六年级数学的教学设计
作为一无名无私奉献的教育工作者,可能需要进行教学设计编写工作,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么问题来了,教学设计应该怎么写?以下是小编精心整理的六年级数学的教学设计,欢迎阅读,希望大家能够喜欢。
六年级数学的教学设计1
一、学习目标:
1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。
2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。
二、学习重点:
掌握圆柱侧面积和表面积的计算方法。
三、学习难点:
运用所学的知识解决简单的实际问题。
四、学习过程:
(一)、旧知复习
1、圆柱有几个面?分别是xxx 、xxx和xxx。
2、底面是xxxx形,它的面积=xxx。
3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xxx形。它的长等于圆柱的xxx,宽等于圆柱的xxx。
4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?
(二)列式为
1、圆柱的侧面积
(1)圆柱的侧面积指的是什么?
(2)圆柱的侧面积的计算方法:
圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=xxx,所以圆柱的侧面积=xxxx。
(3)侧面积的练习
求下面各圆柱的侧面积。
①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。
小结:要计算圆柱的侧面积,必须知道圆柱的xxx和xxx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
2、圆柱的表面积
(1)圆柱的.表面是由xxx和xxx组成。
(2)圆柱的表面积的计算方法:
圆柱的表面积=xxx
(3)圆柱的表面积练习题
一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)
分析,理解题意:求需要用多少面料,就是求帽子的xxx。需要注意的是厨师帽没有下底面,说明它只有xx个底面。
列式计算:
① 帽子的侧面积=xxx
② 帽顶的面积=xxx
③ 这顶帽子需要用面料=xxx
小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。
3、巩固练习
一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。
4、总结:通过这节课的学习,你掌握了什么知识?
圆柱的侧面积
圆柱的表面积
五、教学结束:
六年级数学的教学设计2
设计说明
扇形统计图是小学阶段所学的统计图中较难的一种,它能恰到好处地表示各部分数量与总数之间的关系,为了让学生掌握这部分知识,我在设计时打破了传统统计图的教学模式,以学生观察、操作、讨论为主要活动形式来教学新课。本节课的教学在设计上主要有以下两个特点:
1.增强数学课堂的趣味性、层次性、实用性。
设计时,化繁为简,注重数学学习的趣味性和实用性。教学时以“我国居民平衡膳食宝塔图”为学习材料引入,有利于学生体会统计在生活中的作用,同时渗透了健康饮食的教育。在观察扇形统计图获取信息阶段,引导学生以小组合作的形式进行观察,不但使课堂教学具有“由浅入深”的层次性,而且提高了学生的合作意识。
2.运用PPT课件辅助教学,直观生动,活跃了课堂气氛,提高了学习效率。
设计时,教师充分利用课件的便利性和直观性。在探索部分,巧妙利用表格引导学生寻找规律。在分析部分,充分利用课件的直观特征引导学生理解扇形统计图的特征和各部分数量与总数之间的关系,体现
PPT课件对数学教学的重要性及有效性。
课前准备
教师准备 PPT课件 课堂活动卡
教学过程
⊙复习旧知,引入新知
1.谈话引入。
师:我们每天都要吃饭,但我们的膳食是否平衡呢?老师这里有一幅我国居民平衡膳食宝塔图。(课件出示)
师:它是结合中国居民的膳食结构特点设计的,并用直观的宝塔图形式表现出来。同学们能不能从这个宝塔图中知道我们需要的哪种食物最多?其次呢?接着呢?
设计意图:以“我国居民平衡膳食宝塔图”引入,有利于学生体会统计在生活中的作用,同时渗透了健康饮食的教育。
2.对比归纳,分析特点。
课件出示笑笑家一天各类食物的摄入量统计表。
(去掉最后一列百分比的数据)
师:我们应该选用什么样的统计图来表示图中的.数据呢?
(条形统计图)
师:(课件出示条形统计图)从条形统计图中同学们能获得哪些信息?
(从条形统计图中可以清楚地看到每一类食物的摄入量)
师:大家再来看一下这张统计表,我们增加一个栏目“约占总摄入量的百分比”,你们知道这是什么意思吗?
(每一类食物的摄入量约占总摄入量的百分比)
3.引入新课。
师:同学们,从条形统计图中可以清楚地看出每一类食物的摄入量,能不能看出每一类食物的摄入量约占总摄入量的百分比呢?(不能)有没有哪种统计图可以解决这一问题?(小组讨论)我们今天就一起来认识一种新的统计图
六年级数学的教学设计3
教学目标:
⒈会利用已有知识和技能解决圆弧长的相关计算问题。
⒉通过起跑线问题的解决,体会数学知识在体育中的应用,培养学生的应用数学意识和解决问题的能力。
教学重点:
会计算跑道的弯道(半圆)长,能解决有关起跑线的设置问题。
教学方法:启发、引导、讨论、练习
[教学过程]:
一、情景引入
出示教材第75页起跑线图。
问一:为什么每条起跑线都不在同一条水平线上呢?(因为跑道的弯道部分,外圈比内圈长一些)
问二:半径为30米的半圆有多长,你会计算吗?
由学生讨论解决问一、问二。
(点评:问一旨在引起学生时跑道的形状和跑道的长短认真观察和比较。问二旨在回顾圆周长的计算公式。问一、问二既引入新课,又为新课的学习做了铺垫。)
二、讲解实例
6名运动员进行200米赛跑,怎么设置每条跑道的起跑线?(每条跑道宽约1.2米,弯道部分为半圆)
⑴最内圈的弯道半径为31.7米,这个弯道的全长为 (米)。
⑵靠内第二圈的弯道半径为 (米),这个弯道的全长为 (米)。
⑶相邻两条跑道的弯道部分相差 (米)。
解:⑴圆的周长C=2πγ
半径为31.7米的圆的`周长为2×31.7π米
半径为31.7米的半圆的长为2×31.7π/2米,即31.7π米,所以这个弯道的全长为31.7π米。
⑵因为每条跑道宽约1.2米,所以靠内第二圈的弯道半径为(31.7+1.2)米,这个弯道的全长为(31.7+1.2)π米。
⑶(31.7+1.2)π—31.7π
=31.7π+1.2π—31.7π
=1.2π
≈3.770米
(点评:通过对相邻弯道长的计算、比较,得出起跑线设置的规律,给学生一种收获感。)
总结:相邻两条弯道部分的差等于每条跑道的宽与圆周率的积。
三、练一练
进行200米赛跑,如果最内圈跑道的起跑线已经画好,那么以后每条跑道的起跑线应依次提前多少呢?
四、实践活动
量一量,学校操场跑道最内圈的弯道半径,计算出最内圈跑道的总长度约为多少米。
五、思考题
国际标准田径运动场跑道全长400米,最内圈弯道半径为36.5米,每条跑道宽为1.2米。
⑴最内圈弯道长为多少米?
⑵若最内圈跑道的起跑线已画好,那么400米赛跑的以后每条跑道的起跑线应依次提前多少米?
六年级数学的教学设计4
教材分析
1、这节课是在数与代数这个板块中,在课标教学中要求百分数和分数、小数的联系的基础上,根据实际情况的需要把百分数、分数互相转化。
2、学习本节课的内容是掌握百分数与分数互相转化的方法,为百分数的计算和解答百分数应用题打下基础,培养学生在观察,比较,合作交流中发现互化的规律;培养逆向思维能力和勤于思考,勇于探索的优良品质。
学情分析
这节课是学生在以前学过小数与分数互化的基础上教学,因此学生在学习本课内容对学生来说并不会很困难,学得比较灵活,知识点掌握比较好。在学习新课程中很有必要引导学生复习百分数的三种写法,分数化小数,百分数化小数的知识和方法;在教学中运用小组讨论,合作交流,互相探究,以学生为主体的教学方式。
教学目标
知识能力目标:
理解、掌握百分数和分数互化的'方法,并能熟练运用。
过程方法目标:
1、在掌握百分数化分数方法的基础上,利用逆向思维发现分数化百分数的规律和方法,感受数学知识间的联系和区别。
2、利用已有知识迁移、类推、发现百分数与分数互化的规律和方法。
情感态度目标:
通过合作交流、探索发现等数学学习活动教给学生学习方法、渗透数学思想方法,培养学生勤于思考、勇于探索、合作交流的优良品质。
教学重点和难点
教学重点:
通过合作交流、探索发现百分数与分数互化的规律和方法。
教学难点:
通过合作交流、探索发现百分数与分数互化的规律和方法,并能熟练运用。
六年级数学的教学设计5
教学内容:
义务教育课程标准实验教科书青岛版小学数学六年级上册93——95
教材分析:
本节课是在学生已经掌握平均数、众数的基础上学习中位数的意义以及怎样求中位数,进一步培养学生能根据实际问题选择合适的数来合理地解决问题。
教学目标:
1.在丰富的现实背景中,理解并体会中位数的意义;会求给定的一组数据的中位数,并能够解释结果的实际意义。
2.能够知道平均数、中位数的区别,并根据现实生活中具体的情况,选择适当的统计量表示数据的不同特征。
3.培养学生具体问题具体分析的能力;体会数学来源于生活,反过来又服务于生活的思想。
教学重点:
理解并体会中位数的意义;求一组数据的中位数。
教学难点:
根据实际情况体会平均数、众数和中位数的区别。
教学过程:
一、情境引入
师:同学们,节假日的时候,爸爸妈妈都会带你们去旅游,人多吗?如果你在游玩的时候遇到这样的一群游客,你觉得你该不该关心礼让一下他们?为什么?(因为有的年龄都很小,有的很老了。)
师:是个懂文明、讲礼貌的好孩子。
游客年龄统计表
年龄(岁)
6
6
7
8
11
12
69
师:可是导游小姐计算了这群游客的平均年龄后,她这么说:请让让,这里来了一群平均年龄是17岁的游客。导游小姐这样介绍,合适吗?(引导学生认识到虽然平均年龄是17岁,本来需要被照顾的游客,一下子变得不需要被照顾。)
师:看来,平均数并不是万能的,在这里,用平均数来介绍这群游客的年龄就不合适。为了解决问题,数学家们发现有一个新的数能表示出大部分游客的年龄特点,这就是我们今天要学习的:中位数。(板书课题)
【设计意图】:通过现实的情境,在解决问题的过程中使学生认识到平均数
已经不能解决所有的数学问题,由此引出学习中位数的必要性。
二、探究新知
(一)在现实情境中初步体验学习中位数
师:对!8在这组数据的中间,8就是这组数据的中位数。
2.师:8跟那些游客的年龄接近?(引导学生理解8岁和大多数游客的年龄都很接近,反映了大多数游客的一般水平。)
3.师:这时导游小姐如果这么介绍:请让让,这里来了一群游客,他们的年龄大部分都在8岁左右。你认为这样的一群游客需要被照顾吗?
(二)在解决问题中进一步理解学习中位数的意义。
出示信息窗2的内容。
师:读题,你能提出什么问题?(学生可能有信息窗1的经验,因此可能直接提出“青春期女生的体重的年增长情况怎样?)
师:你想怎样解决这个问题?
学生可能出现以下可能:
(1)学生可能回答:求平均数。(全班一起解决平均数。)
生可能提出疑问:大多数同学体重的年增长的千克数比平均数6小,还有3个同学体重的年增长数比6要大得多,因此不合适。
(2)我们也可以用中位数来反映这组同学的年增长情况。
师:谁知道这组数据的中位数是多少?
生可能回答:4或4.5。
请不同答案的同学说出各自的理由。
师:如果把4和5.5或其他的数交换位置,中位数应该是那一个?
小结:要准确找出这组数据的中位数,就必须先把这组数据按从小到大或从大到小的顺序排列,正中间的一个数就是这组数据的中位数。因此4.5是这组数据的中位数。
【设计意图】:在自主解决问题的过程中,充分体现学生为主体,教师为主导的教学意识。教师在学生的迷惑处适时地提出问题,充分体现教师的主导作用,使学生在比较中自觉发现什么数是中位数,以及赵中位数应先排列大小。
(三)在对比中加深理解中位数的意义。
师:刚才这两道题用平均数都不能很好地说明问题,那我们观察一下这两组数据,它们有什么特点?
引导学生观察发现:第一道题有两个游客的年龄特别大,而第二道题大多数同学体重的年增长的千克数比平均数6小。(学生能发现这两组数是按顺序排列的更好。)
师小结:引导学生认识到中位数在出现极端数据(偏大,偏小)的时候能反映出大部分的情况。
(四)在解决问题中学习怎样求中位数。
1.出示第二个红点。
2.学生独立解决先排序。板书:21、22、24、25、26、27、29、31
3.请几个同学说出中位数。可能有说25,也有人说26,还有个别学生认为是25和26的平均数25.5,也有部分学生感觉无法确定。
4.以小组为单位讨论该选哪个数?
5.集体交流后小结:这组数据的个数是双数,因此中位数是中间两个数的平均数。
6.师:通过以上两道题,你认为怎样求一组数据的中位数?
学生讨论后得出两种情况的中位数的求法。当数据的个数是单数时,中间数是一组数据的中位数;当数据的个数是双数时,中间两个数的平均数是一组数据的中位数。
【设计意图】:在初步的应用知识解决问题的过程中发现新的问题,通过同学间的讨论、交流互相启发,互相借鉴,水到渠成的帮助学生完善知识体系。
三、巩固练习
自主练习1、学生独立解决,集体交流。
自主练习2、学生独立解决后集体交流。
小结:你能说说什么是众数、中位数、平均数?他们有什么样的区别?
【设计意图】:通过练习,既巩固了对中位数和众数以及平均数的理解,又加强了学生解决实际问题的.能力,使学生感受到了数学与生活的紧密联系。
3.拓展练习:自主练习5
你认为用什么数能代表公司职工工资的一般水平?这个数是多少?
【设计意图】:拓展练习使学生对知识的综合应用解决现实问题,而且能充分展示不同学生在独立解决问题中的个体差异,获得了不同的成功体验,嫩更好的激发学生的学习兴趣。
四、课堂总结
这节课你有哪些收获?
【教学反思】:
中位数的教学是学生在十分熟悉“平均数”以及学习“众数”之后的学习内容。什么是中位数比较好理解,但是,为什么学习中位数呢?平时生活中,我们用得最多的是平均数,对平均数的体验也较多,要学生舍弃平均数选用中位数,体验的过程就需要相当地清晰。因此,我们把课的难点定位为:理解中位数的意义,即学习中位数的必要性;教学的重点是理解中位数的意义,掌握求中位数的方法。教学设计为:体验地学习中位数的意义;探索性地学习求中位数的方法。
为了突破教学难点,我们首先改变了教学内容,在体验学习中位数的意义时,用了两个具体的生活事例:一、游客的年龄。大部分游客的年龄都在8岁左右,出现了一个69岁的极端数据,使得17岁这个平均年龄无法反映出这批有老有小的游客的年龄特点,从而引入学习中位数的必要性。二、青春期女生的体重年增长情况,让学生体会到因为有偏小和偏大的数据的出现,用平均数并不合理。这一例子,既是为了强化学习中位数的必要,同时也让学生体会到中位数比平均数更能反映出一组数据的中等水平。但是,中位数的使用有其存在的局限性。虽然每一组数据都有中位数,但是,并不是所用的数列都用中位数来描述一般水平,一般来说,是在出现偏大或偏小这样的数据的时候才选用中位数来表示一组数据的平均水平,这个知识点,是通过比较前面两组数据的特点得出的。
中位数的求法是既穿插在中位数的意义的理解中进行教学,又有独立的教学。在教学年龄问题红点一的问题时,学习数据个数是单数时中位数的求法;教学红点二时,学习数据个数如果是双数时,该如何求中位数,这时所给的数据有按顺序排列的。又有打乱顺序的数据。该如何求中位数,这里,主要让学生通过小组的合作学习,交流讨论,教师适时的提出问题使学生认识到不按顺序排列,处于中间的数是不确定,而从小到大或从大到小排列后中位数是确定,从而理解在求中位数时,数据应该排序。到这时,有关中位数的知识才算完整。
巩固练习也是根据教学重难点进行设计,起到了巩固知识的作用。
六年级数学的教学设计6
教学目标:
1、理解“成数”的意义,拓宽学生的视野。
2、建立“成数”问题与百分数问题的联系,体会“转化”、“迁移”思想。
3、能解决有关“成数”的实际问题,培养自主探究、灵活解题的能力。
教学重点:
理解“成数”的意义,并能进行应用。
教学难点:
在理解的基础上,能与百分数建立联系,正确解决问题。
教学方法:
教师启发、点拨、归纳;学生自主探究,交流合作。
教学课时:
1课时
教学过程:
一、唤醒旧知,顺利导入
师:同学们,今天我和大家共同探讨有关“成数”的问题,你准备好了吗
生:准备好了!
师:那我可要考考大家了,请看大屏幕!
1、读读 、想想、 填填(举手回答)(ppt2)
a、 30比50少( )%
b 、 10比8多( )%
c、六(2)班男生比女生少34%,
意思是说( )是( )的34%, 那么( )是( )的66%呢?
2、读读、填填、说说(举手回答)(ppt3)
a、五折是十分之( ),改写成百分数是( )%
b、三八折是十分之( ),改写成百分数是( )%
c、五折表示:( )是( )的50%
d、三八折表示( )是( )的( )%
师:看来同学们对折数、百分数及其关系已掌握得很好!其实折数是百分数的另一种表现形式,它用于商家促销,商品降价;那么,今天我们所探讨的“成数”也是百分数的有一种表现形式。
二、自主探究,合作交流
师:关于“成数”你想知道些什么?
生1:什么是成数?
生2:成数能做什么?
生3:我们为什么要学成数?有何意义?
生4:成数和我们学过的数有什么联系?
师:好,老师把大家的想法整理如下:(出示学习目标)(ppt4)
师:请同学们带着这些愿望自学课本第九页的1、2、3自然段!看你能发现些什么?(教师巡视指导,学生自学后举手。)
师:个别提问,当学生基本说出后,教师整理归纳。(出示ppt5)并举例进行数的“转化”。
整理归纳:
a、成数:表示两个数之间的倍数关系
它表示一个数是另一个数的十分之几
也就是一个数是另一个数的百分之几十
b、几成 就是十分之几 也就是百分之几十
C、它不仅用于农业收成,还用于各行各业的.发展变化情况
师:怎么样?会转换了吗?试一试!(出示ppt6)
课堂检测:
1、三成=十分之( )=( )%=( )填小数
四成六=十分之( )=( )%=( )填小数
七成三=十分之( )=( )%=( )填小数
2、今年玉米产量比去年减产二成 表示:( )比 ( )减少( )%
3、电器商品售价比进价提了二成五 表示: ()比()增加了()%,
那么售价是进价的()%
师:我们认识了“成数”,在实际生活中就能解决关于“成数”的问题了。例如:(出示例2 ppt7)
(请同学们认真读题、找准关键句、分析数量关系、确定算法、列式解答!)
例2、某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少千瓦时?
(学生自主探究,教师启发、点拨;搜集不同素材,指名板演。解答完毕后,同桌交流订正;板演同学说思路,讲方法)
生1:关键句是,今年比去年节电二成五,意思是今年比去年节电25%
把“去年的用电量”看做单位“1”;单位“1”已知,用乘法
先求节省了的电量350×25%,再求今年的用电350-350×25%
生2:关键句是,今年比去年节电二成五,意思是今年比去年节电25%
把“去年的用电量”看做单位“1”;单位“1”已知,用乘法
先求今年用电量所对应的百分率,即今年用电量是去年的百分之几
用单位“1”减去今年比去年节省的百分率(1-25%),然后用单位“1”
乘问题所对应的百分率 即:350×(1-25%)
师:教师带领全体学生肯定上述方法后,规范解题格式,强调:解关于“成数”应用题时,必须先将“成数”转化为百分数(出示ppt8)
课堂小结:
“成数”问题解题思路和方法,同“百分数”问题
是一样的
所不同的是:百分数用成数表示了,成数是百分数的有一种表现形式
因此,只要把“成数”改写为“百分数”,“成数问题”就转化为“百分数问题”了。
三、当堂训练,巩固提高
师:这就是我们今天主要研究的内容,你会了吗?我们当堂检测
基础练习:
一、填一填(出示ppt9,指名回答)6
七成=( )% =( )%=( )= () =( )成
填小数
四成三=( )% 十成=( )% 78%=( )折=( )成( )
二、选一选 (出示ppt10、11,小组交流,代表回答)
1、某市20xx年出境旅游人数为15000人次,比上一年增加了两成,20xx年出境旅游人数是( )人次
a、15000×(1+20%) b、15000÷(1+20%)
c、 15000 ×20% d、15000÷ 20%
2、一个果园去年共收苹果156吨,今年比去年减产三成,今年减产( )吨
a、156 ×(1 — 30%) b、156 ÷ 30%
c、156 ÷ (1 — 30%) d、156 × 30%
3、某厂今年生产化肥350万吨,比去年增产一成五,去年生产化肥( )万吨
a、350÷(1—15%) b、350×(1+15%)
c、350÷15% d、350× (1—15%)
e、350×15% f、350÷ (1+15%)
提升练习
一、说一说: (出示出示ppt11同桌讨论,举手回答)
某农业合作社去年盈利二成七
表示:
某屠宰场四月份亏损三成五
表示:
今天八成要下雨
表示: (用可能性作答)
出售的二手车有六成新
表示: (用现新和全新作答)
二、比一比:成数与折数的异同(出示出示ppt12自主完成学习卡,小组交流,全班订正)
类型名称 相同点 不同点
写法 意义 表示的百分数类型 列式
四、畅谈收获,轻松下课
一节课就要结束了,请你谈谈有和感受,有什么收获!
六年级数学的教学设计7
教学目标:
1.通过复习平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。
2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。
3.理解轴对称图形的特征,会判断一些特殊图形是否是轴对称图形,会画轴对称图形的对称轴
4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。
教学准备:教师准备教学光盘
教学过程:
一、整理与反思
1.提问:你知道变换图形的位置的方法有哪些?
引导学生说出变换图形的位置的方法主要是平移和旋转。
火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。
2.怎样能不改变图形的形状而只改变图形的大小?
引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。
3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?
区别:平移和旋转不改变图形的大小,只改变图形的位置。而放大和缩小不改变图形的形状,只改变图形的大小。
联系:两种方法都不改变图形的形状。
4提问:什么是轴对称图形?我们学过的图形中哪些图形是轴对称图形?它们分别有多少条对称轴?
引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。(教师出示相应的图片)
二、指导学生完成练习与实践。
1.完成练习与实践的第1题。
先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。接着让学生画出轴对称图形的所有对称轴。
2.完成练习与实践的第2题。
可以先让学生按要求依次进行操作,再通过交流帮助学生进一步明确相关的操作方法。
其中画出一个图形的另一半使它成为一个轴对称图形,以及画出一个图形旋转或平移后的图形,都可以先找出一些重要的点或线段,然后确定这些点或线段在另一半图形中的位置,或平移旋转后的位置,最后连一连。
要使学生认识到:决定平移后图形位置的关键是平移的方向和平移的距离。决定旋转后图形位置的关键是旋转的方向和旋转的'角度。
把一个图形按指定的比例放大,可以先在原图中找到平行四边形的底和高,算出放大后的底和高,然后画出放大后的这些线段,最后连一连。
要让学生思考按怎样的比是把原图形放大,按怎样的比是把原图形缩小。
3.完成练习与实践的第3题。
可以先让学生讨论确定圆的位置,需要把圆向右移动几格?圆心应画在哪里?画出的圆的大小应与原来的圆大小相等。在此基础上依次解决书上的几个问题。
4.完成练习与实践第4题。
可以提醒学生以直角三角形的两条直角边作标准,先数一数每条直角边各有几格长,再算一算按指定的比例缩小后又应该是几格长。在此基础上,让学生动手画一画,并进行比较。求出新图形的面积与原来图形面积的比。
5.完成练习与实践的第5题。
可以先让学生观察拼成的两个大正方形图案,说说它们分别是由哪两种瓷砖拼成的?在此基础上,鼓励学生各自按要求设计图案。要提醒学生:第一,每次只能选择两种瓷砖;第二,每种瓷砖都可以适当旋转。
展示学生设计的图案,及时组织学生互相评价。
三、全课小结
通过复习,你对图形变换方面的知识又有了哪些新的认识?
四、布置作业
完成《补充习题》的相关练习。
六年级数学的教学设计8
内容:
义务教育课程标准实验教科书青岛版小学数学六年级上册第79—80页
教材简析:
本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对“求一个数的几分之几是多少以及其他相关数量关系”的已有认识,解答一些形如a×(1± )的稍复杂的与分数有关的实际问题,这些问题都是“求一个数的几分之几是多少”的实际问题的发展。所以本节课的教学应当适当放手让学生去独立思考,让学生自主探索,使学生在合作交流中理解并掌握复杂的分数乘法应用题的解题方法,能够正确地解答有关比较复杂的分数乘法应用题。
教学目标:
1、在具体的情境中,借助线段图,通过自主探索、交流,知道稍复杂分数乘法应用题的特征,掌握稍复杂的分数乘法应用题的解题策略。
2、通过探索稍复杂的分数乘法应用题的解题策略,经历策略多样化和一般化的过程,体验算法优化的过程,获得探索的体验,发展转化的数学思想。
3、通过合作、交流等学习活动,培养学生合作的意识、探索的精神。
第一课时
教学过程:
一、创设情境,提出问题。:
1、谈话:同学们,上节课我们在学知识的过程中领略了中国的古代文明,大家知道吗,这其中的文化遗产秦兵马俑被称为“世界第八大奇迹”。
2、出示课本情景图片,简介秦兵马俑。
3、出示课本第一组信息,你能提出一个两步解决的数学问题吗?
[设计意图]:这一环节的设计,教师充分运用教材中的情境,分层出示信息,避免干扰,简洁明了,引入对新课的学习。
二、探索新知:
1、提问:要解决这个问题需要知道什么?从信息中你都能知道什么?(学生先自己说一说,再在小组里交流。)
2、反馈。
学生充分交流后,感受到:这是一个部分数与总数之间相比较的问题,它涉及两个基本数量关系,一个是已清理数与未清理数相加的和等于陶俑总数,另一个已清理数数与陶俑总数的分数关系。但一下子要想知道未清理数,问题的思路不是很清晰。
3、以图促思。试画图,表示出总数和已清理数。怎样表示出未清理数,哪一段表示未清理数?
4、提问:要求未清理数,可以先算什么?
5、学生再一次交流,明确解题思路。(学生通过画图后,很容易想到,要求未清理数,可以先算出已清理数,再用总数减去已清理数就能得到未清理数了。)
6、列式解答。指名一生板演。
7、集体批改。(对解题正确的学生进行鼓励。)
8、探讨其它算法。想一想,还可以怎样算?
说一说你是怎样想的?在线段图上怎样表示?师生在线段图上找出1-即,这是表示什么?那么要求还剩多少尊,也就是求什么?
[设计意图]使学生在解题时放开思路,加深对数量关系的理解,灵活解答。
9、对比两种方法,对比线段图,找出两种方法的异同点,选择自己喜欢的方法。
[设计意图]注意应用线段图,让学生理解题意,分散教学难点,让学生在轻松愉悦的环境中学习知识,并通过知识点的联系,进行比较,使学生认清题型结构,掌握解题思路。
三、巩固深化
1、完成“自主练习”第1题
画图表示部分与整体的关系,填空。
2、完成“自主练习”第2题
(1)引导学生弄清题意。
(2)让学生独立解答。
(3)交流解题思路。
3、完成“自主练习”第3题
(1)指名两位学生板演,其余在自备本上完成。
(2)组织交流。
(3)集体反馈,重点让学生说一说解题思路。
[设计意图]:这一环节,利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终关注学生解题思路。
四、总结回顾。
1、通过今天的学习,你有什么收获?
2、用今天学到的方法可以解决生活中哪些实际问题?
[教后反思]本节课,力求突出以下特点:
(1)、教师力求把学习的.主动权交给学生,让学生学会人人参与、学会发现、学会应用、学会创新。根据学生的实际情况,有选择地出示一组信息、文字、图表,让学生层层发现问题。
(2)、因为学生有了学习简单分数应用题的基础,因此大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人。
(3)、围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数量关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
第二课时
一、谈话引入,提出问题。
1、出示情境图及2、3、4组信息,继续上节课的话题。
2、提出问题。
二、探索新知。
1、梳理学生提出的问题,引出解决第二个红点问题:1号坑占地多少平方米?
2、学生交流:该问题是根据窗口中哪条信息所提出的?
3、师:你能用线段图表示出该条信息及问题吗?画线段图时我们应该先画什么?再画什么?
学生在练习本上独立完成,之后师指生交流并板书线段图:
[设计意图]通过指导学生画线段图,可以使学生更加直观而形象地观察到题中的信息和问题,从而为学生的进一步学习夯实基础。
4、学生思考并交流:根据线段图中的信息,除“1号坑占地多少平方米?”这一问题之外,你还能提出并解决哪些数学问题?(提中间问题)
[教案预设:1、如果学生提出问题有困难,教师可点拨:在线段图中,每条线段应该是既可用分率表示,又可用具体数量表示的,那么,在这个线段图中有哪些未知的分率或数量呢?你可以提出什么问题?2、如果学生在第一环节中已提出如下问题,则此处直接过渡到:下面我们先来解决如下两个问题:]
①1号坑比2号坑大多少平方米?
学生交流:1号坑比2号坑大2号坑的,即9000平方米的,列式:9000× =5000(平方米)
②1号坑是2号坑的多少倍?
学生交流:1号坑比2号坑大单位“1”的,所以1号坑的面积是2号坑的(1+ =1 )倍。
5、教师引导:根据上面①、②所得的数据,现在,你能解决“1号坑占地多少平方米”这一问题吗?数量关系是什么?
数量关系:
(1)2号坑面积+1号坑比2号坑多的面积= 1号坑的面积
(2)2号坑面积×1号坑是2号坑面积的倍数=1号坑的面积
学生在练习本上独立完成。之后进行集体交流。交流时要求学生说明为什么这样列式。教师板书算式。
[设计意图]让学生根据线段图提出不同问题,构成问题串,从中理清数量关系,解决本节课的新知识。]
6、对比两种解法。
讨论:有什么异同?引导学生合理选择解题思路。
[设计意图]:通过对比,学生会发现比单位“1”“多”几分之几和是单位“1”的几分之几的分数应用题,在解题思路和方法上的异同,训练学生分析、比较和概括的思维能力,培养学生在学习中不断总结经验的习惯,教学生学会数学地思考。
三、巩固深化。
1、出示绿点问题,2号坑有多少尊陶俑、陶马?
2、尝试解决问题。
生画图分析数量关系,独立完成。
3、交流思路。你是怎样想的?以谁为单位“1”?先求什么?再求什么?要求2号坑有多少尊就是求什么?
四、练习提高。
1、自主练习1(2)、(3),画图分析数量关系。
2、自主练习4、6。交流时重点让学生沟通解题思路。
五、总结评价。
这节课你有什么收获?
课后反思
稍复杂的分数乘法这类应用题的数量关系虽稍复杂些,但基本解题思路与前面学过的应用题是一样的。解答这类应用题的关键是找到与已知量对应的几分之几,特别是将比单位“1”多几分之几,转化为是单位“1”的几分之几。因此这节课先把握整体,将应用题的数量关系,用线段图直观地展示给学生,让学生在已有知识的基础上,解答新问题。在解题时总是有意让学生画出线段图进行理解与比较,将文字转变成图,数形结合。在练习中也让学生根据线段图找到数量关系,并列式,又将线段图转变成文字,从而让学生更清楚这类应用题的特点,把握问题的关键所在,使问题明了化、简单化。
六年级数学的教学设计9
一、教学内容分析
《圆锥》一课是是小学教材中安排的最后一个立体图形,教学要求是认识圆锥,会计算圆锥的体积。本课在学生掌握了圆和圆柱的相关知识的基础之上进行教学的。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排圆柱的认识之后,为进一步学习解决问题起到了一个桥梁的作用。教材从生活入手,让学生认识圆锥,学习圆锥。生活与学习相结合,学以致用,既巩固了知识,也培养了学生解决问题的能力。
二、教学对象分析
六年级学生的主动性和能动性已经有较大的提高,能够有意识的去主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高;动手操作能力、语言表达能力有所发展。所以在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具体情境中亲自体验感知圆锥的特征。另外,要鼓励学生主动参与、动手操作、发挥自己的聪明才智,能根据具体情况想出测量高的方法,探索出圆锥体积的计算方法。
三、教学目标及教学重难点
(一)知识与技能目标
认识圆锥,掌握高的特征,知道测量高的方法,理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确应用。
(二)过程与方法目标
经历认识圆锥和探索圆锥体积计算公式的过程。培养学生初步的空间观念、逻辑思维能力、动手能力和创新意识和创新能力。
(三)情感态度与价值观
积极参加数学活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。渗透知识间“相互转化”的辨证唯物主义思想。
(四)教学重点难点
教学重点:圆锥的特征和圆锥体积计算公式的推导过程。
教学难点:理解圆锥体积公式的推导。
四、教学方法、过程及整合点
(一)教学方法
依据现代认知科学理论及发现法的教学模式,在教学过程中采取教师创设情境,引导探究式的教法。以分组教学的形式,充分调动学生学习的积极性、主动性,让学生有充分的时间和机会,通过实验操作、分析讨论等方法主动地获取知识,从而培养学生的自主学习意识,学习探究问题的方法。
(二)教学过程及整合点
1.认识圆锥
课件出示几种圆锥体物品,让学生说出它们的名字,并观察、交流它们的共同特点,引出圆锥。
师:我们已经认识了长方体、正方体,还有圆柱体,现实生活中还有一些形状相似的物品,今天我们一起来认识一下。
逐一拿出削好的圆锥形铅笔,锥形土堆,铅坠等物品,让学生说出它们的名字。
师:请同学们观察这些物品,你发现他们有什么共同特点?
【设计意图:根据学生已有的知识或直觉引出课题,调动了学生的生活经验,激发学生的学习兴趣。】
【整合点:课件演示,出示一些不能展示实物的圆锥形物体图片。】
让学生用手摸一摸圆锥,再次交流圆锥的特点。
认识圆锥各部分的名称。利用电子白板画出圆锥,再分别介绍圆锥的底面,顶点和高,最后介绍字母表示。
师:我们前面认识圆柱体时,圆柱的各部分都有自己的名称,圆锥各部分的名称是什么呢?我们先来从图形上认识一下。
课件出示锥形土堆,铅坠。
师:这两个物品都是圆锥形的,根据每个物品我们都可以得到一个圆锥图形。
利用课件抽象出两个圆锥。
【设计意图及整合点:课件演示帮助学生从实物抽象出圆锥的立体图形,建立空间表象。】
师:圆锥的底面是圆的,这个圆叫做圆锥的底面。
用课件在图上标出底面。
师:圆锥的最特别之处是有一个尖尖的尖,这个尖给它起个名字叫顶点。
用课件在图上标出“顶点“。
【设计意图:学生在小组讨论基础上,认识圆锥,概括圆锥特征。】
【整合点:应用课件的直观演示,使学生更形象的认识圆锥的特征。】
师:所有的物体都有高,哪是圆锥的高呢?同桌讨论一下。
学生讨论指名发言。如果说出:从圆锥的顶点到底面圆心的距离是圆锥的高。教师表扬并用课件画出来,否则,教师边介绍边画图。
师:在圆锥中,各部分同样可以用字母表示。如,高用h表示,圆心用o表示,半径用r表示等等。
边介绍边在课件上标出字母。
【设计意图:教师给学生创设宽松的环境,给学生充分的思考和交流的机会,使学生敢于争辩,在争辩中圆锥的高一步步清晰,同时学生的学习主动性和积极性被调动起来。】
【整合点:因为从实物中无法看到圆锥的高,所以利用课件帮助学生理解圆锥的高。】
测量圆锥的高
师:圆锥的高我们能不能摸得到?我们怎样才能量出圆锥的高?
学生分组讨论,互相合作量出桌面上圆锥的高。
指名学生汇报:你是怎样量的?还有不同的测量方法吗?
提问:(1)测量时我们应该注意什么?
(2)为什么圆锥的底面和平板都要水平放置?
课件演示测量过程。
【设计意图:通过活动学生相互分享彼此的思考、见解和测量方法,使学生在广阔的空间里体会成功的快乐。】
【整合点:课件演示测量的一般方法,既是对学生操作的一个小结,同时生动的给出了测量的正确方法。】
圆锥侧面展开图
想象圆锥侧面展开的形状。课件演示其展开图。
【设计意图及整合点:课件演示使学生清楚的看出圆锥侧面展开是一个扇形,底面是一个圆,进一步建立空间表象。】
反馈练习
下列各图由哪些图形组成?
【设计意图:通过练习使学生加深对圆锥、圆柱、长方体、正方体等立体图形的理解。】
2.探索体积公式
学生猜想
师:根据我们已学过的知识,同学们大胆猜一猜,圆锥的体积应该怎样计算呢?
生1:我想圆锥的体积也可以用“底面积×高”来计算。
生2:圆柱和圆锥是两种不同的立体图形,圆锥的体积不能用“底面积×高”来计算,因为圆柱的体积等于底面积×高。
生3:我想圆锥的体积肯定与圆柱的体积有一定的关系。
【设计意图:鼓励学生用自己的思维方式大胆地提出猜想。种种不同的猜想结果又激发了学生进行验证的`需要。】
验证猜想(1)、师提出实验要求
师:老师也认为圆锥的体积与圆柱的体积有一定的关系。有什么关系呢?我们就用实验的方法来验证吧!
(2)提出实验的目的,说明实验的方法,让学生先估计一下,几次能装满,然后小组做实验,做好记录。并得出结论。
【设计意图:此时给学生提供了想象空间,也增强了同学之间合作的意识,我们为的是结果,但结果并不重要,最主要培养学生独立思考,认真探究的学习过程。】
(3)学生实验,课件演示
【设计意图:通过活动,培养了学生团结协作的精神和乐于学习、勇于探索的情趣,也发展了学生的想象思维。学生小组合作探究、汇报实验过程让学生体会到自己是学习的主人,也让学生体验到成功的乐趣,极大地培养了学生的学习兴趣。】
【整合点:课件演示,更加直观,形象生动,而且规范了操作方法,使结论更准确。】
(4)让学生用已有的知识描述圆柱体积和圆锥体积之间的关系。师:通过刚才的实验,我们发现倒3次圆柱就满了。谁能用自己已有的知识描述一下圆柱的体积与圆锥体积之间的关系。
教师归纳出圆锥的体积等于和它等底等高圆柱体积的三分之一,并介绍圆锥体积公式的字母表达式:v=sh.
3.应用公式
一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
学生独立解答,指明学生板演
师生集体订正,指明学生说出自己的思路
师:要求零件的体积需要已知哪些条件?
4.课堂练习
在打谷场上有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦越重735千克,这堆沙子大约多少千克?(得数保留整千克)
填空:
判断:
有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方米?
【设计意图:在学生掌握了圆锥的体积计算方法以后,教师运用不同的题型,根据学生的认知规律,由浅入深地对学生进行针对性的练习,从而体现了课标的教学理念,让学生体验到数学来源于生活,又回到生活中去的数学思想。也培养了学生综合运用知识解决问题的能力,让学生学有所获。】
【整合点:课件演示,增强练习的趣味性。】
5.知识回顾,课堂小结
师:通过今天的研究,同学们有什么收获?针对今天的知识同学们想说些什么?
6.拓展延伸,培养兴趣
找一个圆锥形物体,想办法计算出它的体积,并把过程记录下来。
【设计意图:这个作业让学生回家完成,目的就是让学生通过寻找生活中的数学资源去发现它身上存在的数学问题,然后让学生运用所学的知识来解决问题,可以很好的培养学生的学习乐趣,让学生真正成为学习的主人。】
(三)教学流程图(略)
五、教学环境
根据教学内容、学生情况以及学校的实际情况,我选择在多媒体教室环境下进行教学。
六年级数学的教学设计10
教学目标
1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的.联系。
2、培养学生比较、分析和概括等思维能力。
教学重难点
使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系
教学准备
幻灯片
教学过程设计
教学内容
师生活动
备注
一、 引入新课
二、教学新课
三、巩固联系
四、作业
1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)
引入新课
2、出示两道文字题
(!)3千米是5千米的几分之几?
(2)8吨是4吨的几倍?
学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。
1、学生用十分钟自习书本52到53页
2、问:通过自习你知道了哪些知识?还有哪些疑问?
3、小组内互相说,解决问题。
4、教师请个别同学说,然后师生一起探讨、研究。
5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。
6、说明相关注意点。如:单位、比值、名称、写法、读法......
1、书本53页练一练
2、练习十二1、2
练习十二3、4、5
六年级数学的教学设计11
一、教材与学情分析
百分数是在学生学习了整数、小数特别是分数的概念和应用题的基础上进行教学的。百分数在实际生活中有着广泛的应用,也是小学数学中重要的基础知识之一。而百分数的意义和读写法又是这部分内容的基础,学生只有理解了百分数的意义,才能正确地运用它解决实际问题。所以学好本节知识是本单元的关键。教材联系学生的生活实际,在感知和理解百分数意义的过程中,知道百分数的重要性和应用的广泛性。在总结百分数与分数的联系和区别的过程中,渗透事物的相互联系又相互区别的观点。
由于百分数应用的广泛性,学生对百分数的认识并不是一无所知。但对百分数的意义还是模糊不清的,有的学生认为百分数就是分母是100的分数。因此,课前让学生收集生活中的百分数,在课内进行交流,以激发学生学习的兴趣。从生活实际引入,引导学生体验百分数的产生的过程,通过讨论、探索、概括形成百分数的概念。采用学生自主学习、小组合作、交流等学习方法,培养学生分析、比较、抽象等思维方法和能力。
二、教学目标
(一)、知识与技能:使学生初步认识百分数,理解百分数的意义,能正确读写百分数;了解百分数和分数在意义上的不同点。
(二)、过程与方法:收集、整理有关百分数的`信息,通过讨论交流,体验百分数的意义及在生活中的广泛应用,培养学生分析、比较、概括等思维能力。
(三)、情感态度与价值观:培养学生自主探究的精神,感受数学在现实生活中的价值,激发学生学习数学的兴趣。
三、教学重点
让学生充分体验、理解百分数的意义。
四、教学难点
让学生了解百分数和分数在意义上的联系和区别;在具体的情境中理解百分数的含义。
1 / 41 / 41 / 4
五、教学准备
多媒体课件、课前让学生收集的生活中的百分数。
六、教学过程
(一)激趣导入
1.谈话引入爱迪生的一句名言:天才=99%的汗水+1%的灵感。
2.出示课件上含有百分数的图片。
问:你知道这些数叫什么数吗?
学生讨论后,教师明确:像上面这样的数,如:99%、65%、34.5%、
120%……叫做百分数。
3.引导学生交流课前搜集到的百分数资料。
师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂——“百分数的认识。(板书课题)
(二)探究新知
1.感知百分数的意义。
(1)结合课件信息,说一说每个百分数的意义。
①第一幅图中的70%:表示棉布占这件T恤的。
②第二幅图中的38%:表示酒精占这瓶酒的。
……
2.明确百分数的意义。
(1)看看这些百分数的意义有什么共同特点呢?
引导学生观察,和同桌交流。
(2)引导学生得出:
百分数表示一个数是另一个数的百分之几。(板书)
指出:正因为百分数表示的两者之间相比的关系,所以百分数也叫做百分率或百分比。
(3)让学生同桌互相交流自己收集的百分数的意义。
2 / 42 / 42 / 4
(4)课件出示:学生近视率应引起高度的重视。根据去年年底的统计,我市学生的近视情况如下:小学生:18%
初中生:49%
高中生:64.2%
让学生体会百分数的好处,并说一说每个百分数所表示的意义。
3.探究百分数的读法和写法。
(1)探究百分数的读法和写法。
师:同学们认识了百分数,那百分数应该怎样读和写呢?
①学生尝试读百分数。(读作:百分之二十二)
②学生尝试写百分数。(写作:35%)
③游戏。在10秒内,写出10个不同的百分数。
师:你能用一个百分数来表示你完成的情况吗?让学生说一说。
(2)引导学生归纳总结百分数的读法和写法。
①读法:百分数读作“百分之…”。
②写法:百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”。我们写百分数时要注意先写数,再写百分号“%”。写百分号时先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈要写得小一点,以免与数字0混淆。
4.百分数与分数的联系和区别。
(1)观察下面的两道题:看哪一个分数可以用百分数表示?
运走了一堆煤的。
一堆煤重吨。
问:百分数和我们学过的分数在意义上有什么区别吗?
(2)小组内讨论交流,然后全班汇报:
从意义上讲,百分数只能表示两个数的关系,而分数不仅可以表示两个数的关系,还可以表示一个具体的数量。
也就是说,分数后面可以带单位名称,也可以不带单位名称;百分数后面不可以带单位名称。
(三)趣味练习
3 / 43 / 43 / 4
1.课件出示趣味百分数练习题。
①:把一枚硬币随意抛在桌面上,正面向上的可能性接近(%)。
②:太阳从东方升起的可能(%)。
③:你认为“海底捞针”捞到的可能性为(%)。
2.趣味数学。(找出成语中的百分数)
百战百胜十拿九稳一箭双雕百里挑一半壁江山
(四)、课堂总结
通过本节课的学习,你有哪些收获?
(五)、布置作业
完成教材83页1、2题。
(六)、板书设计
百分数的认识
百分数表示一个数是另一个数的百分之几。 22%
读作:百分之二十二百分数也叫做百分率或百分比。百分之三十五写作:35%
4 / 44 / 44 / 4
六年级数学的教学设计12
教学目标
1. 使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。
2. 结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
3. 使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程
一、 情境引入,激发需要
提问: 能说出我们班中队长坐在哪里吗?
出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)
质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)
提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)
提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)
揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。(板书课题)
[说明:让学生说出中队长的位置,有效地唤起了学生已有的用“第几组第几个”或“第几排第几个”的知识确定位置的经验,帮助学生找准了新旧知识的连接点。让学生运用已有经验描述小军的座位,使学生体会到用已有的经验描述小军的位置,由于标准不同,结果也不同,从而引起学习和探索新方法的内在需要,有效地激发了学生学习的积极性。]
二、 认识列、行,理解数对
1. 对照座位示意图认识列与行。
讲解:(出示教材第15页的座位示意图)习惯上,我们把竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。用这样的方法来描述,小军就坐在第4列第3行的位置上。(板书:第4列第3行)
提问:(在示意图的第2列第4行的位置上,点出小明)小明坐在这个位置,他的位置是在第几列第几行?(板书:第2列第4行)
提问:小丽坐在第5列第2行,你能在图中找出小丽的位置吗?(学生指出小丽的位置,并板书:第5列第2行)
自己在图中找一个点,并用第几列第几行的方式描述这个点的位置,和小组内的同学交流。
反馈:会用第几列第几行这样的方式来确定物体的位置了吗?(要求学生举例说明)
2. 用数对表示物体的位置。
谈话:我们已经认识了列和行,并且能用第几列第几行来确定物体所在的位置。既然大家约定用第几列第几行的方式来表达物体的位置,就不会引起误解。那能不能用一种更简洁的方法来表达呢?(学生可能会想用字母分别表示列和行)
讲解:大家想出的办法很好。其实,我们可以进一步规定:用一个数表示第几列,再用另一个数表示第几行,那么,小军的位置就用两个数来表示就够了。你能知道是哪两个数吗?(4和3)习惯上,我们用一个数对来表示:(4,3)。
提问:数对前面的`一个数4表示什么?3呢?
提问:你能用数对分别表示小明和小丽的位置吗?(学生用数对表示,并说明每一个数对的含义)
要求学生同桌合作,一人指出位置,另一人说说这个位置是第几列第几行,并且用数对表示出来。
3. 完成教材第15页的“练一练”。
(1) 在图中找出第2列第4行的位置,找到后,在图中用笔涂出来,并用数对表示,填在书上的括号里。
(2) (6,5)这个数对在图中表示的是第几列第几行的位置?
[说明:先通过具体的情境,让学生认识列、行的含义与确定列、行的规则,再通过确定小明、小丽的位置帮助学生熟悉这一规则,为数对的引入奠定了厚实的基础。从列和行的规定,到用数对来表示,既有利于学生理解数对的含义,又渗透了符号化的思想,有利于学生感受数学符号的简洁性,体会数学的应用价值。之后,让学生尝试运用数对描述其他事物的位置,加深了对数对含义的理解。整个环节的设计,层次鲜明,重点突出,符合学生的认知规律,提高了学生的学习效率。]
三、 巩固练习,发展智慧
1. 完成练习三第1题。
出示教室座位图,并标出每一个学生的名字。
(1) 说一说: 要求学生用数对表示自己或同学的位置,并组织交流。
(2) 比一比:同桌合作,在图上指出某个同学的位置,让同桌尽快用数对表示出这个同学的位置。比比谁的反应快。
(3) 猜一猜:用数对表示出自己好朋友所在的位置,其他同学猜出这个同学是谁。
2. 完成练习三第2题。
出示题目。
(1) 生活中也经常用数对确定位置。请看,小明家厨房的一面墙上贴着瓷砖,请用数对表示四块装饰瓷砖的位置。
学生完成后,全班交流。
(2) 讨论:你发现表示这四块瓷砖位置的数对有什么特点吗?(前一个数相同,说明两块瓷砖在同一列;后一个数相同,说明两块瓷砖在同一行)
3. 课件出示练习三第3题。
出示题目。
(1) 说位置:这是学校会议室的地面图,同座位的同学相互说说每块花色地砖的位置。(用第几列第几行表示)
(2) 写数对:能用数对表示出这几块花色地砖的位置吗?(学生完成后,组织交流)
(3) 找规律:观察这几块花色地砖的位置,你发现了什么?
先让学生在小组中说说自己的发现,再组织全班交流。
4. 拓展应用。
出示右图。
谈话:如图,“光”字的位置可以用(C,2)来表示。说出下面类似于数对的每组字母和数各表示什么汉字,并连起来读一读:(B,3)、(A,5)、(C,4)、(E,2)、(D,1)。
学生在小组中交流,然后全班交流,并齐读: “我们爱数学”。
提问:你爱数学吗?为什么?
[说明:通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先结合学生在教室中的位置,通过说一说、比一比、猜一猜等活动,使学生进一步巩固了对列、行和数对含义的认识。然后让学生结合生活实际用数对来确定墙面瓷砖和地面花色地砖的位置,这里注意通过比较瓷砖和地砖的位置特征,在观察、比较的基础上让学生充分交流,使学生发现数对中的一些规律,如同一列中,数对中的前一个数相同;同一行中,数对中的后一个数相同等,提升了学生的认识。最后通过类似于数对的一组字母和数找相应的汉字——“我们爱数学”,进一步加深学生对数对的理解,提高运用所学的知识解决实际问题的能力,更能激发学生学习数学的热情。]
四、 自主总结,生成问题
提问:这节课我们学习了什么?你有什么收获?还有什么问题值得我们课后去探究?
出示“神舟六号”飞船返回地球的画面。
谈话:“神舟六号”之所以能顺利地返回,也要用到我们今天学习到的知识。地球这么大,怎样在地球上确定位置呢?请同学们课后去查阅有关资料,并和其他同学交流。
[说明:一节课的结束,不应该是学生探索活动的终止。让学生带着问号离开教室这个小课堂,走进探索的大课堂。教学中,通过对“神舟六号”返回地球画面的回放,引发学生思考:地球这么大,怎样在地球上确定位置呢?这样做既为下节课进一步用数对确定位置打下伏笔,又有效地激发了学生的问题意识和自主探究的意识。]
六年级数学的教学设计13
一、教学目的:
1、使学生认识百分数应用题的数量关系式,理解百分数应用题的解题思路和解题方法。在理解题意、分析数量关系的基础上正确解答百分数应用题。
2、通过划线段图、类比和归纳等数学活动,体验数学问题的探索性,感受数学思考过程的条理性。
3、教学重点是理解百分数应用题的解题思路,结构特征和解题方法。
二、教学过程:
(一):复习百分数应用题的数量关系
判断单位1,说出数量关系
⑴男生占全班人数的4/5
⑵今天比去年增产二成五
⑶节约了15%
⑷期中考试的优秀率为52%
⑸打八折出售
通过同学们对关键句的分析、叙述,百分数应用题的数量关系、解题思路和解题方法,是完全一样的,都是要紧紧抓住数量之间的关系,准确判断单位1的'量,确定解题方法。
(二):二基本题复习
分析解答下面各题,比较它们之间有什么相同点和不同点
⑴建造一栋楼房,计划投资100万元,实际用了90万元,节约了百分之几?
⑵建造一栋楼房,用了90万元,比计划节约了10%,计划投资多少万元?
⑶建造一栋楼房,计划投资100万元,实际节约了10%,节约了多少万元?
⑷建造一栋楼房,计划投资100万元,实际超用了10%,实际投资了多少万元?
分组讨论这一组题目的解法,在弄清解题思路和正确列式的基础上进行比较:它们之间有什么相同点和不同点?
这组题他们的单位1是相同的,数量关系式也是相同的,而数量之间的关系有所不同,解答方法也不尽相同,有乘法也有用方程解。
(三):变式练习:
根据题意列出算式和方程:
水果店运来苹果120千克, ,运来梨多少千克?
1、运来梨比苹果多25%
2、运来的比苹果少25%
3、运来的苹果是梨的25%
4、运来梨是苹果的25%
5、运来苹果比梨少25%
6、运来的苹果比梨多25%
7、运来梨比苹果的25%少2/5千克
在学生分析解答的基础上,教师总结:这些题目是百分数应用题中比较典型的,也是最基本的,解答时必须要准确判断单位1,弄清要求数量与单位1之间的关系和数量对应的百分率,确定解题方法。
六年级数学的教学设计14
第一单元负数
第一课时负数的认识
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重点:负数的意义。
教学难点:负数的意义。
课前准备:
学生搜集生活情境中负数有关资料,如气温、收支,股票涨跌等。教学课时:1课时
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;银行有存钱和取钱……你能举出一些这样的现象吗?(课件2、3、4、5、6)
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子。(课件7)
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。 ③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。
(2)尝试:怎样用数学方式来表示这些相反意义的量呢?(课件8)
请同学们选择一例,试着写出表示方法。
2.认识正、负数。
(1)引入正、负数。(课件9)
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)说一说。(课件10)
生活中还有能用正负数表示的例子吗?
4.进一步认识“0。”(课件11)
以温度计为例,观察“0”的作用?
结论:0既不是正数,也不是负数。(板书)
5、联系生活中的气温;进一步感受正负数的应用。
(1)介绍温度计相关知识。(课件12、13)
(2)一次读出4个城市的温度。(课件14、15、16、17、18)
三、练习应用
(1)辩一辩:
“16℃”和“-16℃”的意义相同吗?(课件19、20、21、22)
(2)做一做:指出下面数中的正负数。(课件23)
(3)填一填:珠穆朗玛峰和吐鲁番盆地海拔高度。(课件24)
四、课堂小结:(课件25)
五、课外拓展:
负数的历史。(课件26、27、28、29、30)
六、板书:
负数的初步认识
像“-6”这样的数叫负数,读作:负六。“-”,叫“负号”。
像“+6”这样的数叫正数,读作:正六。“+”,叫“正号”。也可省略不写。 0既不是正数,也不是负数。
课后反思:
第二课时比较正数和负数的大小
教学目的:
1.借助数轴初步学会比较正数、0和负数之间的大小。
2.初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1.读数,指出哪些是正数,哪些是负数?
43-85.6 +0.9 -+ 0-82
2.如果+20%表示增加20%,那么-6%表示。
3.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
二、新授:
(一)教学例3:
1.怎样在数轴上表示数?(1.2.3.4.5.6.7)
2.出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:做一做的.第1.2题。
(二)教学例4:
1.出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2.学生交流比较的方法。
3.通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4.再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5.再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6.总结:负数比0小,正数比0大,负数比正数小。
7.练习:做一做第3题。
三、巩固练习
1.练习一第4.5题。
2.练习一第6题。
3.实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
六年级数学的教学设计15
教学内容
教科书第58-59页例1,课堂活动及练习十三1-3题。
教学目标
1.使学生理解反比例的意义,能正确判断成反比例关系的量。
2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。
3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。
教学重点
引导学生正确理解反比例的意义。
教学难点
正确判断两种量是否成反比例。
教学过程
一、复习旧知,感受新知
情景游戏:对口令
(1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。
表1买同样的面包
买的数量(个) 1 2 3 4 5……
总价(元) 2 4 6 8 10……
教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?
反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。
根据学生的回答板书,成正比例的量所具有的三个特征:
①两种相关联的量②变化有规律③一定的量
(2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)
表2 30个苹果分给小朋友
小朋友的.人数(人) 1 3 5 10……
每个小朋友分得个数(个)30 10 6 3……
从这个表中,你有什么发现?
反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……
提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?
教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。
二、对比探究,获取新知
1.感知几种不同的变化规律
(1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。
表3 60名游客在井冈山游览
每组人数 3 5 6 15
组数 20 12 10 4
教师:谁来说说,你是怎样算每组人数和组数的?
抽几名学生说出自己的计算方法。
教师:从这个表中你发现了什么规律?
反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……
(2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。
表4打一篇稿子
每分打字(个) 120 100 75 50
所需时间(分) 25 30 40 60
教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。
(3)第二天,导游将带领这批游客,行一段路程。
表5行一段路程
已行的路程(km) 1 2 3 4
剩下的路程(km) 19 18 17 16
填这个表时,你是怎样想的?集体订正。
表6行一段路程
路程(km) 12 20 24 36
时间(时) 3 5 6 9
集体订正。
2.分类区别,概括意义
(1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。
教师巡视,听取各小组意见,加强指导。
(2)汇报交流
反馈1:表1,6分一类,表2,3,4,5分一类。
反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。
教师:为什么这样分类?
引导学生说出:表1,6成正比例分一类;不成正比例的表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。
教师:现在我们一起来找出表2,3,4的共同特征。
学生1:每个表中的两种量都相关联。(板书:相关联)
学生2:一种量变化另一种量也随着变化。
学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的个数越多。
学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……
教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)
学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)
正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
(3)概括得出反比例的意义
教师根据学生的回答,引导学生概括得出:
两种相关联的量。
一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
两种量相对应的两个数的乘积是一定的。
这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?
(揭示课题:反比例的意义)
像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。
4.举例
抽生说一说生活中还有哪些成反比例的量。
学生1:路程一定,所行的时间与速
5.区分
表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?
引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。
三、直观操作,加深理解
1、完成第60页课堂活动1题
教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?
2、完成第60页课堂活动2题
3、完成第61页课堂活动3题
四、巩固练习,深化认识
练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。
五、课堂总结
今天,我们一起学习了什么?你有什么收获?
【六年级数学的教学设计】相关文章:
数学教学设计12-20
数学六年级上册的教学设计12-27
初中数学教学设计07-26
小学数学教学设计07-15
数学广角教学设计12-09
小学数学教学设计01-08
数学教学设计集锦04-01
《时间与数学》教学设计06-17
人教版数学六年级下册教学设计12-30