当前位置:范文派>教学范文>教学设计>三角形教学设计

三角形教学设计

时间:2023-11-13 17:56:03 教学设计 我要投稿

三角形教学设计

  作为一名优秀的教育工作者,就难以避免地要准备教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的三角形教学设计,希望能够帮助到大家。

三角形教学设计

三角形教学设计1

  教学目标:

  1.通过观察、操作、比较,发现三角形角的特征,会给三角形按角进行分类,理解并掌握三角形的种类特征,能解决一些生活中的实际问题。

  2.在分类中进一步提高观察能力、操作能力,体会分类标准的严密性。

  教学重点:三角形的分类标准

  教学难点:以角为标准进行分类

  教具准备:一支彩笔、一把尺子、一个双面胶、一把剪刀、手工纸两张、一个磁铁。每个小组准备一张A4纸。

  设计过程:

  预设的教师活动

  可能的设计活动

  设计说明

  一、谈话导入

  同学们,我们已经学过了哪些角?

  课件出示锐角、直角、钝角。能说这些角的名称吗?

  (课件演示)老师在每个角上添上一条线段把它们变成变成了什么图形?

  什么是三角形呢?

  请同学们用水彩笔和尺子任意画一个三角形。画好后用剪刀把它剪下来。

  二、新授

  1.小组内把剪下来的三角形分类。

  如果和他们分法相同,请有序的的把三角形帖在它的同类三角形一起。

  2.揭题:三角形的分类

  3.小组讨论每类角的共同特征。

  4.比较锐角三角形、直角三角形、钝角三角形的相同点和不同点。

  6.如果我们把三角形看成一个大集体,这个大集体有几名成员。课件出示集合图。

  三、巩固练习

  1.

  判断题。

  ①任意一个三角形,至少有两个角是锐角。

  ②最大的角是锐角的三角形一定是锐角三角形。

  ③直角三角形中有2个直角。1个锐角。

  ④一个三角形中只能有一个直角或者一个钝角。

  2.猜一猜被信封遮住的是锐角三角形、直角三角形还是钝角三角形?

  说说你的理由。

  3.用一张正方形纸折出4个完全一样的直角三角形。

  4.找出物品中哪些是我们今天学过的三角形。

  5.用信封里的.三角形拼成美丽的图形或图案,每组四名学生合作。还有四名学生到黑板上来拼。

  生:直角、锐角、钝角、平角、周角

  生:三角形

  由三条线段围成的图形叫做三角形

  组长来展示分类的情况。组长说这样分的理由。

  组1:根据三角形大小来分。

  组2:根据纸的颜色给三角形分类

  组3:根据三角形的角的特点来分

  揭示特征把三角形取名。锐角三角形、直角三角形、钝角三角形

  相同点是:每个三角形都有2个锐角。

  不同点是:它们的最大角不一样,有锐角、有直角、有钝角。所以三角形的名称是由三角形中的最大角决定的。

  学生自由读题,用手势表示对与错。错题学生要说出自己的理由。

  用一张正方形纸折出4个完全一样的直角三角形,有两种折法,一是,把正方形对角对折再对折,二是,把正方形对边对折成长方形,再沿着长方形的对角线对折。

  通过复习角的知识,让学生对知识进行迁移,根据角的特点给三角形进行分类作好铺垫。

  学生通过画、剪三角形让学生更深的理解封闭图形,也培养了学生的动手操作能力。

  小组内进行分一分,说一说自己的分类的标准是什么。培养学生的小组合作的意识。

  重视培养学生的观察能力的培养。

  通过判断检验学生对知识的掌握情况和灵活运用知识的能力。

  让学生猜一猜是什么三角形?培养了学生观察能力和逻辑思维的推理能力。通过折长方形,,不仅培养了学生的操作能力,还培养了学生数学思维的发散能力。

  找找生活中的物品中哪些是今天我们认识的三角形。让学生体会学数学是有用的,数学就在我们的身边。让学生更爱数学、更喜欢数学。通过拼图让学生得到了数学美的熏陶。

三角形教学设计2

  【教学目标】

  1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

  【重点难点】

  认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

  【教学准备】

  三角板、木条钉成的三角形、三角形卡片。

  教学过程

  【情景导入】

  教师展示三角板,观察三角形的特点,请学生说说生活中哪些物体上也有三角形。

  红领巾、三角架??

  引入课题:其实三角形在我们的生活中有着广泛的运用,这节课我们一起来研究三角形。

  板书课题:三角形的特性

  【新课讲授】

  知识点1 三角形的`特性

  教学例1。

  1.做一做:

  请学生动手制作一个三角形。看一看、摸一摸、说一说三角形有什么特点?(几条边、几个角、几个顶点??)

  学生讨论,学生代表发言。

  小结:三角形有三条边、三个角、三个顶点。

  2.画一画:

  让学生自己画出三角形,并在三角形上尝试标出边、角、顶点。 教师根据学生的汇报板书,标出三角形各部分的名称。

  3.说一说:概括三角形的定义。

  大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?

  学生回答:

  小结:由三条线段围成的封闭图形(每相邻两条线段的端点相连)叫三角形。

  4.做一做:请学生动手用三支笔拼成一个三角形,并说说三角形的顶点、边、角。

  知识点2 认识三角形的底和高

  提问:什么是三角形的高?怎样正确的画出三角形的高呢?请打开教材第60页,看看书上是怎样说的,又是怎样画的?

  学生讨论发言。

  小结:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

  老师在黑板上画两个三角形,在黑板上示范作高两次。引导学生注意观察。 提问:老师怎样正确的画出三角形的高呢?

  老师根据学生的回答在刚才的三角形中画出一条高,并标出它所对应的底。学生动手画出一个三角形,作出它的高,并标出与高相对应的底。

  提问:三角形可以作出几条高呢?

  学生动手尝试,讨论回答。教师请学生指出每条高以及与之相对应的底。 随意画出一个三角形,标出他的高和底,和同桌说一说刚才画的高是以哪条边为底画的?

  为了表达方便,我们通常把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC,在三角形中标上字母ABC。

  知识点3 三角形的稳定性

  教学例2

  做一做:学生拿出预先做好的三角形、四边形边框,分别拉一拉边框,你有

三角形教学设计3

  教学内容:

  人教版小学数学五年级上册

  作者及工作单位何小婷

  西安市长安区灵沼乡冯村小学

  教材分析

  三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算的基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础。

  学情分析

  三角形面积的知识基础是:三角形底和高的认识以及长方形、正方形和平行四边形面积计算公式。知识的增长点是三角形面积公式。这一知识是后面学生学习梯形面积计算以及今后学习的重要基础。

  其探究的过程与方法的基础是在《比较图形的面积》和《地毯上的图形面积》两个专题中蕴含的割补法、增补法(分割、平移、旋转),以及平行四边形面积推导过程中蕴含的“根据一定的条件和方法将未知转化为已知”的数学思想和方法。能力的增长点在于利用旋转将两个完全相同的.三角形拼成一个平行四边形,以及根据一定的条件(平分高或边)利用分割与旋转的方法将一个三角形转化成平行四边形,进一步体验“转化”的思想和方法。

  本节课的设计着重在“以学生的发展为中心”的理念,将学生的已有知识结合来自生活常识的实例做为重要的课堂生成资源,运用有趣的教学手段,突破学生的思维定势,给学生充分发散思维的空间。

  教学目标

  1、探索并推导三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  2、培养学生应用已有知识解决新问题的能力。渗透数学转化思想方法。

  3、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  4、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点和难点

  教学重点:探索并推导三角形面积计算公式,能正确计算三角形的面积。

  教学难点:三角形面积公式的探索过程。

三角形教学设计4

  教学内容:

  人教版义务教育课标实验教材数学四年级下册第80页

  教学目标:

  1. 使学生认识什么样的图形叫三角形,知道三角形的特征和按角分类的方法,掌握三角形的特性。

  2. 能够识别锐角三角形、直角三角形和钝角三角形,关知道它们三者之间的关系。

  3. 渗透观察比较、抽象概括和迁移推理等数学思维方法。培养学生发现欣赏的'意识,感受生活中数学,激发学习兴趣。

  教学过程:

  一、认识三角形

  1. 摆三角形

  (1)(课件演示)老师给大家准备了一些图片,仔细观察:看看这些事物中都有我们学过的哪些图形?(欣赏两遍)

  (三角形、圆形、梯形……)

  这节课我们来重点研究三角形

  板书:三角形的认识

  (2)(准备小棒)现在想想三角形是什么样子的?听要求:请用手中的小棒快速地摆一个三角形。(生动手摆三角形,同时老师在黑板上画三角形)

  2. 三角形的特性

  (1)师拿出准备好的插接长方形,问:这是什么图形?

  师拉动长方形,问:你发现了什么?

  (长方形变化了,说明它不稳定)

  (2)拉一拉刚才的三角形,你发现了什么?

  (没有变化,说明三角形具有稳定性)

  板书:稳定性

  三角形的稳定性是三角形的特性,在实际生活中有着非常广泛的应用,谁能说说日常生活中都有哪些地方运用了三角形的稳定性?

  二、三角形的特征

  1. 什么是三角形

  刚才我们动手摆了三角形,还知道了三角形具有稳定性,你认识三角形了吗?

  出示:

  手势表示哪个是三角形?

  根据刚才的学习谁能用一句话简单地说说什么是三角形?

  (重点引导学生理解“围成”)

  板书:由三条线段围成的图形叫三角形

  2. 三角形的各部分名称

  猜测:围成三角形的每条线段叫什么?(边)三角形一共有几条边?(3条边)

  每两条边线段的交点叫什么?(顶点)三角形一共有几个顶点?(3个顶点)

  仔细观察三角形除了有三条边,三个顶点之外,还有什么?(3个角)

  谁能说说三角形有什么特征?(三角形有3条边,3个顶点,3个角)

  生回答师板书。

  三、三角形的分类

  1. 分类

  2. 刚才大家表现非常棒,积极动脑思考,回答问题也非常积极,那现在看看大家的动手能力和大家的合作能力怎么样?

  出示六种三角形

  看要求:(课件演示)给这些三角形分类:

  要求:

  (1)给每类三角形取个名字。

  (2)小组说说为什么这样取名?

  生运用学具小组合作,老师巡回指导。

  生汇报,师总结板书:

  锐角三角形 1个? 3个?

  直角三角形 1个

  钝角三角形 1个

  3、小游戏:

  猜角游戏 师只露出一个角,生猜这是什么三角形?

  说说什么是锐角三角形、直角三角形、钝角三角形。

  四、小结:通过这一节课的学习你学到了什么知识?

  考考你:

  选择:

  (1)由三条( )围成的图形叫三角形。

  A直线 B射线 C线段

  (2)( )的三角形叫锐角三角形。

  A有一个角是锐角 B有两个角是锐角 C有三个角是锐角

  判断:

  (1) 有三条线段的图形一定是三角形。

  (2) 任何三角形里都有两个锐角。

  (3) 直角三角形中只有一个角是直角。

  (4) 有位同学看到三角形中有一个锐角,就说这个三角形是锐角三角形。(

三角形教学设计5

  一、教材分析

  (一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。 “三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

  (二)教学目标

  基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

  1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。

  2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。

  3、解决问题:会用三角形内角和解决一些实际问题。

  4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。

  (三)重难点的确立:

  1、重点:“三角形的内角和等于180°”结论的探究与应用。

  2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论

  二、学情分析

  处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

  基于以上的情况,我确立了本节课的教法和学法:

  三、教法、学法

  (一)教法

  基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。

  (二)学法

  通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

  四、教学过程

  我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。

  具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。

  前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。

  通过活动3中问题的解决加深学生对三角形内角和的.理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。

  活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。

  活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。

  活动6的设计目的发挥学生主体意识,培养学生语言概括能力。

  【教学设计说明】

  1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用?问题情境——建立模型——解释、应用与拓展?的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功、

  2、体现自主学习、合作交流的新课程理念、无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用、

  3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。

三角形教学设计6

  教学内容:第75页及练习十八1-4题

  教学要求:

  1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

  2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

  3、在指导操作过程中,引导学生运用转化的方法探索规律。

  教学重点:三角形面积计算公式的推导。

  教学难点:理解公式中除以2的道理。

  教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

  学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

  教学过程:

  一、复习铺垫

  1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

  2、(幻灯出示)口答:计算图形面积

  二、导入新课

  幻灯出示一个三角形

  提问:它是一个什么图形?

  它的底和高分别是多少?

  它的面积怎样算呢?板书课题:三角形面积的计算。

  三、讲授新课

  (一)、用数方格的方法计算三角形的面积。

  幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

  得出用数方格的方法计算三角形的面积不准确,又很麻烦。

  质疑:怎样计算三角形的面积呢?

  (二)、通过操作总结三角形的面积计算公式。

  1、从直角三角形推导。

  我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

  (1)让学生动手拼,教师将学生拼出的图形一一展示出来。

  (2)这些图形中哪些图形的面积你们会算?

  (3)每个直角三角形的面积与拼成的长方形和平行四边形的面积有什么关系?

  教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

  2、从锐角三角形推导。

  (1)让学生试拼,可以相互讨论。

  (2)教师指导,突出旋转和平移。

  (3)每个锐角三角形的`面积与拼成的平行四边形的面积有什么关系?

  教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

  3、从钝角三角形推导。

  (1)学生操作。

  (2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

  4、归纳总结规律。

  通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

  (1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

  (2)这个平行四边形的面积和三角形的面积有什么关系?

  得出:三角形的面积=底×高÷2

  (3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

  板书:S=ah÷2

  (三)、运用面积公式计算三角形的面积。

  1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

  2、出示例题让学生试做。

  说一说计算三角形面积为什么要除以2?

  3、看书质疑。

  4、做一做书本第77页

  四、课堂小结

  提问:1、这节课我们主要研究什么?

  2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

  3、要求三角形面积必须知道什么?怎样求?

  五、巩固练习

  练习十八1、3(1)

  六、课堂练习

三角形教学设计7

  教材与学情:

  解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

  信息论原理:

  将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

  教学目标

  ⒈认知目标:

  ⑴懂得常见名词(如仰角、俯角)的意义

  ⑵能正确理解题意,将实际问题转化为数学

  ⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

  ⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

  ⒊情感目标:使学生能理论联系实际,培养学生的.对立统一的观点。

  教学重点、难点:

  重点:利用解直角三角形来解决一些实际问题

  难点:正确理解题意,将实际问题转化为数学问题。

  信息优化策略:

  ⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

  ⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

  ⑶重视学法指导,以加速教学效绩信息的顺利体现。

  教学媒体:

  投影仪、教具(一个锐角三角形,可变换图2-图7)

  高潮设计:

  1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

  2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

  教学过程

  一、复习引入,输入并贮存信息

  1.提问:如图,在Rt△ABC中,∠C=90°。

  ⑴三边a、b、c有什么关系?

  ⑵两锐角∠A、∠B有怎样的关系?

  ⑶边与角之间有怎样的关系?

  2.提问:解直角三角形应具备怎样的条件:

  注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

  二、实例讲解,处理信息:

  例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

  ⑴引导学生将实际问题转化为数学问题。

  ⑵分析:求AB可以解Rt△ABD和

  Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

  ⑶解题过程,学生练习。

  ⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

  例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

  分析:

  ⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

  ⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

  解:设山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、归纳总结,优化信息

  例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

  四、变式训练,强化信息

  (投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

  练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

  练习3:在塔PQ的正西方向A点测得顶端P的

  仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

  教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

  ⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

  ⑵引导学生归纳三个练习题的等量关系:

  练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

  五、作业布置,反馈信息

  《几何》第三册P57第10题,P58第4题。

  板书设计:

  解直角三角形的应用

  例1已知:………例2已知:………小结:………

  求:………求:………

  解:………解:………

  练习1已知:………练习2已知:………练习3已知:………

  求:………求:………求:………

  解:………解:………解:………

三角形教学设计8

  设计说明:本课的教学内容是人教版三年制初二几何5.4节三角形相似的判定。

  在充分理解教材的基础上,本节课首先在新旧知识的转折处创设有助于学生自主学习的问题情境,引导学生通过探索、交流,获得知识,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。其次,根据变式分层的思想设计具有一定跨度的问题串,组织学生进行变式训练,有效地实施分层次教学,使每个学生都得到充分的发展。

  1 教学目标

  1.了解三角形相似的判定定理1的证明思路和方法, 能运用判定定理1解决有关问题;

  2.掌握直角三角形被斜边上的高分成的两个直角三角形彼此相似并且都和原三角形相似;

  3.学会与人合作,能与他人交流思维的过程和结果;形成评价与反思的意识;

  4.能积极参与数学学习活动,体验数学活动充满着探索与创造,形成实事求是的态度以及独立思考的习惯。

  2 教学重点和难点

  重点是三角形相似的判定定理1及其应用, 难点是定理的证明方法。突破难点的关键是在于使用化归、全等变换、类比等数学思想方法。

  3 教学、学法

  本课采用“自主探索,合作交流”这一教学组织形式,首先从问题1入手,利用图形变换的对比手法,引导学生步步深入, 类比归纳出判定两个三角形相似的条件;然后通过一组变式题,保证学生在基础知识和基本技能的获得与一定的训练的同时,能感受到数学创造的乐趣,获得对数学较为全面的体验与理解。

  4 教学过程

  4.1 创设问题情景,引导学生探索导出新知识

  4.1.1 问题讨论 显示问题1和问题2,组织学生分小组讨论。

  问题1:如图1,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。

  利用电脑课件改变DE的位置,保持∠1=∠B,得到问题2。

  问题2:如图2,已知∠1=∠B,试判断△ADE与△ABC是否相似?并说明理由。

  4.1.2 小组交流与同学交流自己的想法。

  鼓励学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,能在倾听别人意见的过程中,逐渐完善自己的想法,感受到与同伴交流中获益的快乐。

  教师积极引导学生利用化归的思想解决问题,在学生充分讨论的基础上,对问题解决的方法小结如下:

  (1)利用同位角相等,两直线平行(∠1=∠B,DE∥BC )将问题1化归到上节所学的定理;

  (2)通过全等变换,将问题2化归到问题1;

  电脑三维动画显示:将△ADE绕着∠A的平分线旋转180°(即将△ADE翻一面)可得到△AD′E′,(如图3所示)即△AD′E′≌△ADE,于是有∠ADE=∠AD′E′,又因为∠ADE=∠B,所以∠AD′E′=∠B,由(1)得△ADE~△ABC。

  (3)学生代表口述交流问题2证明的思路,教师板书证明过程;

  (4)这里由特殊到一般来探索数学规律, 是数学研究中常用的一种思想方法。

  4、导出定理:我们知道三角形全等是三角形相似的特殊情况, 在上述学习的基础上,你能否类似于三角形全等用符合某种条件来判定两个三角形相似?

  学生口述三角形相似判定定理1,教师板书。

  (二)变式训练,引导学生应用新知识和进行创新性学习。

  1.显示习题1、习题2,供学生独立思考后回答。

  习题1如图4,已知在△ABC中,AB=AC,∠A=36°,BD 平分∠ABC交AC于点D,请找出图中的相似三角形。

  习题2如图5,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D, 找出图中所有的相似三角形。

  2.教师归纳小结:

  (1)习题1利用简单计算,直接运用判定定理1便可找出△ABC~△BDC;

  (2)习题2与习题1的'解题方法一样,但要求全面观察图形, 图中共有三对三角形相似,即直角三角形被斜边上的高分成的两个直角三角形相似。

  3.电脑显示习题3,学生独立练习后,小组交流,教师归纳小结。

  习题3如图6,在△ABC中,点D为AC边上的一点,连结BD, 问∠ADB满足什么条件时,△ADB~△ABC。

  4.电脑显示将图6中的△ADB绕点A旋转一定的角度,得到习题4。

  习题4 如图7,已知∠D′=∠B,∠1=∠2,求证:△AD′B′~△ABC。

  5.让学生在习题4的基础上改编一道变式题,课后交流。

  这个问题的参与性较强,每个学生都可以展开想象的翅膀,按照自己思考的设计原则,编拟题目(如改变条件:将∠D′=∠B改成∠B′=∠C,结论不变;也可以将图形不变;也可以将图形变为如图8所示),感受数学创造的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。

  (三)师生共同作本节果小结。

  作者介绍:郑碧星,福建德化第一中学

三角形教学设计9

  教学目标:

  1. 通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。

  2. 培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。

  3. 体验数学和生活的联系,培养学生学习数学的兴趣。

  教学重点:

  1. 理解三角形的特性。

  2. 在三角形内画高。

  教学难点:

  理解三角形高和底的含义,会在三角形内画高。

  教学准备:

  多媒体课件、投影。

  师生准备:三角形、三角板、平行四边形框架、小棒。

  教学过程:

  一、联系生活,情境导入。

  1.同学们,为了迎接亚运会我们的广州在马不停蹄地建设着,每天都有新的变化。请看这是一幅建筑工地的场景图,从图中你观察到哪种平面图形最多?(出示课件)

  2.让同学说说,生活中你看到过哪些物体上有三角形。

  3.(出示一些生活中常见的物体上的三角形)三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将一起来研究三角形的特性。(板书课题:三角形的特性)

  二 探究新知。

  1. 三角形的特征。

  (1)画一画。

  师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?

  师黑板上画一个三角形,让学生说出各部分的名称师板书。

  (2)看一看。

  老师也摆了一个三角形,课件出示。

  你们有什么看法?

  教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

  (3)找一找。

  下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)

  2.用字母表示三角形

  为了表达方便,我们用字母A、B、C分别表示三角形的三个顶点,因此上面的三角形可以表示成三角形ABC(板书:三角形ABC)

  师生对口令,找顶点和对边。如说“顶点A”,对方说“对边BC”;说“BC边”,对方说“顶点A”。

  3、认识三角形的高。

  ⑴(出示)大桥图,你从大桥上看到了什么? (课件中抽出三角形)

  ⑵①小组讨论如果要测量这座大桥顶点到桥面的高度,怎么测量呢?

  ②汇报。引导学生明确要量顶点到桥面的垂直距离。指出顶点到桥面的垂直距离就是大桥顶点到桥面的高度。

  ⑶学生阅读课本第81页,认识三角形的高和底。

  ⑷教师示范画三角形的高,边说明画高的方法。强调使用直角三角板,用虚线画高,画出垂直符号。

  首先用三角板的一条直角边靠住BC边与它重合,另一条直角边通过A点,然后从A点向它的对边画一条垂线,用虚线表示,标出直角符号,顶点与垂足之间的线段就是三角形的高。写上高,这条对边叫做三角形的底,写上底。

  ⑸学生在自己画的三角形上画出一条高,并标出底。

  学生上台展示画法,同桌互相订正。

  小组讨论:说说画高要注意什么?(把三角尺的一条直角边与指定的底边重合,并让另一条直角边通过与这条底边相对的顶点;再从顶点起向底边画垂直的线段;最后标上直角记号。

  (6)这个三角形还能画高吗?(能)还能通过哪一个顶点向它的对边作垂线画高?一个三角形能画几条高?(3条高)

  4、三角形的特性

  (1)游戏引出。

  下面,我们来猜一猜谁的力气大?拉动(读成重音)这个图形,只要使它的形状发生变化,就算胜。(出示课件)

  好,小猴同学获胜!小猴同学的'力气大,小兔同学的力气小。小兔真的力气比小猴的小吗?

  你们同意吗?为什么?(因为平行四边形容易变形,而三角形不会变形)这说明三角形具有稳定性。(板书:三角形具有稳定性)

  (2)理解三角形的特性,看三角形在生活中的应用。

  5、三角形特性的应用

  三角形的特性在日常生活中,有这么重要的作用,你们还能说一说在哪些物体上见过三角形也运用了这一特性呢?

  (学生举例:房顶做成三角形的,台历、斜拉桥、吊车)同学们都会注意观察生活。

  完成P86第2、3题。

  三、全课小结

  这节课我们学习了什么?你对三角形有哪些认识?

  四、板书设计

  三角形的特性

  由三条线段围成的图形(每相邻两条线段的端点相连) 叫做三角形。

  三角形有三条边,三个角,三个顶点。

  三角形具有稳定性。

三角形教学设计10

  教学目标:

  1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。

  2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。

  3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。

  教学重点:

  知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。

  教学难点:

  经历操作活动,推理、归纳出三角形的内角和。

  教学资源:

  多煤体课件,各种三角形,三角板,量角器,剪刀。

  教学活动:

  一、创设情境,导入新课。

  1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?

  2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。

  3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)

  二、合件交流,操作发现。

  1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的`内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。

  2.组织学生小组合作:

  请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?

  3.组织学生汇报交流:

  ①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)

  4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。

  5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)

  三、实践应用,拓展延伸。

  1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。

  2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。

  四、反思总结,自我建构。

  这节课你有什么收获?

  这节课我们就研究到这儿,同学们再见!

三角形教学设计11

  一、教材分析:

  “三角形分类”是人教版四年级下册第五单元第2节内容的第1课时,是在学生认识了直角、钝角、锐角和三角形的基础上开展学习的,教材分为两个层次:按角分为锐角三角形、钝角三角形和直角三角形,并通过集合图来体现分类的不重复和不遗漏原则;按边分为等腰三角形、等边三角形和一般三角形,着重引导学生认识等腰三角形、等边三角形边和角的特征。

  二、教学目标:

  知识与技能:通过观察与操作,会按角与边的特征给三角形分类

  过程与方法:经历观察与探索的过程,培养学生观察分析,动手操作能力,进一步发展学生的空间观念。

  情感态度:激发学生的主动参与意识、自主探索意识。

  三、教学重点:

  学会给三角形分类。难点:会按角与边的特征分

  四、学情分析:

  三角形学生早已接触,已经认识了直角、钝角、锐角以及三角形,在日常生活中也有丰富感知。

  五、教法与学法

  教法:创设情景、积极引导、主动参与、激励评价

  学法:观察分析、探索思考、分组交流、独立反思。

  六、教学流程

  一、创设情境、激趣导入

  同学们,我们已经认识了三角形,谁来说一说?有三位老朋友已经恭候我们多时了,看看它们是谁?课件出示三个角,指名回答。你能说说什么样的角是锐角、直角、钝角吗?学生一一作答。我想知道这个角是不是锐角该怎么办?(用量角器或三角板)

  导入课题,课件出示由三角形拼成的小船,(每组一份)老师给大家带来了一件礼物,看看它像什么?它是由什么图形拼成的?这些三角形的形状都一样吗?这节课我们就一起给三角形分分类,板书课题。

  二、自主探索、合作交流

  三角形有角和边,我们学过角的'分类,那三角形又可以按照什么来分呢?(按角分、边分)教师板书:角、边

  (一)按角分

  1、学生尝试分类,小组交流后集体汇报

  把三个角都是锐角的分一起板书:三个锐角

  把都有一个直角的分一起板书:一个直角

  把都有一个钝角的分一起板书:一个钝角

  分别起名字,指名回答。(板书:锐、直、钝角、三角形)

  仔细观察这三类三角形有什么异同?(同:至少都有2个锐角。异:另外一个角分别是锐角、直角、钝角)

  每类三角形中最大的角跟它的名称有什么关系?引导发现(最大角是什么角,它就是什么三角形)

  2、用集合图表示

  如果把三角形比作一个大家庭,按角分,这个大家庭里有几个小家庭?是哪几个?指名回答,教师用课件出示集合图。

  3、小游戏—猜猜它是什么三角形(要看最大角不能单凭一个锐角)

  (二)按边分

  1、教师提出要求,学生小组交流后汇报。

  三条边都不相等(板书:三边不等)有两条边相等(板书:两边相等)三条边都相等(板书:三边相等)

  试着起名字,教师点拨并适时板书:不等边、等腰、等边三角形。

  2、明确等边三角形是特殊的等腰三角形。

  提问:等边三角形是等腰三角形吗?学生展开讨论,引导学生明确:只有有两边相等就是等腰三角形。(板书:特殊)

  3、用集合图表示

  4、等腰三角形和等边三角形除了边的特点外,看看它们的角有什么特点?想办法验证一下。(量角器或对折)

  3、认识等腰三角形和等边三角形。

  腰、底角、顶角。等边三角形又叫正三角形,每个角都是60度

  三、巩固练习、反馈提升

  1、判断、在钉子板上为三角形、完成做一做蚂蚁进洞

  2、小组合作猜猜我是谁?只露一个角,可能是什么?为什么?

  四、课堂总结、检测效果。

三角形教学设计12

  一、说教材

  1、教学内容

  九年义务教育六年制小学数学教科书(北师大版)四年级下册第27页至29页的内容及相关练习题。

  2、教材简析

  “三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够在物体的面中找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边的不同角度对三角形进行分类做好了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。

  3、教学目标

  根据教材的内容及学生的知识现状和年龄心理特点,我制定了以下教学目标。

  ①学生通过观察、操作、比较、发现三角形角和边的特征,会给三角形分类,理解并掌握各种三角形的特征。

  ②培养学生观察能力,操作能力和抽象概括能力。

  ③激发学生的主动参与意识,自我探索意识和创新精神。

  4、教学重、难点的确定

  依据《三角形分类》这一知识的地位和作用,本课设计的“观察、操作、比较、小组讨论”等教学环节都是为了使学生能按角和边的.特征给三角形分类,因此这是教学重点。

  根据学生的认知水平和年龄特征,如何引导学生归纳出各种三角形的特征,这是学生掌握本课知识的一个质的飞跃,因而我认为“三角形分类”的教学难点是学生能理解并掌握各种三角形的特征。

  5、教学准备

  多媒课件、彩色卡纸、三角形平面图、固体胶、剪刀等。

  二、说教法、学法

  根据新课程教材特点和学生的实际情况,教学中以直观教学为主,运用观察、动手操作、分组讨论等多种方法,采用现代化教学手段结合教材,让学生在“想一想”“做一做”“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力、语言表达能力和自学能力。

  在教学中,首先把握新旧知识的衔接点,由三角形的认识,引出课题“三角形分类”。接着引导学生自学课本,放手让学生动手操作,小组讨论交流,寻找三角形分类的方法。最后让学生各抒己见,归纳出各种三角形的特征,培养学生的抽象概括能力。

  三、说教学过程

  为达到本课的教学目标,我设计了以下教学过程。

  教学环节教学流程设计意图

  复习铺垫

  1、师:同学们,你们说说以前学过哪些图形?三角形是什么样的?谁想上黑板画给大家看一看?

  2、师:从同学们画的三角形中我们可以看出三角形可能存在这三个角。(课件出示)

  ①叫角。

  ②三角形有三个特点,(课件出示)

  有边,角,顶点。

  让学生复习与新知识有密切联系的旧知识,是为学习新知识做好迁移铺垫,为突破难点打下基础。

  揭示课题

  在三角形这个大家族里,你若仔细观察,会发现它们的角和边各有特点,这节课咱们根据三角形角和边的特点给它们分类,好不好?

  (板书:三角形分类)揭示课题的同时让学生明确了新课的学习任务,使学生学有目标,克服了盲目性。

  探究新知

  动手操作,探讨三角形分类方法

  小组讨论,动手操作。给每小组学生分一张彩色卡纸,让学生把附页上的三角形剪出进行分类,分类的结果贴在彩色卡纸上,让学生选代表展示他们的劳动成果,并说说他们是用什么方法进行分类,然后:

  ①学生代表自评作品

  ②学生互评

  ③老师点评通过小组讨论、交流、探索出三角形分类方法这一话动中,不仅激发学生的学习兴趣,而且真正让学生动眼、动手、动口、动脑参与获取知识的过程,感受到了成功的喜悦。学生的自评、互评、老师的点评体现了课程标准中评价方法的多样化。

  探究新知

  按角分类的三角形

  按照教材顺序依次展示第一类锐角三角形,第二类直角三形,第三类钝角三角,并出示相应的课件引导学生归纳、概括出这三种三角形的特征。

  锐角三角形直角三角形

  三个角都是锐角有一个角是直角

  钝角三角形

  有一个角是钝角

  在学生动手操作充分感知的基础上,教师点拨,引导学生归纳出按角分类的三角形特征。培养学生分析问题和解决问题的能力,同时也突破了难点。

  探究新知

  按边分类的三角形

  1、等腰三角形的引入

  展示学生以边分类的彩色卡纸。问:学们有什么新发现?课件出示:

  引导学生归纳出等腰三角形的特征。通过学生观察、讨论、探究出等腰三角形的特征,培养了学生的探究精神。

  2、等边三角形的教学

  问:同学们再仔细观察等腰三角形都只是两条边相等吗?看不出可以拿尺子量一量。

  学生归纳:(课件展示)

  三条边都相等的三角形叫做等边三角形。通过让学生认真观察等腰三角形,并大胆猜想,动手测量探索、实践。使学生的主体性得以更大程度上的发挥,动手能力、思维能力和创新能力得到较大的发展。

  巩固运用深化理解

  1、教材28页上的第一道练习题,请个别学生到视频展台做此题,2、游戏巩固

  老师左手拿一个三角形,右手拿一张卡纸遮住三角形的两个角,只露出一个角,让学生猜这会是什么样的三角形?设计第一道练习题目的在于巩固新知,形成技能,培养学生联系新知识,灵活解决问题的能力。

  当学生感到有些疲劳时,这时我就根据教材内容和学生心理特点,采用学生喜闻乐见的游戏练习方式,增加题目的趣味性,激发学生的学习兴趣。

  全课小结

  大家谈收获通过今天这节课的学习,你有什么收获。

  让学生谈谈经过自己动手操作、小组合作、自主探索发现的三角形分类方法及各种三角形特征,不仅及时有效地巩固所学知识,训练学生的语言表达能力,而且可以使学生从中感受、体验到一个探索者的成功乐趣,从而增强学习动力与信心。

  四、说板书设计

  本节课的板书为了突出学生的主体地位,突出学习重点,解决知识难点,整个黑板主要用于展示学生按角和边进行三角形分类的彩色卡纸作品。这样安排既便于学生观察,又有利于激发学生的学习积极性。

三角形教学设计13

  教学内容:

  四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

  教学目标:

  1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

  2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

  3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

  教学重点:

  让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

  教学难点:

  探究和验证“三角形内角和等于180°”。

  教学准备:

  学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

  教学过程:

  一、创设情境,产生疑问

  1、理解内角和含义。

  2、故事激趣

  提问:三兄弟围绕什么问题在争吵?你有什么看法?

  二、自主学习,合作探究

  1、提出猜想。

  (1)计算三角板的内角和。

  (2)提出猜想。

  提问:通过刚才的.计算,你能得出什么结论?有同学怀疑吗?

  指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

  引导:需用更多的三角形验证。

  2、进行验证。

  (1)验证教师提供的三角形。

  测量:任意三角形的内角和。

  ①小组合作:用量角器量出信封里不同三角形的内角和。

  ②交流测量结果。

  ③提问:根据测量结果,你能得出什么结论?

  拼一拼:把一个三角形的三个角拼在一起。

  ①思考:除了量,还可以用什么方法验证呢?

  ②同桌合作:尝试把三个内角拼成一个平角。

  ③反馈不同的拼法。

  ④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

  解释误差问题。

  (2)验证学生自己画的三角形。

  学生任意画一个三角形,用自己喜欢的方法去验证。

  交流:自己画的三角形验证出来内角和是1800吗?有谁验证

  出来不是1800的吗?

  提问:你又能得到什么结论?还有怀疑吗?

  3、得出结论。

  指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

  说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

  解决争吵:学生用三角形内角和的知识劝解三兄弟。

  三、巩固应用,深刻感悟

  1、算一算:求三角形中未知角的度数。

  2、拼一拼:用两块相同的三角尺拼成一个三角形。

  思考:拼成的三角形内角和是多少?

  3、画一画:(1)你能画出一个有两个锐角的三角形吗?

  (2)你能画出一个有两个直角的三角形吗?

  (3)你能画出一个有两个钝角的三角形吗?

  四、全课总结,课后延伸

  1、学生自主总结一节课的收获。

  2、介绍帕斯卡。

  3、用三角形拼成四边形、五边形、六边形,引发新的问题。

三角形教学设计14

  一、导入新课:

  上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积

  二、探究新知:

  (一)操作引入

  1、提问:怎样求三角形的面积呢?我们能不能像推导平行四边形的面积那样也设法把三角形转化成我们已经学过的图形呢?老师为大家准备了很多三角形,请大家以小组为单位研究一下,试着把三角形转化成我们学过的图形。(生小组讨论,师巡视指导)。

  2、汇报交流:不同方法的小组到前面演示,边拼边讲。(师选择三种图形贴到黑板上)。

  (二)公式推导

  1、咱班同学真了不起,小小的三角形竟然拼出了这么多的图形。那接下来我们一起来研究一下,这两个三角形拼成了一个什么图形呢?(长方形)。那长方形的面积怎样计算?(长×宽)。师在黑板上所贴长方形下面板书:长方形的面积=长×宽。

  2、黄颜色三角形的面积与这个长方形的面积有什么关系呢?(三角形面积是长方形面积的一半)。

  3、长方形的长与这个三角形的底是什么关系?板书

  4、长方形的宽与这个三角形的高是什么关系?板书

  5、那这个三角形的面积该怎样计算呢?(生答,师在长方形面积公式下板书——三角形的面积=底×高÷2)。

  6、是不是所有等底等高的三角形面积都是它所拼成图形的一半呢?

  7、操作验证(学生小组完成)

  结论:等腰直角三角形的面积是拼成的正方形面积的一半。

  钝角三角形的面积是拼成的平行四边形面积的一半。

  8、推导公式:生答:通过实验我们知道,等底等高的三角形是它所拼成图形面积的.一半,所以三角形的面积=底×高÷2。

  三、拓展练习

  刚才大家的表现非常棒,自己就总结出了三角形的面积公式,那么根据公式,谁来说一下,要求三角形的面积,必须知道哪几个条件?(底和高)。

  1、下面我们就将1号蟹池的面积计算一下吧。课件。(生解答,交流)

  2、比一比,看谁算的又快又准确。课件。生独立解答,全班交流。

  3、课件出示:一个没有标出底和高的三角形,怎样求出它的面积。(测量底和高),做书上第31页练习2。

  4、课件出示:火眼金睛辨对错。生用手势判断,并说明理由。

  5、聪明小屋:平行线中的三个三角形,哪个面积大?生讨论交流,说明理由。(一样大,因为它们等底等高)。

  四、课堂小结

  出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?

  1、你从这节课学到了哪些知识?

  2、你认为计算三角形面积需要注意什么?

三角形教学设计15

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册第82页的内容。

  教学目标:

  1.知识与技能:

  (1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。

  (2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。

  2.过程与方法:

  通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。

  3.情感与态度:

  (1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。

  (2)学会从全面、周到的角度考虑问题。

  教学重点:

  理解、掌握“三角形任意两边之和大于第三边”的性质。

  教学难点:

  引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。

  教学准备:

  课件、学具袋。

  教学过程:

  (课前谈话)今天很高兴能认识各位在座的小朋友。我呀,是来自绿影小学的包老师。来之前,我就听说某某学校的小朋友,聪明伶俐,爱动脑筋,是不是这样啊?为了表扬同学们在课堂的表现,老师还特地带来了一些小奖品,瞧,都贴黑板上了。(三张不同颜色的小笑脸)你们喜欢吗?

  如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)

  如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)

  教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。

  一、动手游戏,提出问题

  教师:请同学们拿出你的1号学具袋,看看里面有什么? (三根小棒。)

  三根小棒能围成一个三角形吗?

  学生先猜。

  教师:光猜可不行,知识是科学,咱们来动手围一围。

  学生动手围,集体交流:有的能围成,有的不能围成。

  教师请能围成和不能围成的同学分别上来展示一下。

  同时板贴:能围成三角形 不能围成三角形

  教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。

  提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?

  引导学生明白:跟三角形的边有关系。

  教师:对,三角形的边有什么样的关系呢?同学们,你们想不想自己动手来探究这个问题呀?

  板书课题:三角形边的关系(让学生收拾好一号学具袋)

  [设计意图:随意的给学生三根小棒,让学生先猜能否围成一个三角形,再通过动手围,发现有的三根小棒能围成三角形,有的三根小棒不能围成三角形。这不仅激活了学生的旧知,刺激了学生的思维,更激发了学生探索的欲望:能否围成一个三角形跟什么有关系,怎么的三根小棒才能围成三角形呢?]

  二、实践操作,探究学习

  1.动手操作。

  电脑出示:现有两根小棒,一根长3厘米,一根长6厘米,再配一根多长的小棒,就能围成一个三角形?

  教师说明操作要求:

  (1)从2号学具袋中拿出操作材料(两根小棒、作业纸和实践操作表格);

  (2)在作业纸上有不同的线段,请你用两根小棒去围一围,看看是否能围成一个三角形(至少要和三条不同的线段围一围);

  (3)将数据和结果填写在表格中,能围成的用√表示,不能围成的用×表示。

  学生活动,教师巡视指导。

  2.汇报交流。

  教师:下面就请同学们来汇报一下你的操作结果。

  请不同的学生汇报,教师在课件中输入数据和结果。如下图:

  第一边

  长度(cm)第二边

  长度(cm)第三边

  长度(cm)能否

  围成算 式

  631×

  2×

  3×

  4√

  5√

  6√

  7√

  8√

  9×

  10×

  [设计意图:既然已经知道能否围成一个三角形,与三角形的边有关系,所以教师先给出学生两根6厘米和3厘米的小棒,让学生通过动手操作得到,当第三边是几厘米的时候能围成三角形,直观明了,为后面的探究打好基础。]

  3.集体探究。

  第一层次:发现不能围成的原因。

  (1)教师:同学们通过动手实践,发现1厘米的小棒不能围,确定吗?咱们再来验证一下。

  课件演示:当三根小棒分别是1厘米、3厘米和6厘米的时候,围不成三角形。

  教师:为什么围不成?你会用一个数学关系式表示出它们的关系吗?

  引导学生得出:1+3<6,所以围不成。

  (2)教师:下面我们再来验证一下2厘米。课件演示。

  教师:你发现了什么?会用一个数学关系式表示出它们的关系吗?

  引导学生得出:2+3<6,所以围不成。

  (3)教师:3厘米也不能围成,是什么原因呢?课件演示。

  提问:它为什么也围不成?你会用一个数学关系式表示出它们的关系吗?

  引导学生说出:3+3=6,所以不能围。

  (4)提出:1厘米、2厘米和3厘米的小棒都围不成。大家观察这三道算式,谁能用一句话说说什么情况下不能围成三角形阿?

  板书(补上小于等于号):两边之和≤第三边 不能围成三角形

  [设计意图:学生已经有了操作的初步体验,但是不能围成的原因是什么,却还没有发现。这里,通过课件直观、生动的演示和教师及时的启发、点拨,学生便会很快的发现不能围成三角形的原因了。]

  第二个层次:猜想,初步得出三角形边的性质。

  教师:两边之和小于或者等于第三边,不能围成三角形。同学们猜想一下,什么情况下能围成三角形呢?

  学生猜出:两边之和大于第三边。

  板贴:两边之和>第三边 能围成三角形?

  同时,教师在旁边画上“?”

  初步验证猜想:

  教师:这个猜想对不对呢?这需要进行验证。看看这些能围成三角形的边,是不是具备这样的关系?

  教师指着4厘米,问:当第三根小棒是4厘米的时候,谁能来说一说?

  同时课件进行演示,得出:4+3>6。 课件演示。

  教师指着5厘米,问:那5厘米? 得出:5+3>6

  教师点击:那么下面就依次类推了。课件依次出现算式:6+3>6 7+3>6 8+3>6 9+3>6

  [设计意图:由于有了“两边之和≤第三边,不能围成三角形”这个结论作基础,学生会自然而然地想到当“两边之和大于第三边”的时候就能围成三角形。这时教师及时说明,这只是猜想,要经过验证才能判断它是否正确。]

  第三个层次:引发矛盾,突破难点。

  教师指着表格,质疑:你们有没有发现问题啊?咱们在动手操作的时候得出9厘米不能围,可是9+3>6呀,这符合我们刚刚得出的结论啊?

  先让学生说一说,然后进行课件演示。

  教师:9和3这组的两边之和是大于6,可是它能围成吗?(不能)(课件演示确实不能围成。)

  教师:我们再换一组看看,3和6这组的两边之和第三边9比,什么关系?(相等)

  教师:那还要看哪一组?(6和9的和与3比)

  引导学生明确:只通过一组来判断能否围成三角形,全面吗?那应该怎么说?

  引导学生得出“任意”两字。

  [设计意图:9+3>6却围不成三角形,这一下就给学生制造出了矛盾冲突,学生就会立刻思索这三边到底还存在什么样的关系,从而发现只通过一组两边的和来判断能否围成三角形是不全面的`,必须要看三组,这样“任意”在这里的引出也就水到渠成了。]

  第四个层次:再次验证,明确三角形三边的关系。

  教师:下面我们利用这个结论再来验证一下,这些能围成三角形的三边,是不是都具备这样的关系?每个同学选一个你喜欢的在小组内交流。

  学生交流,集体汇报。

  第一边

  长度(cm)第二边

  长度(cm)第三边

  长度(cm)能否

  围成算 式

  6 31×1+3<6

  2×2+3<6

  3×3+3=6

  4√4+3>6 3+6>4 4+6>3

  5√5+3>6 3+6>5 5+6>3

  6√6+3>6 3+6>6 6+6>3

  7√7+3>6 3+6>7 7+6>3

  8√8+3>6 3+6>8 8+6>3

  9×9+3>6 3+6=9 9+6>3

  10×

  ……

  教师:在同学们的猜想前面加上“任意”两字,通过再次验证后,发现它就是一条正确的结论。(教师擦掉“?”)咱们来一起读一遍。

  [设计意图:加上“任意”两字以后,结论是不是就正确了呢?这时,让学生回过头来,再次验证能围成三角形的三边是不是具备这样的关系,不仅加深了学生对三角形边的关系的理解,也让学生充分经历了“猜想—验证—结论”这一科学的学习过程。]

  第五个层次:找出判断不能围成的简捷方法。

  教师:在这些不能围成三角形的三边中,它们也应该有几组算式?(3组)

  那我们在判断它能不能围成的时候,是不是要把三组算式都找出来啊?

  引导学生明确:只要找到一组不符合能围成的条件就可以了。

  教师:谁能快速地说出‘10’不能围成的原因?

  [设计意图:怎样最快的找到不能围成的原因,在这里也应该让学生明确。方法最优化应随时有效地渗透在教学环节中。]

  第六个层次:再次验证“任意”,将结论从特殊扩大到一般;同时发现判断能围成三角形的简单方法。

  (1)教师:刚刚咱们是给3厘米和6厘米寻找能围成三角形的第三边,得到这样的结论的。那是不是任意一个三角形的三边都具备这样的关系呢?

  教师演示课件,随意拖拉两次,让学生用估算的方法说出三边的关系。

  [设计意图:一开始的研究,是从给定的3厘米和6厘米的两边着手的。在这里通过课件的直观演示,将特殊情况推广到一般情况,让学生明白任意一个三角形的三边都有这样的性质。]

  (2)提出:在判断能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?

  让学生先充分地进行交流。

  引导学生发现:因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了。所以呢,这要把只要把较小的两条边加起来这一组进行判断,就可以代表三组了。还需要每组都判断吗?

  [设计意图:我以为,在全体学生都已经掌握的基础上,肯定会有少数学生发现判断能围成三角形的诀窍。教师的设计应当顾及到这样的学生。所以,在这里可以及时地引导全体学生都掌握简单方法。]

  三、深化认知,联系实际,拓展应用

  1.轻松小游戏。

  教师:同学们的表现真是棒极了,老师为了表扬大家,给你做个小游戏,想不想啊?

  出示:有人说自己步子大,一步能跨两米多,你相信吗?为什么?

  请两个学生上来跨一步。

  先让学生充分的交流。

  教师:你能用我们今天学习的知识来解释一下吗?

  课件演示:两腿和地面跨出的距离形成了一个三角形。

  教师:可是有个人说,我可以。你们知道是谁吗?

  出示姚明图片,身高:226厘米;腿长131厘米。

  [设计意图:通过游戏的形式解决问题,使学生主动地把本课的知识内容纳入到自己的认知结构,同时熏陶学生逐步达到“会学”数学的境界,并再次向学生渗透看问题要全面的原则。]

  2.判断:下面哪组的小棒能围成一个三角形?(单位:厘米)(有图。)

  (1)3、4、5 (2)3、3、3 (3)3、3、5 (4)2、6、2

  [设计意图:这道基础题的练习,既是对前面所学内容的巩固,同时引导学生利用简单方法快速地进行判断。]

  3.儿童乐园要建一个凉亭,亭子上部是三角形木架,现在已经准备了两根三米长的木料,假如你是设计师,第三根木料会准备多长?并说明理由。

  [设计意图:“从问题中来,到问题中去”,让学生用学习的知识解决生活中的现实问题,并从美观和讲究实用的角度出发,从而也培养了学生的综合能力。]

  四、全课小结,从考虑问题要全面,引出第三边的取值范围

  [设计意图:对于小学四年级的学生而言,范围的建立的确是有一定困难的。再次呈现前面的研究表格,这些数据是具体的,教师提出:“3.5厘米行吗?3.2呢?3.1呢?3.01呢?不断地向3逼近,学生自然会想到3.0001也是可以的,那该怎样表述呢?“比3厘米长”已呼之欲出;以此思考,学生不难得出“又必须比9厘米短”。这样层层递进的启发引导,发散拓宽了学生的思维,有机地渗透了无限逼近的数学思想,培养了学生抽象、概括的能力。]

【三角形教学设计】相关文章:

三角形的分类教学设计05-31

《三角形的特性》教学设计02-01

三角形的面积教学设计03-28

《三角形内角和》教学设计04-07

《三角形的面积》教学设计优秀09-06

三角形的内角和数学教学设计07-04

四年级《三角形分类》教学设计06-29

四年级《三角形特性》教学设计06-29

五年级数学《三角形面积》教学设计07-01