当前位置:范文派>教学范文>教学设计>相遇教学设计

相遇教学设计

时间:2023-12-18 11:17:26 教学设计 我要投稿

相遇教学设计

  作为一名人民教师,通常需要准备好一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么优秀的教学设计是什么样的呢?下面是小编收集整理的相遇教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

相遇教学设计

相遇教学设计1

  教学目标:

  1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力,培养用方程解决问题的意识。

  2、进一步掌握速度、时间、路程之间的关系,会根据此数量关系解答相向运动中求相遇时间的实际问题。

  3、经历解决问题的过程,进一步体会数学与生活的密切联系,激发学生学习数学的兴趣。

  教学重难点:

  1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

  2、理解相向运动中求相遇时间问题的解决方法。教学过程:

  一、情境导入,复习旧知

  1、师:同学们,你们的坐姿告诉我,这节课你的表现一定非常出色,我想找个同学问问这是为什么呢?

  师:哪位同学能估计老师找张欣然同学回答问题时一分钟能走多少米?

  师:我一分钟大约走100米(我一分钟走150米我们叫它?——速度)你们能提出什么数学问题吗?生:老师5分钟走多少米呢?

  师:她提出的这个问题也就是求哪个量(路程)谁能解决这个问题?生:老师五分钟走500米,你是怎样算出来的(100×5=500米)师:为什么要这样算呢?根据是什么?(生:因为速度×时间=路程)这是我们前面学过的旧知识,这节课我们继续根据这个数量关系式运用方程解决行程问题。

  二、探索新知

  1、揭示课题。

  (1)、看大屏幕:同时

  相向

  相遇

  相距

  (2)、小组内交流一下你是怎样理解这几个数学名词的?

  (3)、抽4组学生上讲台讲解演示(建议:每组两名学生比赛看哪组的表现最好?)

  同时:同一时刻相向:向同一个方向相遇:见面了相距:之间的距离

  最后同桌两把这四个词连起来表演一次(相遇时问问各自走了多长时间)

  (4)揭示课题:具有这样特点的行程问题我们就叫它相遇问题,齐读课题。

  2、创设“结伴出游”的情境。

  师:周末,淘气和笑笑相约出去游玩。怎样才能在最短的时间里让两人一起同行呢?

  生:她们俩同时从家里出发走到一起去

  师:你的想法跟他们一样,请看(出示课本71页的情境图)

  3、引导学生找出有关的数学信息,解决第一个问题。师:你能发现哪些数学信息?

  生:淘气家到笑笑家的路程是840米,淘气每分钟步行70米,笑笑每分钟步行50米(而且他们两人同时从家里出发)

  师:根据这些数学问题,你想解决什么数学问题?生:根据预习提出课本上的数学问题

  (1)、解决第一个问题时,让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

  (2)、画线段图帮助学生理解第二。

  师:解决相遇问题,一般利用线段图来帮我们分析,那么你能不能把这条路线用线段图表示出来?

  A、抽一位学生在黑板展示,其余同学在练习本上画一画

  B、针对同学的板演,你有什么问题要问他呢?或你还需要补充什么?请你大胆发表你的见解。

  如:840米表示什么呢?..........师:用方程解决问题的关键是什么?(找出数量之间的相等关系)你能找出解决这个相遇问题的等量关系吗?生:淘气走的路程+笑笑的路程=840米

  师:你能根据这个等量关系用方程解决这个问题吗?

  A、学生大胆尝试,师巡视指导(抽两位学生共同板演,一人汇报,一人板演,下面完成的同学,同桌先交流你的解法)

  B、他们的解法,你想提出什么问题考考他们吗?

  C、下面同学提问,上面的同学回答,师注意引导。

  D、提问关键问题;(如果学生提不出来,老师也可以问)

  第一、淘气走的路程为什么用70X,而笑笑的路程用50X来表示呢(因为路程=速度×时间,而他们走的时间都是X分,淘气步行的速度是每分钟走70米,笑笑步行的速度是每分钟50米,所以淘气走的.路程是70X米,笑笑走的路程是50X米。)

  第二、而淘气走的路程+笑笑的路程=840米,所以70X+50X=840

  第三、讲解解方程的过程和方法。注意方程解决问题的未知数的解后面不能带单位。写上答语。

  三、变式练习

  如果淘气步行的速度是80米/分,笑笑步行的速度是60米/分,他们出发后多长时间相遇?先想一想,再列方程解决问题。

  1、独立完成,抽两名学生板演

  2、提问式订正交流(师问问题:针对这道题的解法我问你答怎么样?)

  第一、改编后的这道题跟原题有什么相同点和不同点?

  第二、相同点:

  1、路程没有变。

  2、都是求相遇时间。

  3、数量间的相等关系没有变:淘气走的路程+笑笑的路程=840米

  不同点:淘气和笑笑的速度变了

  四、请举出生活中的其他情境,也可以用类似的等量关系列方程解决。

  1、小组先交流

  2、全班交流

  3、师小结:相遇问题的特点:两个人或两辆车同时出发,相向而行,相遇时他们各自经过的时间是相同的。

  五、巩固练习

  完成课本72页“练一练”第1题。

  (1)学生读题,审清题意。

  (2)分析比较本题中的两个问题与教材中例题的相同之处和不同之处。

  (3)完成第(1)小题,并和同桌说一说自己的想法。

  (4)完成第(2)小题,在小组里互相说说解题思路。

  (5)反馈汇报。

  六、知识回顾,全课总结

  今天这节课,我们学习了用方程解决求相遇时间问题的方法,通过学习,我们懂得了两个人或两辆车的速度乘相遇时间,等于两个人或两辆车各自所行的路程,路程之和就是两地之间的距离。

  五、布置作业

  1、课本第72页“练一练”第3题:解方程。

  2、课本第72页“练一练”第4、5题:用方程解实际问题。

相遇教学设计2

  第2课时相遇问题

  年月日编号:

  教学目标:

  1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  教学重难点:

  1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

  2、理解相向运动中求相遇时间问题的`解决方法。

  教学过程:

  一、复习旧知

  1、说一说速度、时间和路程三者之间的关系。

  2、应用。

  (1)一辆汽车每小时行驶40千米,5小时行驶多少千米?

  (2)一辆汽车每小时行驶40千米,200千米要行几小时?

  二、探索新知

  1、揭示课题。

  师:数学与交通密切相联。今天,我们一起来探索相遇问题。

  板书课题:相遇问题。

  2、创设“结伴出游”的情境。

  淘气和笑笑相约出去游玩。

  3、引导学生找出有关的数学信息,解决第一个问题。

  第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

  4、画线段图帮助学生理解第二、第三个问题。

  第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。

  三、试一试

  先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。

  四、练一练

  1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。

  2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

  五、知识回顾,全课总结

  今天这节课我们学习了什么?

  六、布置作业

  教学反思:

相遇教学设计3

  教学目标:

  1.会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,培养学生的方程意识。

  2.经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息、建立模型的能力。

  教学重点、难点:

  1、引导学生找出有关的数学信息,说说自己的思考方法。

  2、让学生独立分析数量关系,并尝试用方程解决问题。

  教学过程:

  (一)创设情境

  出示情境图送材料

  1、让学生观察情境图,交流获得的信息,理解题意(相遇)

  教师出示题目和线路图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园到天桥的路程是50千米。王阿姨的面包车的速度是40千米/时,张叔叔的小轿车的速度是60千米/时。

  请学生读一遍题目。

  ①遗址公园距天桥50千米。

  ②小轿车的速度60千米/时,面包车的速度40千米/时。

  ③两人同时出发。

  ④两人在哪个地方相遇?

  2、全班交流相遇意义,引导出路程、时间、速度三者之间的关系。

  速度时间=路程

  师:我们以前学习的都是一个人或一个物体运动的情况。如果是两个人或两个物体同时相对运动,将会出现什么情况呢?这就是我们今天要学习的相遇问题。(板书副课题:相遇)

  (二)探究新知

  活动一:估计两人在哪个地方相遇?

  1、小组讨论。

  2、汇报交流。

  ①要知道两人在哪个地方相遇?首先得知道两车跑的路程谁多谁少?

  ②小轿车的速度比面包车快一些,相同时间小轿车跑的路程就多,从线段图可以估计他们的相遇地点距离遗址公园近,所以,估计相遇地点在李村附近。

  活动二:思考并解决出发后几时相遇?问题

  1、引导学生把抽象的问题用线段直观的'表示出来:

  面包车行驶小轿车行驶

  的路程的路程

  遗址公园天桥

  2、各小组讨论如何计算出相遇用的时间?

  3、汇报交流。

  ◆您现在正在阅读的《数学与交通――相遇》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《数学与交通――相遇》教学设计①路程速度=时间,所以,先算出两车每小时的速度和,就可以用路程速度求出相遇所用的时间:

  60+40=100(千米/时)50100=0.5(时)

  所以,出发后0.5时相遇。

  ②我们小组可以列综合算式:50(60+40)=0.5(时)比他们小组的方法简单。

  ③我们小组是用学过的方程来解决问题的:

  我们先假设经过x小时两车相遇,那么面包车行使40x千米,小轿车行使60x千米。60x+40x=50

  100x=50

  x=0.5

  ④

  活动三:让学生体会用用哪种方法解决问题比较方便。

  ①算式方法简单,但思考难度大。

  ②方程方法是顺向思维,很容易,所以简单。

  小结:有些问题用方程来解决更容易思考,在以后的学习中可以用方程来解决问题。

  活动四:思考相遇地点距遗址公园多远?

  1、各小组讨论

  2、汇报交流

  ①相遇地点距遗址公园多远?实际就是求出面包车行使的路程,就是:400.5=20(千米)相遇地点距遗址公园20千米。

  ②也可以算出小轿车行使的路程:600.5=30(千米)

  总路程-小轿车行使的路程:50-30=20(千米)

  ③

  小结:同学们能从多个角度看出问题的实质,用多种方法解决问题,值得表扬,希望今后再接再励。

  (三)课堂检测

  1、解方程:9x-4x=6.52y+y=105

  2、甲乙两个工程队合作修建一条9千米的公路,两队同时从两端开始修建。甲队每天修80米,乙队每天修70米。多少天完成任务?两队各修建了多少千米?

  3、练一练:第4、5题

  (四)课堂总结

  这节课你有哪些收获?

相遇教学设计4

  设计思路:

  本课时是在学生学习〈〈义务教育课程标准验教科书〉〉五年级上册四单元的基础上设计的,旨在将学生的解题思路与方法繁华、条理化。掌握等量关系,形成思维模式和优化和解题模式。

  在本册四单元中,根据数量关系而得到的两积之和(其中一个因数相同),从而引出ab+ac=(a+b)c的形式,这一类习题均与学生熟知的相遇问题有联系。正基于此,期望通过熟练掌握相遇问题的解题思路,利用迁移规律,力求能运用这一思路解决与之特征相似的问题。

  学生是学习的主体,站在他们的立场上,他们更喜欢“动态”的课程,他们更易于接受与生活紧密联系、触手可及的问题,同时,一旦知识深深烙入他们的脑海,只要适时点拨与梳理,更易于掌握与之相近、相临的问题。因此,本课设计,通过学生爱动、爱玩、爱表现的特点,通过一系列走、演、操作与交流等到形式,力求“走近”、“走进”生活,让学生去体验、去感受数学,积极主动吸收知识,实现知识的理解、掌握与升华。达成轻松学习、快乐学习、灵活高效的目的。

  教学内容:

  相遇问题及运用相遇问题解题思路解决生活中的实际问题

  教学目标:

  1、通过让学生亲身体验,建立并理解相遇问题的基本数量关系,并能结合实际问题描述数量关系。

  2、运用迁移规律,将相遇问题解题思路运用于与之相似的问题之中,能将具有相遇问题特征的一系列问题转化成相遇问题去分析、去思考、去高效解决。

  3、随着问题的解决,让学生感受到数学就在身边,使他们热爱数学,享受问题解决时的成就感。

  教学重、难点:

  运用相遇问题的解题思路解决具有其特征的数学问题。

  教学准备:

  老师准备:相遇问题演示器、玩具车、实物卡片

  学生准备:玩具车、实物卡片

  教学过程:

  一、创设情景,导入新课:

  1、提问:乘法分配律用字母应该臬表示,你能用语言描述吗?(为相遇问题的两种基本选题关系的概括奠定基础)

  2、请最后一排的一名同学走向讲台,同时老师沿直线迎上去,当与该生相遇时提问:

  我俩现在已经怎样——(相遇)(用生活中的场景理解、感 知什么是相遇)

  请思考后回答:我俩在刚才这一过程中,什么相同,什么不同,能建立一个怎样的等量关系。(建立“甲行路程+乙行路程=两人行的.总路程”)

  二、建立模型:

  1、建立相遇问题等量关系

  (1)如果刚才我走了5秒,每秒行0.6米,后排的同学每秒行0.8米,出发时我们相距多少米?(感兴趣的问题更利于学生思考,他们会积极主动去解决问题

  根扰刚才建立的等量关系,结合这里的条件,你能把它变得具体一点?

  (2)通过引导得出:

  老师速度 明间+学生速度=距离

  (老师速度+学生速度) 时间=距离

  速度和 时间=距离

  (3)同桌交流:这样列的依据是什么,怎样描述这些等量关系。(将生活语言转化成数学语言)

  (4)你能解决这个问题吗

  2、类题强化

  请两名学生表演(其他学生用玩具车演示)

  小明和小东从相距560米的两地出发,相对而行,经过6分钟相遇,如果小明每分钟行75米,小东每分钟行多少米?

  (1)台上台下学一演示后,请学生建立等量关系并提问:

  你能建立几种。建立后引导学生间交流(学生观察表演,自已动手操作,能更深刻掌握知识)

  (2)尝试解决问题,老师引导提问:你有什么发现:刚才是路程不知道,现在是速度不知道,怎么办呢?(可以设小东每分钟 米)

  (3)你能解决这个问题吗?

  3、建立模型

  让我们来总结一下行走中产生的这一类问题吧。

  甲行速度 时间+乙行速度 时间=距离

  (甲行速度+乙行速度) 明间=距离

  速度和 时间=距离

  4、描述模型

  同桌相互描述理解这几个等量关系

相遇教学设计5

  教学内容:课本练习七(二)

  教学目标:

  1、通过练习使学生进一步认识“相遇问题”的特征,理解数量关系,并能解答稍复杂的相遇问题应用题。

  2、培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求相遇问题”的特征和解题方法。

  教学用具:幻灯、小黑板

  教学过程:

  一、基本练习

  1、口头列式

  工人们修一条长120米的路,每天修15米,几天修完?

  一辆汽车5小时各地区320千米,每小时行多少千米?

  火车每小时行85千米,行425千米要多少小时?

  要求学生说出基本的数量关系式

  2、指名板演 其余同练习

  ⑴甲乙两架飞机分别从两城去同一个城市,甲机每分钟飞行9千米,乙机每分钟飞行12千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?

  ⑵两个水管同时向游泳池中注水,大管每小时放水16吨,小管每小时放水12吨。放满224吨水要多少小时?

  要求学生说清解题的.思路

  二、变式练习 加深理解

  ⑴改变上1的条件:

  甲乙两架飞机分别从两城去同一个城市,每分钟飞行9千米,乙机每分钟比甲机多飞行3千米,40分钟后,同时降落在同一个机场。两架机一共飞行了多少千米?

  让学生分析:与1 有什么不同,要先求什么?

  列式计算:9+3=12千米

  (9+12)*40=840千米

  ⑵改变上2的条件:

  两个水管同时向游泳池中注水,大管3小时放水48吨,小管每小时放水12吨。放满224吨水要多少小时?

  让学生分析:与2 有什么不同,要先求什么?

  列式计算:48/3=16吨

  224/(16+12)=8小时

  ⑶两辆汽车同时从相距190千米的甲乙两地相对开出,每小时行45千米,乙车每小时行50千米。两车开出几小时后,还相距95千米?

  你能表演一下这种情况吗? 其实是什么以生了变化?

  学生尝试练习

  列式计算:(190-95)/(45+50)

  ⑷甲乙两地相400千米。一辆客车从甲地开往乙地,每小时行68千米,在客车行了28千米以后,一辆货车从乙地出发开往甲地,每小时行56千米。货车开出后几小时两车相遇?

  提问:现在的情况又发生了什么变化?

  哪一段路程是两车同时行的?请你在图上表示出来?

  学生尝试练习

  列式计算:(400-28)/(68+56)

  讨论:刚才3、4两题我们都可以通过转化变成相遇问题,然后进行计算。

  三、课堂作业

  练习七(二)第9——14题

相遇教学设计6

  教学要求:

  1.认识相遇问题的特点,学会分析相遇问题的数量关系,能用两种方法解答相遇问题中求总路程的应用题。

  2.使学生形成两个物体运动的空间观念。

  3.进一步培养学生分析应用题的能力,并从中培养思维的灵活性。

  重点:认识相遇问题的结构特点,理解和掌握两种解题方法。

  难点:理解第二种解法的思路。

  课前准备:布置课前预习提纲:

  1. 把表格填完整。

  2. 出发3分后,两人的距离变成了多少?说明了什么?

  3. 两人3分所走路程的和与两家的距离有什么关系?

  教学过程:

  一. 复习。

  (一)口答下面应用题:

  ⑴张华每分走60米,走了3分,一共走了多少米?

  ⑵一列汽车从甲城开往乙城,用了5小时,平均每小时行42千米, 甲、乙两城相距多少千米?

  师问:这两道题的数量关系是什么?板:速度时间=路程

  (二)引入:

  师:这两道题都是讲一个人或一个物体运动的情况,这节课我准备研究两个人或两个物体运动的情况。

  二. 新授:

  (一)认识相遇问题的`特点。

  ⑴多媒体出示鸭子图,让学生观察:

  ①这两个鸭子出发的时间怎样?

  ②走的方向怎样?

  ③最后它们怎样了?

  ⑵多媒体演示后,学生回答刚才老师的问题。

  板:时间:同时出发

  方向:相向而行

  结果:相遇

  (二)出示课题及学习目标。

  ⑴师:这节课我们研究的就是两个物体同时出发的,相向而行的,最后相遇的这一类应用题,也就是相遇问题。

  ⑵出课题:相遇问题

  ⑶出学习目标:

  ① 理解相遇 、速度和的概念。

  ② 会用两种方法解答。

  (三)教学准备题

  ⑴多媒体演示表格,填表,师:昨天老师布置了3道预习提纲让同学们预习课本P58-59,现在来检查一下你们的预习情况。

  ⑵指名回答提纲①,填表格。

  ⑶指名回答提纲②,出示相遇。

  ⑷指名回答提纲③,出示两家的距离正好是两人3分所走路程的和。

  小结:这道题他们是同时出发的,相向而行的,最后他们相遇了。

  (四)把准备题改成例题

  ⑴出示例题:张华和李诚同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米,经过3分,两人相遇。他们两家相距多少米?

  ⑵审题:

  ①师问:张华和李诚出发的时间怎样?走的方向怎样?结果怎样 了?

  ②指名回答。

  ③师问:问题是求什么?求两家相距多少米也就是求张华和李诚的什么?

  ④指名回答。

  ⑤板:他们两家相距的米数正好是两人3分所走路程的和。

  ⑶教学第一种解法。

  ①多媒体演示第一种解法的思路。

  ②学生根据演示列式计算,

  板:603+703

  =180+210

  =390(米)

  ③学生讲解题思路。

  ④板:先求两人各自走的路程,再加起来。

  (4)教学第二种解法。

  ① 师问:还有别的解法吗?让学生试着列出式子。

  ② 通过多媒体演示,帮助学生理解第二种解法的解题思路。

  ③ 四人小组讨论解题思路。

  ④ 指名回答解题思路,板:先求速度和,再求总路程。

  ⑤ 齐读。

  (5)对比,小结。

  师:这两种方法都是相遇问题中求总路程的,这两种方法的思路相同吗?结果相同吗?

  (五)学习例5。

  (1)多媒体出示自学提纲,学生自学P58例5。

  提纲:①课本用了几种解题方法?

  ②每一种解题方法的思路是什么?

  (2)指名回答提纲。

  (3)通过两道例题的教学,引导学生总结出第二种解法的关系式:速度和时间=路程,并齐读一次。

  (4)质疑。

  四、巩固练习:

  1、 课本P59做一做1。

  2、 课本P59做一做2。

  3、 根据算式补充条件或问题:(多媒体出示)

  ① 两人同时从两地相对走来,甲每分钟走45米,乙每分钟走54米,经过4分钟两人相遇。 ?(45+54)4

  ② 两列火车同时从两站相向开出,甲车每小时行48千米,乙车每小时行52千米,,两站间的铁路长多少千米?

  485+525

  ③ 王师傅和李师傅共同加工一批零件,王师傅每小时加工25个,,两人一共加工4小时正好完成任务,这批零件有多少个?(25+20)4

  4.只列式不计算。(多媒体出示)

  ① 两辆汽车同时从两地相对开出,3小时相遇,甲每小时行45千米, 乙车每小时比甲车快5千米,两地相距多少千米?

  ② 李明和小冬同时从某地出发,背向而行,李明每分走55米,小冬每分走60米,经过4分,两人相距多少米?(多媒体演示背向而行)

  五.小测:

  ⑴甲、乙两人同时从两地面对面走来,经过6分相遇,(如图),求两地间的总路程。

  法一:①相遇时,甲行了多少米?列式:

  ②526表示:

  ③ 两地间的总路程,列式:

  法二:④两人的速度和,列式:

  ⑤两地间的总路程,列式:

  ⑵选择:(把正确答案的序号填在括号里)

  ① 两辆摩托车同时从一个地方向相反方向开出,甲车每小时行42千米,乙车每小时行53千米,2.5小时后两车相距多少千米?( )

  A(42+53)2.5 B(53-42)2.5 C 42+532.5

  ② 客车和卡车分别从两地同时相向而行,客车每小时行45千米,卡车每小时比客车少行5千米,3.5小时后两车相遇,两地间的距离是多少千米? ()

  A (45+5)3.5 B (45-5+45)3.5C (45+5+45)3.5

  ⑶列式解答:

  甲、乙两个小组从两地同时相向挖一条水渠,甲组每小时挖42米,乙组每小时挖38米,经过3小时正好挖完。这条水渠共长多少米?

  多练题:两地相距100千米,甲、乙两人骑自行车同时从两地相对出发, 甲每小时行14千米,经过4小时与乙相遇。相遇后再经过2小时,甲、乙两人相隔多少千米?

  六.小比赛

  ⑴两列火车同时从两个城市相对开出,甲列车每小时行50公里,乙列车每小时行40公里,经过4小时相遇。两个城市间的铁路长多少公里?( )

  A 50+404 B (50+40)4 C 504+404 D 40+504

  ⑵客轮和货轮同时从两个港口对开,16小时相遇。客轮每小时行28千米,货轮每小时行24千米。两个港口相距多少千米? ( )

  A (28+24)16B 2416+28C 2816+24 D 2824+2816

  ⑶小刚家在学校南面,志华家在学校北面。小刚每分走65米,走到学校用8分;志华每分走64米,走到学校用7分。求小刚家到志华家有多远? ( )

  A 658+647B 657+648 C (65+64)(8+7) D (65+64)7+65

  ⑷甲乙两人同时从两地出发,相向而行,甲步行每小时走5公里,乙骑自行车每小时走16公里,3小时后两人还相距7.5公里,求两地间相距多少公里? ()

  A (16+5)3+7.5 B (16+5)3-7.5

  C 163+53+7.5 D (16+5+7.5)3

  ⑸甲乙两人各从所在村相对出发,甲每小时走11公里,乙每小时走10公里,相遇时甲走4小时,乙比甲少用1小时,两个村间有多少公里? ( )

  A 114+101 B 114+10(4-1) C 114+10(4+1)

  D(10+11)4-10 E (10+11)3+11

  七.总结。师:这节课学习了什么?这类应用题有几种解法?

  八.作业:P61 1、2

相遇教学设计7

  教材分析

  相遇问题是传统的教学内容,但北师大版相遇问题的教学较前有所不同,理解相遇问题的特征是相同的。解决问题的方法不同,以往是用算术的方法,在北师大第九册教材是用方程的方法解答相遇问题中求相遇时间这部分知识。

  学情分析

  对于五年级的学生来说,随着年龄的增长与思维水平的发展,他们的学习途径是多种多样的,除去课堂学习这一重要途径外,几乎每个学生都有通过其它途径接受信息、积累知识的能力。同时,他们已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。而且本节课学生对相遇问题的'理解也有难度,所以我想只有站在学生学习的起点上,尊重学生发展的基础上多设计一些活动,引导学生积极参与到操作过程中,使所有学生通过本堂课都能有所收获。

  教学目标

  知识与技能:会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,培养用方程解决问题的意识。掌握运动中的物体,速度、时间、路程之间的数量关系,会根据此数量关系解答相向运动中求相遇时间的实际问题。

  过程与方法:经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息、建立模型的能力。

  情感态度价值观:通过阐明数学在日常生活的广泛应用,激发学习数学的兴趣。

  教学重点和难点

  教学重点:理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

  教学难点:理解相向运动中求相遇时间问题的解决方法。

相遇教学设计8

  1、内容

  九年义务教育人教版六年制小学数学第九册第二单元的《相遇问题》

  2、教材分析及学生特点:

  相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

  3、设计思想及理念

  设计思想:

  (1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。

  (2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

  理念:

  (1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。

  4、教学目标

  (1)知识与技能:

  了解相遇问题的应用题的基本结构,掌握解题方法。

  (2)过程与方法:

  经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。

  (3)情感态度与价值观:

  A:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

  B:培养学生在生活中提出数学问题的意识。

  5、教学的重点和难点

  重点:了解相遇问题的应用题的基本结构,掌握解题方法。

  难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

  6、教学过程

  (一)创设情境

  1、复习旧知,引发联想

  画面演示,画外音叙述:

  这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?

  这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?

  请学生谈谈对这两道题的想法。

  2、学生表演,理解概念

  刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。

  屏幕上依次闪动出现:相对、同时、相遇、相距

  (1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。

  (2)老师叙述,学生表演。

  两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。

  提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。

  (二)尝试探索

  1、出示例题

  小强和小丽同时从自己家里走向学校。小强每分钟走65米,小丽每分钟走70米。经过4分钟,两人在校门口相遇。他们两家相距多少米?

  2、提出问题

  看到例题,你会想到什么问题?

  师生对问题进行筛选,重点解决下面几个问题:

  (1)他们两1分钟走了多少路?2分钟呢?3分钟呢?

  (2)4分钟的时候会出现什么情况?

  (3)他们相遇时,小强和小丽所走的'路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)

  3、列式讨论

  (1)请同学用算式表达自己的思考过程。要能说出每一步的意思。

  主要有两种思路:

  第一种:65×4+70×4

  第二种:(65+70)×4

  4、认识速度和

  题目中的65米、70米叫做什么?现在把65米和70米合在一起,谁能给这个和,起个合适的名字呢?

  5、质疑

  “对这道题还有什么不同的想法或问题吗”

  (三)巩固发展

  1、基本练习

  (1)两只轮船同时从上海和武汉相对开出。从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。上海到武汉的航路长多少千米?

  (2)五(1)班举行一个“艺术节”,分配小红和小丽两名同学折纸鹤,小亮折纸花,小红平均每小时折20只纸鹤,小丽平均每小时折25只纸鹤,小亮平均每小时折18朵纸花。这三个同学一起折了2个小时,正好完成任务。一共折了多少只纸鹤?

  2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。

  3、游戏

  再请两位同学表演,并提问两人相对而行可能出现什么情况?

  (1)两人相遇;

  (2)行走一段未相遇;

  (3)相遇后继续行走。

  给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。

  教师一边叙述,一边出示5分钟时间的牌子。

  (1)小红和小丽从甲乙两地同时相对而行,小红每分钟走65米,小丽每分钟走70米,两人走了5分钟相遇,甲乙两地相距多少米?

  (2)小红和小丽从甲乙两地同时相对而行,小红每分钟走65米,小丽每分钟走70米,两人走了5分钟时还相距200米,甲乙两地相距多少米?

  (3)小红和小丽从甲乙两地同时相对而行,小红每分钟走65米,小丽每分钟走70米,见面后两人擦肩而过,5分钟时又相距200米。甲乙两地相距多少米?

相遇教学设计9

  教学目标:

  1.会分析简单实际问题中的数量关系,会用方程解决实际问题。

  2.经历解决实际问题的过程,体验数学与日常生活密切关系,提高收集信息,处理信息和建立模型的能力。

  3.能够熟练解决相遇问题的应用题。

  教学重点:

  列方程解决相遇问题中求相遇时间的问题。

  教学难点:

  找出相遇问题的等量关系

  教学关键:

  引导学生用数形结合及方程的方法解决问题。

  教学过程:

  一、复习(提问学生,每人回答一题)

  1.一辆面包车每小时走40千米,4小时能走多少千米?

  40×4=240(千米)关系式:速度×时间=路程

  答:4小时能行160千米。

  2.一辆小轿车4小时行240千米,每小时能走多少千米?

  240÷4=60(千米)关系式:路程÷时间=速度

  答:每小时能行60千米。

  3.小轿车每小时行60千米,走180千米要多少小时?

  180÷60=3(小时)关系式:路程÷速度=时间

  答:行180千米要3小时。

  (师:这是我们以前学过的路程、时间与速度之间的关系。)

  (师:从刚才的题目中了解到同学们掌握得真不错。今天我们研究较为复杂的'行程问题,接着在黑板出示课题《相遇》)

  二、模拟表演,探索新知

  (一)模拟表演

  1、课件播放相遇视频,同一张幻灯片出示模仿表演要求:①表演的同学要认真;②观看的同学边看边思考,从游戏中你发现了什么数学信息。

  2、找两组同学,每组两人参加游戏

  第一组走直线,第二组走曲线

  (师:刚才模仿的同学真有表演天赋)

  3、(师:游戏中,两个同学经历的过程就叫相遇。)

  (二)探索新知

  课件出示

  从游戏中你发现了什么数学信息?

  相遇四要素:两个运动物体、两地、同时、相向而行(出示板书)

  师:像这样有两个物体同时从两地相向而行直到相遇,有关这样的问题叫“相遇问题”

  生活中我们经常会遇到了类似相遇的问题

  三、出示例题,合作探究

  1、出示例题:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园距天桥50千米。王阿姨的面包车每小时走40千米,张叔叔的小轿车每小时走60千米。

  (1)估计两人在哪个地方相遇。

  (2)出发后几时相遇?相遇地点离遗址公园的路程是多少千米?

  2、全班读题,你发现了哪些数学信息?

  生:张叔叔和王阿姨约定两人同时坐车出发。遗址公园和天桥的距离是50千米。

  生:王阿姨乘坐面包车,面包车的速度是每时40千米。张叔叔乘坐小轿车,小轿车的速度是每时60千米。

  师:再次强调相遇四要素:两个移动物体、两地、同时、相向而行

  生:我发现,面包车行驶的慢,小轿车行使的快,所以小轿车行驶的路程比面包车行驶的路程要多,所以相遇的时候不是在中间,而是偏向遗址公园。

  ①教师演示线段图后,提问:你能用等式表示各部分路程之间的关系吗?

  学生说:面包车所行路程+小轿车所行路程= 50千米

  50千米-面包车所行路程=小轿车所行路程

  50千米-小轿车所行路程=面包车所行路程

  教师分析等量关系式

  面包车所行路程+小轿车所行路程= 50千米

  面包车的速度×相遇时间+小轿车的速度×相遇时间=50千米

  40×相遇时间+60×相遇时间=50千米

  ②学生独立完成例题

  解:设经过x时两车相遇,那么,面包车行驶40x千米,小轿车行驶60x千米。

  面包车所行路程+小轿车所行路程= 50千米

  40×相遇时间+60×相遇时间=50千米

  60x+40x=50

  100x=50问题:0.5小时,20千米是正确答案吗?

  x=0.5

  40 χ =40×0.5=20(千米)做完之后要检验

  还可以这样解

  (60+40)x=50 →(60+40)就是速度和,所以速度和×相遇时间=路程

  X=0.5 (出板书:全班把这个关系式读一遍)

  或这样解

  50÷(40+60)

  =50÷100

  =0.5(小时)

  40×0.5=20(千米)

  5、刚才我们用方程解答了这道应用题,请同学们回忆一下步骤

  ①弄清题意,找等量关系;

  ②设未知数,列方程;

  ③解方程,并检验;

  ④写答案。

  四、练习巩固,训练提升

  1、巩固练习:志明和小花家相距530米,俩人约定见面后一起去书城(见面方式如图)。他俩几分钟后相遇?(两种方法)

  解:设他俩Χ分钟后相遇。

  54X+52X=530

  106X=530

  X=5

  或者530÷(54+52)

  =530÷106

  =5(分钟)

  答:他俩5分钟后相遇。

  2、训练提升1:挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米,挖通这条隧道要用多少天?

  用方程解:解:挖通这条隧道要用χ天。

  6χ+5 χ=165

  11 χ=165

  χ=15

  算术方法:165÷(6+5)

  =165 ÷11

  =15 (天)

  答:挖通这条隧道要用15天。

  3、训练提升2:在900米的环行跑道上,小丽和小刚同时从同一地点相背而行,小丽平均每分跑200米,小刚平均每分跑250米,经过几分他们会相遇?

  解:设经过χ分他们会相遇。

  (200+250)χ= 900

  450χ= 900

  χ= 2

  答:经过2分他们会相遇。

  4、拓展训练:两列汽车同时从同一地点向相反的方向开出,甲车平均每小时行44千米,乙车平均每小时行38千米,经过3小时两车相距多少千米?

  五、课堂小结

  这节课你学到了什么知识?

  1、学习相遇知识

  相遇四要素:两个运动物体、两地、同时、相向而行

  2、关系式

  速度和×相遇时间=路程

  六、课后作业

  作业:书上68页第2、3、4题

相遇教学设计10

  教学内容:相遇问题(用方程解决实际问题)

  教学目标:

  1、使学生理解相遇问题的特点;

  2、在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。

  3、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  4、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  教学重、难点:

  教学重点:会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  教学难点:使学生理解相遇问题的特点;教具准备:多媒体课件教学过程:

  一、情境导入,展标定向

  1、师:同学们上课之前老师先来做个小调查,看看我们班同学今天都是通过什么方式来学校的?(学生回答:步行、骑自行车、乘车)无论是哪种方式,如果你想知道从家到学校的距离,需要知道什么条件呢?(学生回答:速度、时间)那么你们知道它们之间的关系吗?

  路程=速度×时间

  2、刚才从家到学校这段路是由你一个人走完的。那么在日常生活中还会出现两个人共同走完一段路,不知道你们见过吗?(见过)这就是我们今天所要学习的知识,板书课题——相遇问题

  二、自主学习,尝试探索

  1、下面我们来做个游戏好吗?(好)我请两名同学上来(好朋友)表演一下相遇,其他同学带着这几个问题仔细观察。(课件出示)

  出发地点:两地

  出发时间:同时

  运动方向:相向(相对)

  运动结果:相遇

  2、你能用手两只手表示一下相遇吗?(学生动手练习)

  3、通过刚才两名同学的扮演及学习,同学们对相遇理解了吗?其实在生活中,还有很多有关两个人或两个物体同时出发相对而行直到相遇的问题。现在淘气就遇到了这样一个问题,需要得到聪明而又热心的你的.帮助。

  4、出示课本例图:

  师:昨天放学后,淘气回到家发现不小心把笑笑的作业本带回了家,他想把作业本赶紧还给笑笑,于是他就给笑笑打电话商量,为了省时间,他们决定同时从家里出发。(课件出示)

  仔细观察例图,估计一下他们两人在何处相遇。

  生:淘气的速度比笑笑快一些,时间相同,那么他走的路程就多一些,估计在邮局附近相遇。(出示课件)

  三、合作学习,引导发现

  1、师:那么他们两人出发后多长时间相遇呢?现在我请两名同学上来分别扮演淘气和笑笑。(学生表演)

  注意:

  (1)淘气走的快一些,笑笑走的慢一些。

  (2)同时出发。(扮演时一、二组同学仔细观察淘气走的路程,三、四组同学仔细观察笑笑走的路程)

  2、师:通过刚才两名同学的扮演,我们发现这段路程是由淘气和笑笑共同走完的,也就是:淘气走的路程+笑笑走的路程=840米3、一二组的同学谁来告诉老师淘气走的路程是多少?(淘气的速度×时间)

  三四组的同学谁来告诉老师笑笑走的路程是多少?(笑笑的速度×时间)

  4、现在你们能根据这个等量关系式列方程解决问题吗?(能)(同桌两人互相完成)

  5、全班交流并反馈。

  解:设出发后X分相遇,那么淘气走了70X米,笑笑走了50X米。 70X+50X=840

  120X=840

  X=7

  答:出发后7分钟相遇。

  四、点拨引导,反馈调节

  1、师:如果淘气步行的速度是每分80米,笑笑步行的速度是每分60米,他们出发后多长时间相遇?(课件出示)(学生独立完成)

  2、全班交流并反馈。

  解:设出发后X分相遇,那么淘气走了80X米,笑笑走了60X米。 80X+60X=840

  140X=840

  X=6

  答:出发后6分钟相遇。

  五、分层测试,效果回馈

  1、完成课本练一练第1题。(课件出示)

  2、完成课本练一练第2题.(课件出示)

  3、一辆大卡车和一辆小汽车从相距660千米的两地同时出发,相向而行,经过6小时两车在中途相遇,小汽车每小时行60千米,大卡车每小时行多少千米?

  4、小红和小丽同时从自己家里走向学校。小红每分走65米,小丽每分走70米。经过4分,两人在学校门口相遇。她们两家相距多少米?(课件出示)

相遇教学设计11

  一、教学目标

  通过学生的自读、质疑、讨论,以及师生的交互感应,来读懂人物,理解主旨。

  二、教学过程

  (一)激活学生,导入新课。

  师:同学们,在生活中,往往有这样的情况一——个偶然的事件会改变一个人乃至几代人的命运。我们今天要自读的课文《列车上的偶然相遇》,就是这么一个事例。

  (二)初读课文,了解大意。

  【方法】带两个问题散读课文。

  问题1:列车上偶然相遇的双方是谁?他们之间发生了怎样的故事?

  问题2:有没有在形、音、义上有障碍的字、词?力争通过工具书来加以解决。

  (在散读的基础上,学生自由组合,进行交流。在交流中基本明确:故事的双方是“父亲”和“神秘的先生”;能讲出故事的大意;大部分同学在以下词语下画了横线或注音、作注解:神秘卑微克勤克俭萧瑟应聘颠簸积攒忐忑不安翌日轨迹)

  (三)确定目标,研读课文。

  (师生共同讨论,确定大家感兴趣、可接受的目标。)

  【目标一】读懂故事中的两个主要人物――“父亲”和“神秘先生”。

  【方法】讨论式,擂台赛。

  (全班学生分为两大组,甲组主要研究“父亲”,乙组主要研究“神秘先生”。若干分钟后进行“摆擂台”,即在规定的时间内,甲组代表首先主讲,随后,乙组同学质疑,甲组同学答疑,如答不上就“输”了;若在规定时间内“问不倒,就是胜者。然后“换防”,乙组主讲,甲组质疑。)

  【目标二】如何看待“偶然性”。

  思考问题:如果没有这次“偶然相遇”,父亲会不会成为一个“很有学问、受人尊敬的人”?

  【方法】独立思考,“同质组”讨论,大组交流,交互感应。

  〖提出思考问题后,同学们再读课文,独立思考,若干分钟后,亮出各自的见解。持相同见解的同学组合在一起,协作交流,力争完善自己的.见解。随后,大组交流。〗

  (同学的见解主要有二:

  其一,如果没有这次“偶然相遇”,父亲不会成为一个“很有学问、受人尊敬的人”。因为他失去了求学的机会,就他家的经济地位、社会地位(刚被解放了的黑奴的儿子)都不会给他以再求学的可能。

  其二,如果没有这次“偶然相遇”,父亲还是会成为一个“很有学问、受人尊敬的人”。因为他具有执著、认真的品质,具有吃苦耐劳的精神,即使失去了这次机遇,以后也一定还会有机遇的。只要他的价值存在,就会抓住机遇。)

  〖只要学生上台发言,均以热烈掌声给予鼓励;学生言之有理,能自圆其说,都予以肯定和赞扬。〗

  (最后,教师作为一个交流者,谈谈自己的见解。)

  师:“机遇”是有其偶然性的,但这种偶然的机遇只向具有真正价值的人敞开大门,而一个具有真正价值的人也必须善于捕捉机遇,否则,也难以求得发展。课文中的“父亲”就是这样,以他自己的“执著、认真”,应聘当上了列车临时服务员,以他的忠于职守、规范服务赢得了“神秘先生”的“青睐”,又以他的执著追求的精神返回格林斯堡大学,抓注了“偶然”,抓到了“机遇”,最终,不仅改变了自己的命运,也“改变了一家的发展轨迹”。

  那么,我们读了课文,能从中感悟到什么呢?

  (学生各抒己见,有的说:“要做一个有真正价值的人。”有的说:“要学会抓住机遇。”有的说:“要懂得偶然性和必然性的关系。”……)

  (四)教师总结

  师:同学们,陶行知先生有这么一句名言:“千教万教,教人求真,千学万学,学做真人。”我想,这“真人”中,肯定包含课文中“父亲”的那种“执著、认真”的品质。只要认真地对待每一件事,锲而不舍地追求理想,那么,相信命运之神会向你张开双臂,机遇之门会向你敞开。同学们,努力吧!(同学热烈鼓掌。)

  课外知识拓展:

  普利策奖是美国一种多项的新闻、文化奖金,由美国著名的报纸编辑和出版家约瑟夫·普利策出资设立。自1917年以来每年颁发一次。14项新闻奖分别是:公共服务奖、突发新闻报道奖、调查报道奖、说明报道奖、深度报道奖、国内报道奖、国际报道奖、特写奖、评论奖、批评奖、社论写作奖、社论漫画奖、突发新闻摄影奖和特写摄影奖。7项文学艺术奖是:小说奖、戏剧奖、历史奖、传记奖、诗歌奖、普通非小说奖和音乐奖。普利策奖每年评选一次,评选结果一般都在4月宣布,5月颁奖。

相遇教学设计12

  教学内容:课本应用题例6及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求相遇时间问题”的特征和解题方法。

  教学难点:“求相遇时间问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟 ?

  2、口头列式 1500/100=15分钟

  3、复习“速度”、“时间”、“路程”三者之的.数量关系。

  (板书:时间= 路程/速度)

  二、学习新课

  1、例6教学

  出示:两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?

  读题分析

  思考:这里的460米是几个人走的?

  两人是怎 样走的?

  一份钟两人一共行了多少米?

  (第三问时:用课件演示帮助,学生理解)

  学生尝试练习

  评讲板演,理清解题思路,概括解题方法

  教师板书:60+55=115米

  460/115=4分钟

  综合算式:460/(60+55)=460/115=4分钟

  质凝:求相遇的时间应先求什么,再求什么?

  你知道吗?相遇时他们各行了多少 米?

  揭示课题:求相遇时间

  2、试试

  甲乙两台机床同时加工580个零件,甲机床每小时加工28个,乙机床每小时加工30个,加工完这批零件需要多少小时?完成时各加工了多少个零件?

  三、变式深化

  1、对比练习

  ⑴两人同时从相距2400的两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过几分钟两人相遇?

  ⑵两人同时从两地相对而行。一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米,经过3钟两人相遇,两地相距多少米?

  比一比你能找到两题之间的联系吗?

  2、变式应用

  自行车商店要装配2500辆自行车,一个组每天装配52辆,另一个组每天装配48辆。两个组同时装配,完成任务要多少天?

  四、小结

  今天这节课主要学习了什么内容?你获得什么本领?

  五、课堂作业

  练一练的第2——5题

  板书设计 :

  求相遇时间

  两地相距460米。小明和小红同时从两地出发,相对走来。小明每分钟走60米,小红每分钟走55米。经过几分钟两人相遇?

  60+55=115米

  460/115=4分钟

  综合算式:460/(60+55)=460/115=4分钟

相遇教学设计13

  教学内容:课本应用题例7及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求其中的一个速度)”的特征,理解数量关系,并能解答求其中的一个速度问题的应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“求其中的一个速度问题”的特征和解题方法。

  教学难点:“求其中的一个速度问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  今天小红打的去离家3600米的`少年宫学习舞蹈,6分钟就到了少年宫,汽车每分钟行多少米?

  学生口答列式:3600/6=600(米)。

  复习“速度”、“时间”、“路程”三者之的数量关系。

  (板书:速度=路程/时间)

  一辆客车和一辆货车一小时共行115千米,其中一辆客车每小时行55千米,一辆货车每小时行多少千米?

  二、揭示特征,化解难点

  读读 议议

  出示:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。小明每分钟走60米,小红每分钟走多少米?

  提问:你知道相遇的时候,小明行了多少米?小红行了多少米?

  如果只知道:两地相距460米。小明和小红同时从两地出发,相对走来,经过5分钟相遇。你能求出什么?

  460/5=92(米)

  三、解答例题,理清思路

  1、尝试例7(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

  ①将上题中“经过5分钟相遇。”改成“经过4分钟相遇。”,其余条件不变,仍然小红每分钟走多少米?”学生读题后尝试练习。

  ②评讲板演,理清解题思路,概括两种方法。

  解法一:

  分步计算:两人每分共行多少米?

  460/4=115(米)

  小红每分种走了多少米?

  115-60=55米

  综合算式:460/4-60

  =115-60

  =55(米)

  解法二:

  分步计算:相遇时小明行多少米?

  60*4=240米

  相遇时小红行多少米?

  460-240=220米

  小红每分行多少米?

  220/4=55米

  综合算式:(460-40*4)/4

  =220/4

  =55米

  2、质疑小结,揭示课题。

  ①想一想,这两种解法有什么联系?

  ②概括“求其中的一个速度”的特征和解题方法。

  ③揭示课题。

  四、深化理解,应用拓展

  1、基本练习。

  用两种方法完成练一练 第1题

  比一比 哪一种方法简单一些?

  2、变式练习

  甲乙两台机床同时加工580个零件,经过10小时正好完成。甲机床每小时加工28个,乙机床每小时多少个?

  五、课堂总结

  今天这节课你有什么收获?

  六、课堂作业

  练一练 第2、3、4、5

相遇教学设计14

  教学内容:课本应用题例5及练一练

  教学目标:

  1、通过教学,引导学生认识“相遇问题(求相遇路程)”的特征,理解数量关系,并能解答相遇问题应用题。

  2、通过组织学生分组讨论,培养学生合作与交流的意识。

  3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  教学重点:“相遇问题”的特征和解题方法。

  教学难点:“相遇问题”的特征和解题方法。

  教学用具:多媒体课件一套

  教学过程:

  一、激趣引入,复习旧知

  1、根据已知条件解答问题。

  电脑演示一位学生边走边唱上学的情景。

  “我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。”

  学生提出问题:“你知道我家到学校有多远吗?”

  2、学生口答列式:70×4=280(米)。

  复习“速度”、“时间”、“路程”三者之的数量关系。

  (板书:速度时间路程)

  二、揭示特征,化解难点

  1、想想,说说

  电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识“相遇问题”的特征。

  ①两个学生是怎么上学的?

  (板书:同时相对相遇)

  ②“相遇”的意思懂吗?请两个学生上台合作表演一下。

  2、填填,议议

  ①介绍人物及行走的速度和时间。

  小明每分走70米,小芳每分走60米,有一天,他们约好,从家里同时出发,对而行,3分钟后恰好在校门口相遇。

  ②分组合作,完成以下表格:

  比一比,看哪个组填得又对又快?

  走的时间

  小明走的路程(米)

  小芳走的路程(米)

  两人所走路程的和(米)

  1分

  2分

  3分

  ③分组汇报表中所填数据。

  走的时间

  小明走的路程(米)

  小芳走的路程(米)

  两人所走路程的和(米)

  1分

  70

  60

  130

  2分

  140

  120

  260

  3分

  210

  180

  390

  ④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对“相遇问题”特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。

  “130米是什么?”——表示两人每分所走的路程和即“速度和”(板书:速度和)

  “260米是怎么得来的?”——渗透两种方法即:140+120,130×2。同时说“2分”是“相遇时间”。(板书:相遇时间)

  “390米是怎么得到的?”——强调两种方法,即把各自的路程相加210+180);用速度和乘相遇时间(130×3)。

  “390米表示什么?”——两人3分钟所走路程的和,实际上就是两家之间的离。

  三、解答例题,理清思路

  1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

  ①将上题中“同时行3分钟”改成“同时行4分钟”,其余条件不变,仍然求两家相距多远?”学生读题后尝试练习。

  ②评讲板演,理清解题思路,概括两种方法。

  先求两人4分钟各走多少米。

  ⑴分步列式解答70×4=280(米)

  60×4=240(米)

  280+240=520(米)

  ⑵综合列式解答70×4+60×4

  =280+240

  =520(米)

  先求两人1分钟一共走多少米。

  ⑴分步列式解答70+60=130(米)

  130×4=520(米)

  ⑵综合列式解答(70+60)×4

  =130×4

  =520(米)

  2、质疑小结,揭示课题。

  ①想一想,这两种解法有什么联系?

  ②概括“相遇问题”的特征和解题方法。

  ③揭示课题。

  这两种解法都是利用速度×时间=路程这一数量关系式。不过,第一种方法是用各自的.速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的主要内容——“相遇问题”(板书:相遇问题),决这样的问题可以用两种方法。

  四、深化理解,应用拓展

  1、基本练习。

  用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?

  2、变式练习。

  电脑演示小明和小芳放学的情景。

  ①认识“相背而行”(板书:相背)

  ②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?

  揭示“相背而行”和“相对而行”求总路程时的解题思路是一样的。

  3、拓展练习。

  结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

  电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。

  对话实录如下:

  张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。

  李经理:知道了,张教授,你车子的速度怎样啊?

  张教授:大概每小时行70千米吧!

  李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!

  张教授:杭州见!一路平安!

  李经理:好,一路平安,杭州见!

  分组合作,进行探究。

  ①请同学们认真听,仔细看,从对话中能捕捉到哪些信息?

  ②根据刚才捕捉的信息,能解决哪些问题?比一比,看哪个组提出的问题多?

  ③汇报提出的问题,交流解决的方法。

  ④生活中的行程问题,是不是一定都是这样?有没有别的情况?

  4、全课总结。

  今天这节课主要学习了什么内容?你获得什么本领?

  同学们,只要你们留心观察,善于思考,就会发现许多数学问题,刚才大家出的问题,都有一定价值。有些问题现在我们可以解决了,有些问题还需要续学习,深入研究,将来去解决。

  五、课堂作业

  练一练第1——5题

  板书设计:

  相遇问题

  同时相对(背)相遇

  速度时间路程

  (和)(相同)(和)

  ⑴70×=280(米)⑶70+60=130(米)

  60×4=240(米)130×4=520(米)

  280+240=520(米)

  ⑵70×4+60×4⑷(70+60)×4

  =280+240=130×4

  =520(米)=520(米)

  答:两家相距520米。

相遇教学设计15

  一教材分析:

  《相遇问题》是北师大版五年级下册第七单元“用方程解决问题”第二课时。这部分内容是在学生掌握一个物体运动中有关速度、时间和路程之间的数量关系的基础上安排学习的,主要是研究两个物体的运动情况,是今后学习较复杂的行程问题及工程问题的基础。

  二学生分析:

  五年级的学生具有一定观察、估计、画图分析、归纳、整理能力,也具有一定的抽象逻辑思维能力。鉴于学生的思维特点,在教学中我采用让学生“演一演”,“估一估”,“画一画”,“列一列”,“做一做”,“说一说”等活动,引导学生用方程解决有关类似“相遇问题”的实际问题,从而体会数学的模型思想。

  三教学目标:

  1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

  2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

  四教学重点:

  理解相遇问题的结构特点,能根据速度、时间、路程的数量关系,利用方程解决求相遇时间的问题。

  五教学难点:

  让学生在用方程解决行程问题、工程问题等一系列实际问题中,掌握用ax+bx=c的等量关系解决问题,体会数学的模型思想。

  六教学具准备:

  教学课件。

  七教学过程:

  一、创设情境,想方案,唤醒旧知

  1、出示书上情境并由教师讲述故事:

  淘气和笑笑是好朋友,他们经常一起玩,一起做作业。

  他们两家相距的路程,及平时步行速度是这样的,(课件出示)

  有一天,淘气到笑笑家做作业。淘气回到家后,发现文具盒忘在笑笑家了,就打电话给笑笑,说:要拿回文具盒。聪明的同学们,想想看:淘气要拿到文具盒有哪些方案?

  ①方案1:笑笑送去;②方案2:淘气去取;③方案3:在途中交接。

  2、揭示课题:

  师:这三种方案,哪种方案淘气能最快拿到文具盒?(第三种方案)

  像这样两人对走,在途中交接的情形,就是今天我们要研究的内容。(板书课题:相遇问题)

  【设计意图:从学生的生活实际出发,设计“淘气把文具盒忘在笑笑家,请同学想想看:淘气可以通过哪些方法得到文具盒?”的情境,在学生说出有三种方法:“①笑笑送去;②淘气去取;③在途中交接”时,既复习“速度、时间、路程”这三者之间的关系,又引出相遇问题,这样让学生明确数学就在我们身边,从而激发学生学习数学的兴趣。】

  二、感受“相遇”的特点,弄清数量关系

  1、模拟演示。

  请两个同学上台走一走,模拟演示一下,淘气和笑笑途中交接这种方案的情形。

  师:淘气要最快拿到文具盒,他们该怎么走?

  两个学生演示,其他同学注意观察:从他们的.演示当中,你们有什么发现?

  (根据学生回答,随机板书:同时相向相遇时间相同淘气走的路程+笑笑走的路程=总路程)

  师:结合刚才的演示,你们能估一估淘气和笑笑会在什么地方相遇?为什么?

  【设计意图:设计一个让学生上台走一走的情境,目的是让学生体会相遇问题的特点,从感性认识,抽象概括出相遇问题的特征:同时、相向、相遇、时间相同、淘气走的路程+笑笑走的路程=总路程。经过师生共同对知识的梳理,进一步深化对相遇问题的理解。】

  2、用线段图表示刚才演示情境,并写出等量关系。

  (1)请你们把刚才获取的信息在本子试着画出来,并写出数量关系式,看谁画得最简洁、明了。

  (2)学生独立画图,教师巡视。

  (3)展示交流,学生互评。

  先由学生说一说,自己是怎样画的,然后进行互评。同时注意提醒学生:谁应画长一点?

  【设计意图:借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中发挥着重要作用。画图是学生分析数量关系的一种重要图形表征方式。画图是一种策略,让学生尝试用图来表示数量关系,是学生学习的一种需要。因为它是帮助学生理解数量关系,体现数形结合的观点。通过画图,学生能直观地看出“淘气走的路程+笑笑走的路程=总路程”这一数量关系,从而加深对题目数量关系的理解。】

  3、学生独立列方程解答。

  师:请同学们独立用列方程解答。在解答过程中,思考你是根据哪个等量关系式来列方程的。

  三、学生独立解答,教师巡视。

  1、交流反馈。

  师:你是怎样列方程的?根据什么等量关系式来列?

  2、回顾反思。

  (1)检验结果。

  师:我们怎样可以保证求得的结果一定是正确的?

  (2)回顾过程。

  师:让我们回顾一下,刚才我们是怎样列方程解决这个问题的?

  【设计意图:回顾列方程解应用题的一般步骤,帮助学生建构系统化知识体系,提高学生熟练运用所学知识解决问题的能力。】

  3、解决问题

  师:现在老师把淘气和笑笑的速度调整了一下,你们还会吗?动手试一试吧!

  课件出示:如果淘气的步行速度是80米/分,笑笑的步行速度是60米/分,他们出发后多长时间相遇?先想一想,再列方程解答。

  (1)学生独立列出方程解决问题。

  (2)反馈时,指名说说根据什么等量关系列方程。

  (3)引导比较,渗透函数思想

  师:请同学们,仔细观察这两道题,有什么发现呢?

  四、多样素材,对比沟通,建立模型

  1、师:求相遇时间你们会解决了,下面这道题该怎样解答呢?请同学们试一试吧!课件出示:(学生自选一题解答)

  (1)有一份5700字的文件,由于时间紧急,安排甲、乙两名打字员同时开始录入。甲每分录100个字,乙每分录90个字,录完这份文件需要多长时间?

  (2)挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米,挖通这条隧道要用多少天?

  2、学生独立完成。

  3、全班交流:分别说说是用怎样的等量关系列出方程。

  4、联系沟通,建立模型

  师:前面我们解决有关“行程问题”、“打字问题”,“挖隧道问题”这些问题好像都不一样,它们有没有什么相同的地方?

  引导学生说出它们都是根据:“甲的路程+乙的路程=全长”进行列方程解答。

  【设计意图:从行程问题拓展到工程问题,拓宽解决问题的面。最后通过寻找相同点,沟通这些问题的联系,让学生初步体会模型思想。】

  5、举例说一说。

  师:同学们,其实我们的相遇问题并仅仅只限于这些,它还涉及到我们生活中的方方面面,我们试着把它找出来,好吗?

  五、拓展提升

  师:相遇问题难不倒同学们,类似相遇问题的题目同学们也很快解决了。你们想不想挑战难度更大的问题?那我们一起来看看下面这道题。

  (课件出示)甲、乙两列火车同时从相距1980千米的两个城市相对开出,12小时后相距180千米,甲车每小时行驶70千米,乙车每小时行驶多少千米?

  四、回顾梳理,总结反思。

  师:这节课你有什么收获?还有哪些问题?

【相遇教学设计】相关文章:

相遇问题教学设计06-08

相遇问题教学反思04-06

教学设计模板-教学设计模板07-16

卖炭翁教学设计《卖炭翁》教学设计11-13

教学设计07-13

教学设计与教学反思06-01

课程设计教学设计12-26

识字教学设计09-19

《船长》教学设计09-11

《春》教学设计11-15