- 数学八年级下册的教学设计 推荐度:
- 相关推荐
八年级下册数学教学设计
作为一名老师,常常要写一份优秀的教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么你有了解过教学设计吗?下面是小编帮大家整理的八年级下册数学教学设计,希望能够帮助到大家。
八年级下册数学教学设计1
教学目标:
1、理解一次函数与正比例函数的概念以及它们之间的关系;
2、能根据问题信息写出一次函数的表达式,并会运用一次函数解决简单的实际问题;
3、经历一次函数概念的认识,和利用一次函数解决实际问题的过程,逐步认识利用函数观点认识现实世界的意识和能力。
教学重点:
一次函数的概念以及一次函数和正比例函数的关系。
教学难点:
理解一次函数和正比例函数的关系。
教学方法:
引导发现、探究指导
学习方法:
自主学习、合作学习
教学工具:
多媒体
教学过程:
一、情景引入
母亲节快到了,红红想送一大束康乃馨给妈妈,花店老板告诉她,若买10支以及10支以下,每支3元,买10支以上,超过的部分打8折,如果红红买了x支康乃馨(x>10),付给老板y元钱,请写出y与x之间的函数关系式。
二、探究新知
1、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式?
(1)有人发现,在20~25时蟋蟀每分鸣叫次数c与温度t(单位:)有关且c的值约是t的7倍与35的差;
(2)一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的.值;
(3)某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话x min的计时费(按0。1元/min收取);
(4)把一个长10 cm,宽5 cm的矩形的长减少x cm,宽不变,矩形面积y(单位:cm2)随x的值而变化。
2、这些函数解析式有哪些共同特征?
3、你能仿照正比例函数的概念,归纳总结出一次函数的概念吗?
4、一次函数和正比例函数有什么关系?
三、展示归纳(学生做后,解答过程学生说老师写,发动学生纠正和完善并总结归纳出一次函数的概念)
1、学生先用独立思考,在进行小组讨论,老师准备板书,巡回指导,了解情况;
2、学生逐一回答,其他学生逐一补充完善;
3、教师火龙点睛,强调关键。
四、练习巩固(过渡语:了解了一次函数的概念之后下面老师就来检验一下同学们,看看同学们能判断一个函数是一次函数吗?)(每个练习先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动学生评价完善,教师强调关键地方,在进行下一个练习)
练习1下列函数中哪些是一次函数,哪些又是正比例函数?
(1)y=—8x;(2)y=—;(3)y=5 x+6;(4)y=—0。5x—1;
(5)y= —1;(6)y= —13;(7)y=2(x—4);(8)y=
练习2已知一次函数y=kx+b,当x=1时,y=5;当x=—1时,y=1。求k和b的值。
五、小结与归纳(由学生来陈述,百花齐放。教师不做限定,没说到的,教师补充。)
1、通过本节课的学习,你有何收获?
2、反思一下你所获得的经验,与同学交流!
六、作业:必做题:教科书第91页第3题;
选做题:请写出若干个变量y与x之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项。
七、板书设计(以课堂生成为准)
八、课后反思:
在上一节课,学生整体感受了研究函数的一般思路与方法,但在具体知识理解的深度上还是不够,尤其作业上学生对概念中的自变量的次数理解不够到位。在这节课的学习中,应当促进学生从整体把握的高度深刻的理解一次函数与正比例函数的概念以及它们之间的关系。在概念的学习中,教师对学生提供的经验性材料太少,仅从正面入手不足以使学生真正理解概念,还必须从侧面和反面来理解概念,通过多举例,多练习来巩固概念。
教学中,需要分清并抓住本质现象,鼓励学生用自己的语言阐述自己的看法,学生在经历大量源自实际背景下的解析式的分析比较后,抽象概括出它们的一般结构,从而形成一次函数的概念,教师在强调概念需要注意和容易出错的地方。在知识的获取过程中,始终交织着旧知与新知、变与不变、相同与不同的对立与统一,这些都触动着学生对数学学习的情感。
另外,课前备学生是十分必要的,只有充分了解学生,课时尽量关注每一个学生,做到心中有学生,使每一个学生都参与课堂活动中来,让他们感受到自己是这节课的主角,从而学习数学的积极性提高,降低两极分化。
八年级下册数学教学设计2
学习目标
1、能说出约分的意义和步骤。
2、能说出最简分式的意义。
3、能说出分式的乘、除和乘方法则,并能用式子表示。
4、能熟练地进行分式的乘除和乘方运算。
5、会归纳总结整数指数幂的运算性质。
6、能熟练地运用幂的运算性质进行计算。
主体知识归纳
1、约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2、约分的步骤把分式的分子与分母分解因式,然后约去分子与分母的公因式。
3、最简分式一个分式的分子与分母没有公因式时,叫做最简分式。
4、分式的乘法法则分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
5、分式的除法法则分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
6、分式的乘方(n为正整数)、就是说:分式的乘方是把分子、分母各自乘方。
7、整数指数幂的运算性质可归纳如下
(1)am·an=am+n(m、n都是整数);
(2)(am)n=amn(m、n都是整数);
(3)(ab)n=anbn(n是整数)、
基础知识精讲
1、正确理解分式约分的意义
(1)约分的根据是分式的基本性质,约分的实质是一个分式化成最简分式,约分的关键是将一个分式的'分子与分母的公因式约去。
(2)进行约分的前提条件:分子、分母必须都为积的形式且有公因式。
2、分式约分的步骤是:把分式的分子与分母分解因式,然后约去分子、分母和公因式、约分时应注意以下两点:
(1)若分子、分母都是几个因式乘积的。形式,应约去分子、分母中相同因式的最低次幂、当分子、分母的系数是整数时,还应约去它们的最大公约数。、
(2)若分式的分子、分母是多项时,要先将分子、分母按同一字母降幂排列、首项为负,提取负号放到整个分式的前面,将分子、分母分解因式,然后再约分。、
3、进行分式的乘除运算时,应注意以下几点:
(1)分式的乘除运算,实际上是分式的乘法运算,根据法则应先把分子、分母相乘,化成一个分式后再进行约分,化为最简分式、但实际运算时,常常先约分再相乘,这样做既简单易行,又不易出错、
(2)如果分式的分子、分母是多项式时,一般应先因式分解,再约分。
(3)分式运算的结果必须化成最简分式,特别地,若分子(或分母)是公因式,约去公因式后,分子(或分母)是1而不是0。
(4)要注意运算顺序,对于分式乘除法来说,它只含有同级乘除运算,所以只要没有附加条件(如括号等),就必须按照从左至右的顺序进行计算。
八年级下册数学教学设计3
一、学习目标:
1、添括号法则。
2、利用添括号法则灵活应用完全平方公式
二、重点难点
重点:理解添括号法则,进一步熟悉乘法公式的合理利用
难点:在多项式与多项式的乘法中适当添括号达到应用公式的.目的
三、合作学习
Ⅰ。提出问题,创设情境
请同学们完成下列运算并回忆去括号法则。
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1、在等号右边的括号内填上适当的项:
(1)a+b-c=a+()(2)a-b+c=a-()
(3)a-b-c=a-()(4)a+b+c=a-()
2、判断下列运算是否正确。
(1)2a-b- =2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:
去括号法则
六、作业:
教科书习题
八年级下册数学教学设计4
一、目标要求
1.理解掌握分式的四则混合运算的顺序。
2.能正确熟练地进行分式的加、减、乘、除混合运算。
二、重点难点
重点:分式的加、减、乘、除混合运算的顺序。
难点:分式的加、减、乘、除混合运算。
分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
三、解题方法指导
【例1】计算:(1)[++(+)]·;
(2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的'四则混合运算要注意运算顺序及括号的关系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
【例2】计算:(1)(-+)·(a3-b3);
(2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
(2)原式=[-]·=-=-====。
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
四、激活思维训练
▲知识点:求分式的值
【例】已知x+=3,求下列各式的值:
八年级下册数学教学设计5
一、学习目标
1、多项式除以单项式的运算法则及其应用。
2、多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1、计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2、提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1、多项式除以单项式:
2、本质:
四、精讲精练
(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的'指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
八年级下册数学教学设计6
一、上学期学生学习情况及教学工作中存在问题:
上学期我从事八一、八二两个班的数学教学,从上学期期末考试成绩来看,大部分学生的成绩还算可以,但还是有少数学生成绩相当糟糕,分析其原因,主要是练习的量太少,所以这学期的主要突破口是加大学生的练习力度。在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。在教学方面,平时对学生的练习抓的不够紧,以至有少数几个同学一学期基本没做几次作业,作业的数量也不够。
二、本学期教学内容及要求:
本学期教学内容,共计六章,第一章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应用.
第二章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法.第三章《分式》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题.第四章《相似图形》本章通过对两条线段的比和成比例线段等概念的学习,全面探索相似三角形、相似多边形的性质与识别方法.第五章《数据的收集与处理》主要是概念的理解与运用.第六章《证明一》本章主要内容是命题的相关概念、分类及应用.
重点(1)掌握不等式的基本性质,一元一次不等式(组)的解法及应用.(2)掌握分解因式的两种基本方法(提公因式法与公式法).(3)掌握分式的基本性质、四则运算、分式方程的解法及列分式方程解应用题.(4)成比例线段的概念及应用和相似三角形的性质和判定.(5)调查方法的应用.(6)命题的推理论证。
难点(1)对不等式的基本性质的理解和熟练运用,一元一次不等式(组)的应用.(2)提公因式法与公式法的灵活运用.(3)分式的四则混合运算和列分式方程解应用题.(4)灵活运用比例线段和相似三角形知识能力的培养.(5)几个概念的理解、区别和应用.(6)命题的推理论证。
以每周6课时计,每章结束进行一次单元测试,每月进行一次月考,让学生通过多训练来达到对知识的.掌握。
三、本学期将采取的具体措施:
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的学习课堂氛围,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
四、本学期教学进度安排表:
略
20xx八年级下册数学教学计划【二】
一、 指导思想
在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。优生不多,思想不够活跃,有少数学生不上进,思维跟不上。要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、本学期教学内容分析
本学期教学内容共计六章。
第一章《三角形的证明》
本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》
本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的平移与旋转》
本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》
本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》
本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
第六章《平行四边形》
本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。
四、主要措施
1、面向全体学生。
由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。
2、重视改进教学方法,坚持启发式,反对注入式。
教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。
3、 改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。
4、课后辅导实行流动分层。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7、开展课题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。
8、进行个别辅导,优生提升能力,扎实打牢基础知识;对学困生,一些关键知识,辅导他们过关,为他们以后的发展铺平道路。
9、培养学生学习数学的良好习惯。
五、教学进度
第一章《三角形的证明》13课时
1.1等腰三角形 4课时
1.2直角三角形 2课时
1.3线段的垂直平分线 2课时
1.4角平分线 2课时
复习小节与检测 3课时
第二章《一元一次不等式和一元一次不等式组》 12课时
2.1 不等关系 1课时
2.2 不等式的基本性质 1课时
2.3 不等式的解集 1课时
2.4 一元一次不等式2课时
2.5 一元一次不等式与一次函数2课时
2.6 一元一次不等式组 2课时
复习小节 与检测 3课时
第三章《图形的平移与旋转》 10课时
3.1图形的平移 3课时
3.2图形的旋转 2 课时
3.3中心对称 1课时
3.4简单的图形设计 1 课时
复习小节与检测 3课时
期中考试复习2 课时
第四章《分解因式》7课时
4.1分解因式1课时
4.2提公因式法 2课时
4.3公式法 2课时
4.4重心 2课时
复习小节与检测 2课时
第五章《分式与分式方程》 11课时
5.1认识分式 2课时
5.2 分式的乘除法 1课时
5.3分式的加减法 3课时
5.4分式方程 3课时
复习小节与检测 2课时
第六章《平行四边形》 10课时
4.1平行四边形的性质 2课时
4.2特殊的平行四边形的判定 3课时
4.3三角形的中位线 1课时
4.4多边形的内角和外角和 2课时
复习小节与检测 2课时
综合实践(一)生活中的“一次模型” 1课时
综合实践(二)平面图形的镶嵌1课时
总复习 剩余时间
合计:授新:48课时,复习小节与检测 19课时。
六、培优辅差计划:
优生辅导:
对优生的辅导以课堂教学为主要形式,教师在课堂上要注意提问一些有针对性、概括性较强、难度较大的问题,培养优生的思维的敏感性,并且,课后对他们的作业布置也要有层次性,即让它们掌握扎实的基础知识,又要布置一些有一定难度的思考题,让他们“吃饱”。鼓励他们要利用业余时间多练习、多思考、多做一些课本之外的题目,进一步训练优生思维的灵活性,通过各种形式进行比赛,拓宽他们的知识面,开阔视野,让他们灵活地掌握知识。同时,在教学中要结合本教材中的思考题进行对优生的辅导,要让他们养成刻苦钻研、勤于思考、勇于创新的品质,培养他们热爱数学的兴趣。
后进生辅导:
他们在学习上总的特点是上课不注意听讲,智力一般,学习依赖
思想严重,没有独立思考勇于创新的意识,
1、与家长的多联系,让家长协助教师教育和督促学生努力学习。
2、课后多和差生交谈,使后进生愿意接近老师,经常和老师说
说心里话,有利于老师对学生的了解,有利于做好后进的转化工作。
3,开展互帮互学的活动,尽量给差生创设一个好的学习环境。
4、分层次设计目标,给差生制订能够完成的目标,使其能真正感到成功的喜悦。
5、对差生多表扬其闪光点,激发其上进心,批评时要恰当得体,切忌不可伤害,不能让其他同学嘲笑他们,嫌弃他们。
6、利用课余时间帮助差生辅导,尽力使他们的成绩有所提高,让他们认识到“我能行”。要在学习上,生活上关心每一个后进生的成长,使每个后进生真正感到班集体的温暖,激发他们的求知欲。
八年级下册数学教学设计7
1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学重点:二次根式混合运算算理的理解。
教学难点:类比整式运算准确快速的进行二次根式的混合运算。
教学过程:
一、情境诱导
《二次根式混合运算习题课》教学设计-杨桂花
二、练习指导
(学生完成练习提纲,可以讨论,老师做必要的'板书准备,然后巡回指导,了解情况、)
练习提纲:《二次根式混合运算习题课》教学设计-杨桂花
三、展示归纳
1、学生汇报解题过程,生说师写;
2、发动其他学生评价补充完善;
3、师画龙点睛强调:
(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。
四、变式练习
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)
《二次根式混合运算习题课》教学设计-杨桂花
五、小结
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)
六、布置作业
《二次根式混合运算习题课》教学设计-杨桂花
八年级下册数学教学设计8
教学目标:
1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
教学重点:
去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。
教学难点:
验根的方法。分式方程增根产生的原因。
教学准备:
小黑板。
教学过程:
复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?
(1);(2);(3);(4);
(5);(6);(7);(8)。
讲授新课:
1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。
2.讨论分式方程的解法:
(1)复习解方程时,怎样去分母?
(2)讲解例1:解方程(按课文讲解)
归纳:解分式方程的'基本思想:
分式方程整式方程
(3)讲解例2:解方程(按课文讲解)
归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。
想一想:产生增根的原因是什么?
巩固练习:P1451t,2t。
课堂小结:什么叫做分式方程?
解分式方程时,为什么要检验?怎样检验?
布置作业:见作业本。
八年级下册数学教学设计9
教学目的
1、使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2、熟识等边三角形的性质及判定。
2、通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点:等腰三角形的性质及其应用。
教学难点:简洁的逻辑推理。
教学过程
一、复习巩固
1、叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2、若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1、请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2、你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3、上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的.度数。
分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求∠1是否还有其它方法?
三、练习巩固
1、判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2、如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P54练习1、2。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业:1.课本P57第7,9题。
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。
八年级下册数学教学设计10
教学目标
(一)知识与技能目标
使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.
(二)过程与方法目标
通过分式的化简提高学生的运算能力.
(三)情感与价值目标.
渗透类比转化的数学思想方法.
教学重点和难点
1.重点:使学生理解并掌握分式的`基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质进行分式化简.
教学方法:分组讨论.
教学过程
(一)情境引入
1.数学小笑话:
从前有个不学无术的。富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
2.问:这个富家子弟为什么会犯这样的错误?
3.分数约分的方法及依据是什么?
(1)的依据是什么?呢?
(2)你认为分式与相等吗?与呢?
(二)新课
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
=,=(其中M是不等于零的整式)
2.加深对分式基本性质的理解:
例1下列等式的右边是怎样从左边得到的?
由学生口述分析,并反问:为什么c≠0?
解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)
八年级下册数学教学设计11
一、教学目标
1、知识与技能:主要内容包括“分式” “ 函数及其图象”“全等三角形” “平行四边形的判定” “数据的整理与初步处理”共五章,各章都力图讲清知识的来龙去脉,将知识的形成和应用过程呈现给同学们。
2、过程与方法:
[1] 经历“观察————探索————猜测————证明”的学习过程,体验科学发现的一般规律。
[2] 通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。
3、情感态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。
二、内容分析
第十七章 分式是是代数式中重要的基本概念;分式的概念、分式的基本性质及约分、通分等变形,是全章的理论基础,分式的加、减、乘、除及乘方运算,是全章的重点内容,分式方程的概念,主要涉及可以化为一元一次方程的分式方程。解分式方程时,应用化归思想,并且要注意检验是必不可少的步骤。本章应尽可能采用类比方法学习,联系实际,培养学生有条理的思考与表达。同时培养学生的阅读理解和多角度思考问题的能力。
第十八章 函数及其图象通过对变量的考察,体会函数的概念,并进一步研究一次函数、反比例函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数、反比例函数的概念,并进行探索一次函数、反比例函数的.图象及其性质,最后利用一次函数、反比例函数及其图象解决有关现实问题。
第十九章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,比较严格地证明全等三角形的性质,探索三角形全等的条件。
第二十章 平行四边形的判定将在上册学习平行四边形性质的基础上,充分运用图形的变换探索发现判定平行四边形的方法,合理运用几何证明所得数学结论,努力实现合情推理与演绎推理的有机结合。
第二十一章 数据的整理与初步处理是在前几册统计与概率内容的基础上,使学生学会选用合适统计图表,进行数据整理,清晰而又准确地表示所收集的数据,同时通过情境引入平均数、中位数与众数以及方差、极差与标准差,较为正确地比较所得数据,使学生掌握分析处理数据的基本方法,用数学语言表述自己的见解。
三、采取措施
1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。
4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。
5、教学中注重自主学习、合作学习、探究学习。
6.经常听取学生良好的合理化建议。
四、课时安排
第17章 分式 10课时
第18章 函数及其图象 16课时
第19章全等三角形 16课时
第20章平行四边形的判定 12课时
第21章数据的整理与初步处理 14课时
课题学习 4课时
小结与复习
八年级下册数学教学设计12
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:
体会平均数、中位数、众数在具体情境中的.意义和应用。
教学难点:
对于平均数、中位数、众数在不同情境中的应用。
教学方法:
归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:复习题A组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:复习题B组、C组(选做)
八年级下册数学教学设计13
教学目标:
1、在朗读的基础上感悟和品味作品形象及其深刻内涵。
2、体会、揣摩和学习抒情性语言和多种手法。
3、体验和培养乐观精神。
教学重点:
1、赏析海燕形象,领会作品的象征内涵。
2、在反复诵读中,揣摩作品的语言和手法。
课时安排:一课时
课前准备:
1、预习课文,疏通文意,通过诵读初步感知课文。
2、搜集高尔基的有关资料。
3、教师准备录音带,录音机,投影仪或多媒体课件。
教学步骤:
一、导入美文。
介绍《海燕》的深远影响,激发学生的求知欲望:
它是俄国无产阶级革命文学导师高尔基所写的一首散文诗。它是无产阶级文学的开山之作,有如春天的旋律,时代的前奏曲,革命的宣言书。自问世以来,它便以深刻的思想锐利的锋芒和激越的诗情赢得众多读者的喜爱。它的读者,超越国界、超越时代,超越年龄、性别、种族。它属于过去、属于未来、属于全世界。它是美的典范之作。
二、整体感悟。
1、教师配乐范读课文,或者播放课文录音。
要求:学生听读时不看书,凝神细听。
2、学生交流听后感受,谈自己在听读时候的所感所想。
3、学生再进一步自由朗读课文,并思考和讨论:这是一首色彩鲜明的.抒情散文诗,又是一幅富有音乐节律和流动感的画。以时间为序,文章着重刻画了几个场面?在不同的场面中海燕都有些什么样的表现?
讨论明确:(投影片或多媒体课件出示三幅场景画面以及相关文字)
课文以暴风雨渐次逼近为线索,按海面景象的发展变化可分为三个大的场景画面:暴风雨“将来”——“逼近”——“即临”。
暴风雨将要来临,海燕“高傲地飞翔”,渴望着暴风雨的到来。
暴风雨逼近之时,海燕搏风击浪,迎接暴风雨。
暴风雨即临之时,海燕以胜利的预言家姿态呼唤暴风雨的到来。
三、品味探究,赏析海燕形象。
1、自主品味,进行个性化解读。
教师引导学生探究:读了此文后,你心目中的海燕形象是什么样的形象?你是从哪些地方看出来的?(让学生深入接触文本,与文本进行对话)
2、联系时代背景,了解作者的创作意图,初步把握海燕形象的特定内涵。师生共同明确:海燕在暴风雨来临之前,常在海面上飞翔,这本是自然现象。因此“海燕”一词在俄文中含有“暴风雨的预言者”之意。高尔基在俄国1905年革命前夕,塑造了海燕这个“高傲的、黑色的暴风雨精灵”般的艺术形象,旨在呼唤即将到来的革命风暴,为登高一呼的无产阶级革命先驱者高唱赞歌。
3、引导学生从文中找出正面描写和侧面烘托海燕的段落或者句子,朗读、勾画、体会和品味其形象给人带来的美感。师生共同评析。
预期成果示例一:“黑色的闪电”用了形象生动的比喻,给人一种足以体现海燕的矫健、勇猛之美,“闪电”使人眼前闪出亮光,看到光明。
示例二:“让暴风雨来得更猛烈些吧!”掷地有声,这是海燕的战斗宣言,体现一种豪情与力量之美,是全诗豪壮之美的点。
示例三:海鸥的“呻吟、飞窜、恐惧、掩藏”、海鸭的“呻吟、吓坏”、企鹅的“胆怯、躲藏”与文中海燕的“高傲的飞翔、欢乐的叫喊”形成鲜明对比,突出海燕的英勇乐观之美;写大海,写风、云、雷、电,是渲染一种激烈的斗争环境,烘托出海燕形象的高大之美。
4、学生齐读课文,深入体会。
四、学生交流“海燕的宣言”,深入领会海燕的内心活动。(师生共同评点,充分肯定学生的个性化见解,肯定学生的合理想象。)
八年级下册数学教学设计14
教学目标
1.使学生理解和掌握两个数的公因数和最大公因数的概念。
2.能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。
3.通过数学学习活动过程,训练学生思维的有序性和条理性。
教学重难点
最大公因数的求法。
教学工具
ppt课件
教学过程
(一)、复习旧知,为新知打好铺垫
1、师:前面,我们已经学过有关因数的知识,你能举例说一下什么叫做一个数的因数吗?(学生举例。)谁还能像刚才那位同学举例说一下?
2、理解了什么是一个数的因数,你能找出8的因数有哪些吗?(找同学回答)师:这位同学找全了吗?这位同学做到了既不重复也不遗漏。你能介绍一下你找因数的方法吗?表扬:讲的太清楚了,让我们把掌声送给这位同学。(或:思考一下,怎样找一个数的因数才能做到既不重复也不遗漏。)
哪位同学能用这样的方法找出12的因数呢?
师:看来大家对因数的知识掌握的非常的牢固,今天要学的新知识就和因数有着密切的联系。
(二)、创设情境,引导动手操作
同学们喜欢做游戏吗?下面,我们就来通过做一个小游戏来学习新知识。
1、教师出示7张数字卡片。(1、2、3、4、6、8、12)
(1)请7位同学上台任选一张卡片。记清你卡片上的数字,把你的数字卡放在胸前,面朝大家。
(2)是8的因数的请站在左边,是12的因数的请站在右边。
同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(3)同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?
这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?
(4))师问:你们发现了吗?
(5)师:1、2、4既是4的因数,又是12的因数,用句简单的话说:1,2,4是8和12公有的因数,8和12公有的因数叫做它们的公因数。
(7)4是8和12最大的公因数,我们就把4叫做它们的最大公因数。
(8)这就是我们这节课要学习的内容《最大公因数》。
(9)板书课题:最大公因数。
(10)除了用上面这种方法表示公因数
我们还可以用前面学过的集合圈的形式表示。
(三)、合作交流、探索方法
1、小组合作:求出18和27的'最大公因数。
现在,同学们知道了什么是公因数和最大公因数,那你能试着求出18和27的最大公因数吗?
合作要求:(四人一组)
(1)讨论用什么方法求出两个数的最大公因数。
(2)在答题纸上写出你们组是怎样找这两个数的最大公因数的。
2、汇报交流反馈。
方法一:现分别写出18和27的因数,再圈出公有的因数,从中找出最大公因数数。同学们真是太棒了!其他小组,还有不同的方法吗?
方法二:先找出18的因数:1,2,3,6,9,18.再看看18的因数中有哪些是27的因数,最后看哪个最大。(或者是:先找出27的因数:1,3,9,27;再看看27的因数中有哪些是18的因数,最后看哪个最大。)
方法三:先写出18的因数:1 , 2 , 3 , 6 , 9 , 18 。从大到小依次看18的因数是不是27的因数,9是27的因数,所以9是18和27的最大公因数。
4、这些方法都属于列举法,在解决问题时你可以选择自己喜欢的方法。
5、观察两个数的公因数和它们的最大公因数,你有什么发现?(两个数的公因数也是它们最大公因数的因数。)
(四)、拓展延伸。
刚才,同学们表现得都特别的好,接下来是不是会表现的更出色呢?
老师相信,接下来你们会用自己出色的表现,证明优秀的自己!
1、求出4和8、16和32的最大公因数,思考你发现了什么?
教师对学生的发现概括总结,并课件出示发现:如果较小数是较大数的因数,他们的最大公因数是较小数
2、求出2和7、8和9的最大公因数,思考你发现了什么?
发现:如果两个数只有公因数1,它们的最大公因数就是1.
3、教师总结:通过刚才的学习我们知道了求最大公因数共有3种情况。
(3种:成倍数关系的;公因数只有1的;一般情况。)
两个数成倍数关系和公因数只有1时可以直接判断出最大公因数。一般情况的采用列举法求出最大公因数。)
(五)、巩固提高。
刚才大家不仅展现了自己的数学才能,还突显了自己的探索能力,那么,我相信老师带来的这些问题同学们就更不在话下了。
1.填空。
(1) 10和15的公因数有_____________。
(2) 14和49的公因数有_____________。
2.选出正确答案的编号填在横线上。
(1) 9和16的最大公因数是______。
A. 1 B. 3 C. 4 D. 9
(2) 16和48的最大公因数是______。
A. 4 B. 6 C. 8 D. 16
(3)甲数是乙数的倍数,甲、乙两数的最大公因数是______。
A. 1 B.甲数C.乙数D.甲、乙两数的积
3、写出下列各分数分子和分母的最大公因数。
五、全课总结。
师:同学们,这节课马上要结束了,能说说你们的收获吗?
同学们的收获真多,除了用我们这节课学习的列举法求两个数的最大公因数,老师这里还有两种更简便的方法求最大公因数,给大家分享一下。
一种是:分解质因数求最大公因数的方法,课件演示。
另一种是:短除法
这两种方法我们只是了解一下,在这里就不具体研究了,有兴趣的同学下课后,可以自学教材61页的这部分知识。
八年级下册数学教学设计15
一、学习目标:1.经历探索平方差公式的过程。
2、会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的'推导和应用
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)20xx×1999 (2)998×1002
导入新课:计算下列多项式的积。
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
【八年级下册数学教学设计】相关文章:
数学八年级下册的教学设计06-08
八年级数学下册教学反思04-26
数学教学设计12-20
八年级下册数学教学计划10-29
二年级下册数学教学设计12-13
七年级数学下册教学设计12-15
人教版八年级下册数学教学计划03-04
数学教学设计集锦04-01
小学数学教学设计01-08
数学广角教学设计12-09