:解决问题,应用新知

  例题教学:计算:

  (1)(103)5(2)(a4)5(3)(am)2(4)–(x4)3解:(1)(103)5 =103×5 =1015(2)(a4)5= a4×5= a20(3)(am)2 = am 。2 = a2m(4)–(x4)3= –x4×3= –x12活动四:反馈练习,巩固新知

  1、计算:

  (1)(x3)2(2)[(a-b)3]4(3)–(xm)5(4)(a2)3·a3

  2、快速口答:(1)a3·a3=(2)a3+a3=(3)(a3)3 =活动五:综合变式,拓展新知

  1、综合练习:a6 + a4·a2 +(a3)2

  2、幂的乘方法则的逆用公式:amn =(am)n =(an)m

  3、拓展练习:若am=5,则a2m

  活动六:学有所思,感悟新知

  (1)本节课你的主要收获是什么?(学习了“幂的乘方运算法则”)语言叙述:幂的乘方,底数不变,指数相乘。

  符号叙述:(am)n = amn(m、n是正整数)(2)你认为在运用“幂的乘方运算法则”,重点应该注意什么?(如“注意与同底数幂的乘法法则相区别”、“注意幂的乘方法则可以逆用”等)

  (3)你能用几句顺口溜来概括本节所学知识和注意事项吗?(参考:幂的乘方有法则,底数不变指数乘;区分法则很重要,正反两用才入道。)活动七:完成作业,回味新知

  必做题:教材第104页习题14·1第1题的

  3、4两个小题。

  附加题:

  1、计算:(1)a2·a4+(a3)2(2)(x3)2·(x4)2

  2、比较大小:233和322

乘方教学设计7

  教学目的:

  使学生理解指数是正整数的乘方的意义,并能正确进行有理数的乘方运算.

  教学重点:

  乘方的意义.

  教学难点:

  正确理解乘方、底数、指数的概念并合理运算.

  教学过程

  一、复习提问

  1.乘方的定义及意义

  这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,相同因数a叫做底数,相同因数的个数n叫做指数,an读作a的n次方.an看作是a的n次方的结果时,也可读作a的n次幂.

  如:(—2)5,底数是—2,指数是5,读作—2的五次方或—2的五次幂.

  一般地说,指数是几,就叫做底数的几次方或几次幂.说明:

  (1)乘方是一种运算,是已知底数、指数求幂的运算.如(—2)5=—32是已知底数为—2,指数为5,求得幂是—32.an本身既是结果也是运算符号.同加、减、乘、除运算一样,乘方运算可认为是第五种运算.见下表:

  (3)当n是2时,可读作平方;当n是3时,可读作立方.如:52读作5的平方;103读作10的立方.a2读作a的平方,a3读作a的立方.

  练习:说出下列各数表示的意义,并指出其中的底数、指数、幂及它们的读法.

  2.乘方运算:

  提问:前边练习中各数的幂是如何计算出来的?回答:根据乘方的定义计算出来的.

  根据乘方定义,an就是n个a相乘,所以,可以利用有理数乘法运算来进行有理数的乘方运算.例1计算:

  解:(1)(—3)4=(—3)(—3)(—3)(—3)=81;(2)—34=—(3)(3)(3)(3)=—81;

  说明:

  (1)根据有理数乘法的运算法则,由(1)(3)不难归纳出乘方运算的符号法则:正数的任何次幂都是正数.负数的奇次幂是负数,负数的偶数次幂是正数.

  (2)由(1)(2)看出(—3)4与—34不同,(—3)4读作—3的'4次幂,是负数的偶次幂,结果是正数,—34读作3的4次幂的相反数,结果是负数;又:(—3)4的底数是—3,指数4是管着“—”号的,而—34的底数是3,指数4并不管“—”号.注意问题:负数的乘方,在书写时一定要把整个负数(连同符号)用小括号括起来.

  注意问题:分数的乘方,在书写时也要用括号把分数括起来.例

  2计算:

  (1)—3×24;(2)(—3×2)4.解:

  (1)—3×24=—3×16=—48;(2)(—3×2)4=(—6)4=1296.

  说明:算式中没有顺序符号的应按先乘方、后乘除、最后加减的顺序去做,有顺序符号的应先做括号内的.

  例

  3当x=—4,y=—3时,求下列各式的值:(1)(x+y)2;(2)x2—y2;(3(x—1)2+y;(4)x3—y3.解:当x=—4,y=—3时,

  (1)(x+y)2=(—4—3)2=(—7)2=49;(2)x2—y2=(—4)2—(—3)2=16—9=7;

  (3)(x—1)2+y=(—4—1)2+(—3)=25—3=22;(4)x3—y3=(—4)3—(—3)3=—64+27=—37.课堂练习

  1.口答计算:

  (—1)10;

  (—1)7;83;(—5)3;

  010;的偶次幂等于1.

  2.计算:

  (1)—(—2)4;(2)4·(—2)3;(3)32—23;(4)—32—(—2)2;

  (5)—22+(—3)2;(6)(—2)2(—3)2;(7)—22×(—3)2;(8)—(— 3)2(—23);(9)—13—3(—1)3.三、小结

  指导学生看书,强调正确理解乘方的意义,底数、指数、幂的概念;以及运算中注意的问题.

  四、作业

  五、教后记

乘方教学设计8

  教学目标:

  知识与技能:学会用两步乘法计算解决问题。

  过程与方法:经历从实际生活中发现问题、提出问题、解决问题的过程,通过合作、交流,寻找解决问题的不同方法。

  情感态度价值观:感受数学在生活中的作用,激发学生学习数学的兴趣,培养学生进一步的数学应用意识。

  课前准备:

  学生明确行、列定义、乘和乘以。课件、红笔1只、每人3张的图片、拍一张浪费粮食的照片。

  教学预设:

  课前谈话:

  (1)自我介绍。我姓周,不是猪。名叫俊杰,识时务者为俊杰。你们叫我什么?我跟你们数学老师有什么不同?今天我给大家上课,你们想说的时候敢不敢说?想笑的时候敢不敢笑?想睡的时候敢不敢睡?

  学生做自我介绍,做学校的介绍。

  (2)近段时间你们学校都举行了哪些活动?

  一、创设情境,探究新知【约18分钟】

  1、收集信息

  师:你们的活动真是丰富多彩啊。最近,我们学校也举行了艺术节演出活动,我这里有一张艺术体操队同学表演的图片(课件出示1个方阵的图片)。

  (1)猜猜看,这样一个方阵里面可能会有多少人?指名几个猜。

  (2)这样猜很盲目,现在我给你提供这样一个信息(课件出示每行有4人),你认为会是多少人?

  预设:学生可能会说是4的倍数。你们怎么都猜12、14、20这些数字呢?

  预设:因为一行是4人,可能有5行。评价:你真会观察。根据学生回答课件出示文字“一行有4人”,

  (3)到底谁猜对了呢?让我们来看一看,现在知道有几人了吗?根据学生回答课件出示“一个方阵有5行”,

  师:看来,要想解决问题,必须收集必要的信息。

  (4)参加演出的还有2个方阵(课件出示其余2个方阵)。

  2、提出问题

  问:根据这些信息,你能提出什么数学问题?

  预设:3个方阵有多少人?这个问题你能自己解决吗?好的,看要求。

  3、探究解决问题的方法

  (1)安静独立地思考,想一想能有几种方法解决,把方法写在本子上。有困难的同学可以借助学具摆一摆。

  (2)利用学具摆一摆,跟同桌说说你是怎样想的。

  4、汇报交流。

  (1)派代表上台展示算法,并用学具进行演示。代表先说算式,师板书,再讲思路。

  边说思路边用笔在图片上划一划。

  (2)谁听懂了他的意思?他的这种方法是先算什么的?你能上来指着图说一说吗?

  (3)还有不同的解决办法吗?学生汇报,师同时板书:

  ①5×4=20(人)②4×3=12(人)③5×3=15(人)

  20×3=60(人)12×5=60(人)15×4=60(人)

  (4)刚才,我看见有人是这样写的:5×4×3=60(人),可以吗?

  5、比较提升。

  (1)师:通过刚才的小组交流,我们得出了这样3种方法。(课件出示3种方法)。

  (2)观察这三种方法有什么相同和不同?

  相同点预设:答案相同,都用乘法计算(揭题)

  不同点预设:方法不一样。方法怎么不一样?第一种方法先求什么,再求什么?

  评价语:真了不起!,同一个问题,能从不同的角度去思考,采用不同的方法来解决。生活中,像这样要用乘法来解决的问题可多了。

  二、联系实际,巩固提高

  1、牛奶问题。(不同策略,解决问题)【约7分钟】

  学校后勤部运来了一些牛奶给参加演出的`同学,其中这一堆是送给参加演出的60名艺术体操队员的,如果每人一瓶,够吗?(课件出示堆成一堆的牛奶)。

  (1)师:要解决这个问题,我们首先要查找信息。这里有信息吗?你能用简洁的语言给大家介绍一下这张图片的内容吗?

  (2)有了信息,或许能解决这个问题了。请大家在本子上写一写。写完后,再想一想是否还有别的方法。

  (3)指名上黑板写一写。

  (4)全班交流。

  评价语:同学们真棒,同一个问题,不仅能自己收集信息,还能够用不同的方法来解决。

  2、浪费问题(选择信息,解决问题)【约7分钟】

  (1)演出结束后,在同学们吃中餐的时候,老师在教室门口拍到这样一张浪费粮食的照片(课件出示浪费粮食的图片)。

  (2)现在我想知道我们学校一个星期大约浪费多少千克粮食?需要调查哪些信息?

  (3)师:好的,我已经收集了下列信息,要解决这个问题,你认为需要用到哪几个信息?

  信息:1)共有6个年级。2)共有40个班级。3)每个班级每天大约浪费粮食3千克。4)一个星期有5天在学校就餐。

  (4)这3个信息,能解决这个问题吗?

  (5)学生独立计算。全班交流,利用计算结果,对学生及时进行节约教育。

  评价语:看来提供有价值的信息非常重要,而且同一个问题还可以选择不同的信息来解决。

  3、钢笔问题(方法最优化,解决问题)【6分钟】

  (1)师:为了杜绝浪费粮食现象,学校准备举行节约资源教育活动,并准备购买钢笔奖励给节约之星,共有40个班级,每个班级有2名节约之星。

  大队委员来到文具批发市场后,得到如下信息:

  第一家商店:每支8元。

  第二家商店:每支9元,如果购买100支或100支以上,每支6元。

  (2)让你选择,你会选择到哪家去买?

  (3)学生算好了,现场选择。选第一家的举手,选第二家的举手。

  (4)全班交流。

  评价语:我很欣赏你们,不但能用乘法解决问题,还能根据实际情况,灵活选择最优的方法。

  四、课堂总结【约2分钟】

  短短的四十分钟过去了,回顾一下,这节课我们做了什么?我们是怎么做的?先是收集信息,提出问题,然后选择有价值的信息,多策略地解决问题。

  谢谢你们帮我解决了我们学校这么多的数学问题。我要代表瓯海区实验小学的全体同学欢迎你们到我们学校去做客。今天我们是新朋友,明天我们就是老朋友了。同学们,再见!

  板书设计:

  用连乘方法解决问题

  ①5×4=20(人)②4×3=12(人)③5×3=15(人)

  20×3=60(人)12×5=60(人)15×4=60(人)

  5×4×3=60(人)4×3×5=60(人)5×3×4=60(人)

乘方教学设计9

  课 题:积的乘方

  教学课时:1课时

  学习目标:1、经历探索积的乘方性质的过程,提高学生推理能力和有条理的表达能力。

  2、理解并掌握积的乘方运算性质,能灵活运用积的乘方运算性质进行整式的简单混合运算。

  教学重点:积的乘方的运算性质的推导和应用。

  教学难点:灵活运用积的`乘方运算性质进行整式混合运算。

  教学准备:多媒体课件。

  教学方法:讲练法、自学指导法。

  教学过程设计:

  教学流程

  学生活动

  教师活动

  设计意图

  复习旧知

  完成复习题,(学生演排)

  展示复习题:(ppt)

  计算:(a2)4..a-(a3)2.a3

  通过此题,让学生复习幂的乘方、同底数幂的乘法及整式加减的运算法则,为学习新知打下基础。

  创设情景导入新课

  思考教师提出的问题,并回答。

  1、展示问题(ppt)

  已知一个正方体的棱长为2× 103cm ,你能计算出它的体积是多少吗?

  2、点学生列出算式

  3、提问:(2×103)3 ,是幂的乘方形式吗?(底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。)积的乘方如何运算呢?有前两节课的探究经验,请同学们自己探索,发现其中规律。

  4、展示学习目标。

  通过创设实际问题情景,得出积的乘方的计算问题,从而导入新课,并展示学习目标,使学生明确学习要求。

  学生自主探究学习

  1、自主学习,完成积的乘方运算性质的探究。

  2、独立完成尝试练习题。

  展示自学提纲:(ppt)

  1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?

  (1)(ab)2=( )·( )=( )·( )=a( )b( )

  (2)(ab)3=______=_______=a( )b( )

  (3)(ab)n= =

  =a( )b( ) (n为正整数)

  2、请归纳出积的乘方的运算性质:

  3、完成课本p98练习题

  巡视学生完成自主学习情况

  通过学生自主学习掌握积的乘方运算性质的推导和简单运用,提升学生的自学能力和表达能力。

  展示交流

  1、交流自学提纲中的第1题,并说明每步的依据。

  2、演排自学提纲中第3题,非演排学生思考查找评价演排学生的解题。

  3、举手交流发言。

  1、评价学生的自主学习效果。

  2、板书积的乘方运算性质。

  3、根据学生演排交流情况,适时点拨,归纳总结解题方法及注意事项。

  通过交流展示活动提升学生的表达能力,总结提炼性质及运用方法。

  巩固训练

  完成训练题

  1、出示训练题:

  计算:(-a)6-(-3a3)2-(2a)2.a4

  2、点学生演排

  3、请学生评价,适时点拨。

  通过巩固训练提升学生的知识运用能力。

  合作探究

  1、独立思考问题

  2、小组合作交流

  3、班级交流、讨论

  1、出示问题:

  计算:42013.(-0.25)20xx

  2、巡视学生合作学习情况,参与讨论。

  3、组织学生交流讨论,适时点拨。

  4、总结归纳。

  通过合作探究学习拓展性质的运用,提高学生的合作意识和合作能力。

  拓展提升训练

  完成训练题

  1、出示训练题:

  计算:(1)22013.42013.(-0.125)20xx

  (2)(2/3)20xx.(-1.5)20xx

  2、巡视学生完成情况

  3、组织交流、讨论,适时点拨总结。

  通过提升训练延伸知识的运用。

  小结

  回顾本节课所学知识,交流学习心得体会

  1、提问:通过本节课的学习,你学到了些什么?

  2、组织学生交流并适时总结。

  通过小结活动加深知识的理解。

  当堂检测

  独立完成检测题

  1、出示检测题(ppt)

  计算:(1)(-2m3n2)3

  (2)(-a2)2.(-2a3)2

  (3)(-x2y)3+7(x2)2·(-x)2·(-y)3

  (4) (0.125)7×88

  2、请学生演排,订正答案,统计学生完成情况

  通过当堂检测反馈课堂教学效果。

  作业布置

  完成作业

  布置作业题:课本p104习题第2题

  通过作业巩固知识

  板书设计:

  积的乘方

  积的乘方运算性质:(ab)n=anbn(n是正整数)

  积的乘方,等于把每个因式分别乘方,再把所得的幂相乘。

  积的乘方性质的逆用:anbn=(ab)n

  同指数的幂相乘,底数相乘,指数不变。

乘方教学设计10

  一、教学目标:

  1、认知目标

  正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

  2、能力目标

  (1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

  (2).使学生能够灵活地进行乘方运算。

  3、情感目标

  让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

  二、教学重难点和关键:

  1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

  2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

  3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

  三、教学方法

  考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

  四、教学过程:

  1、创设情境,导入新课:

  这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

  师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?

  师:如果四张都是3呢?

  生答:-3 - 3×3×(-3)=333324

  师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?

  生:思考几分钟后,有同学会想出33(3)的答案

  师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

  2、动手实践,共同探索乘方的定义

  学生活动:请同学们拿出一张纸进行对折,再对折

  问题:(1)对折一次有几层? 2

  (2)对折二次有几层? 224

  (3)对折三次有几层? 2228

  (4)对折四次有几层? 222216

  师:一直对折下去,你会发现什么?

  生:每一次都是前面的2倍。

  师:请同学们猜想:对折20次有几层?怎样去列式?

  生:20个2相乘

  师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

  简记:22 23 24

  师:请同学们总结对折n次有几层?可以简记为什么?

  2×2×2×2×2

  n个2

  生:可简记为:2n

  aaa?师:猜想:a生:an

  n个a

  师:怎样读呢?生:读作a的n次方

  老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a

  的因数),n叫做指数(相同因数的个数)。

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的`结果时,也可读作的次幂.小试牛刀:

  练习一:把下列各式写成乘方运算的形式:

  6×6×6= (-3) (-3) (-3) (-3)=

  2.1×2.1×2.1×2.1×2.1= 1

  21

  21

  21

  21

  21

  2=

  注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义

  543431126

  3.学生分小组讨论,总结乘方运算的性质

  师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)

  教师再对各种情况进行分析总结。

  师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正

  数,0的任何正整数次幂都为0。

  4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?

  (-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9

  乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解

  例1:计算(教师板演一题后请学生板演)

  (1) 26 (5) 62

  (2) 73

  44(3) (3) (6) 3

  33(4)(4) (7) 4

  比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?

  小结:一定要先找出底数和指数,确定符号后再去计算。

  例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334

  比一比:(2)与(3)一样吗?(4)与(5)一样吗?

  总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。

  5、课外探究

  一张纸厚度为0.05mm,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。

  6、归纳总结,形成体系:

  1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;

  特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来

  2

  3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。

  7、作业布置:习题2.6第1、2题;

乘方教学设计11

  教学目标

  掌握幂的乘方法则,并能够运用法则进行计算。

  会进行简单的幂的混合运算。

  在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点

  幂的乘方法则的运用。

  难点

  幂的乘方法则的推导以及幂的混合运算。

  教学过程

  一、复习导入

  1.表示什么意义?表示什么意思呢?

  2.同底数幂乘法法则是什么,它是怎样推导的?

  通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?

  二、新课讲解

  探究新知

  1.思考:

  ①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?

  ②你能说出、的意义吗?

  ③请你计算、,并想一想每一步计算的依据是什么?

  (鼓励学生站起来回答,培养学生数学表达的能力)

  2.发现:

  ①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?

  ②验证猜想,得出结论

  ===(m,n都是正整数)

  用语言叙述为:幂的乘方,底数不变,指数相乘。

  三、典例剖析

  例1计算:

  (1);(2);(3)(m是正整数);(4)(n是正整数)

  要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的`3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。

  例2计算:

  学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。

  四、课堂练习

  基础练习

  1.填空:

  (1);(2);

  2.下面的计算对不对?如果不对,应怎样改正?

  教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。

  提高训练:

  3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?

  引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。

  4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。

  学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。

  5.已知,求的值。

  逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。

  五、小结

  师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  1.P40第2题

  2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。

【乘方教学设计】相关文章:

积的乘方教学反思04-22

教学设计模板-教学设计模板07-16

卖炭翁教学设计《卖炭翁》教学设计11-13

a的教学设计09-07

教学设计09-23

课程设计教学设计12-26

教学设计与教学反思06-01

雨点教学设计04-06

心声教学设计04-22