《倒数》教学设计
作为一名人民教师,很有必要精心设计一份教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。我们该怎么去写教学设计呢?以下是小编帮大家整理的《倒数》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《倒数》教学设计1
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、口算:
(1)× × 6× ×40
(2)××3××80
2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、课件出示知识目标:
(1)什么叫倒数?怎样理解“互为”?
(2)怎样求一个数的倒数?
(3)0、1有倒数吗?是什么?
2、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的两个数互为倒数。
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)互为倒数的两个数有什么特点?(两个数的`分子、分母正好颠倒了位置)
3、教学求倒数的方法。
(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
4、教学特例,深入理解
(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
5、同桌互说倒数,教师巡视。
三、当堂测评
1、练习六第2题:
2、辨析练习:练习六第3题“判断题”。
3、开放性训练。
3/5×( )=( )×4/7=( )×5=1/3×( )=1
四、课堂总结
你已经知道了关于“倒数”的哪些知识?
你联想到什么?
还想知道什么?
设计意图
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
教学后记
第十一、十二课时:整理和复习
《倒数》教学设计2
教学内容:
北师大版小学数学五年级下册第24页
教学目标:
1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。
2、掌握求一数的例数的方法。
3、培养学生的学习兴趣和良好的学习习惯。
教学重点、难点:
重点:发现倒数的特征,理解倒数的意义
难点:求一个数的倒数的方法
教学过程:
一、 比赛引入
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。
(拿出课堂作业本帮助你)
2/3×3/2 2×1/2
8/11×11/8 1/10×10
7/9×9/7 7×1/7
(师巡视学生的情况,并对分数的格式加以指导)
学生思考后,汇报结果:
生1:两个乘数的分子、分母位置颠倒
生2:每个算式乘积是1
师:现在老师有点疑问,2不是分数,它的分子和分母是什么呢?
生:2可以写成2/1,分子分母颠倒后,2/1×1/2=1
二、 理解倒数的意义
师:观察的真仔细,我们能不能给这样的数取个名字呀?
生:倒数
师:对,这就是我们今天要研究的课题:倒数(板书)
师:再看这几个算式,2×1/2=1,我们说:2是1/2的倒数,1/2是2的倒数
师:看这几个算式,倒数是对几个数来说的?
生:两个数(师板书)
师:这两个数的乘积有什么特点?
生:乘积是1(师板书)
师:再举一个例子:2/3×3/2=1,我们说:2/3是3/2的倒数,3/2是2/3的倒数,2/3和3/2互为倒数(师板书:互为倒数)
师:怎么理解“互为”呢?
生:相互的意思
生:就是对两个数而言的
师:“互为”是对两个数而说的,不能孤立地说谁是倒数,应该说谁是谁的倒数。
师:你能说说黑板上其他例子谁和谁互为倒数吗?和你的同桌说一说
师:除了这几个例子,能写出其他乘积是1的算式吗?
师:大家表现真好,老师也来说一个,3/5是倒数,对吗?
生:不对
师:你帮老师改正吧
生1:应该说3/5是5/3的.倒数
三、 研究求一个数的倒数的方法
师:我们已经了解了倒数,现在我们就帮这些数找一下他们的倒数朋友吧! (师读生写)
3/2 7/9 15 1 0
把他们的倒数朋友写在作业本上。(师巡视,找两名学生板演)
师:这么快,你们是怎样找到这些数的倒数的?
生:分子分母交换位置(师板书找倒数的方法)
师:15是整数,怎么办?
生:15=15/1,分子分母交换位置,就是1/15
师:1呢?
生:1=1/1,所以1的倒数还是1(师板书)
师:0有倒数吗?(出现2种答案,小组讨论,师巡视)
师:讨论完了,那0到底有没有倒数呢?
生:没有
师:理由呢?
生:0不能做分母,0乘任何数都得0(师板书)
师:找一个数(0除外)的倒数的方法,就是分子和分母交换位置(板书)
四、 总结收获、巩固练习
师:大家会找倒数,现在请你做主考官,你说一个数,找一个同学说它的倒数
师:大家掌握这么好,总结一下学的知识吧。
师:想不想再挑战一下
生:没问题
师:好,那就带着这份自信认真完成,做完小学数学作业本第11页
五、 拓展、提高(由于练习时间长,这个环节课后做了补充)
师:老师这有2个疑问,能不能帮助老师呀?帮老师求他们的倒数,老师出示小数和带分数
课后反思:
本节课是北师大版五年级下册第三单元的内容《倒数》,对倒数的认识,学生印象深的是“分子与分母颠倒了位置”而不是倒数的本质内涵“两数乘积为1”。所以在课堂学习时,我从分数的倒数引入,学生体会到分数的倒数外在表现形式确实是将分子与分母交换了位置,然后提问乘积有什么特点?让学生理解若互为倒数的两个数,乘积是1。
对“互为”一词的理解,我没有花很多的时间,因为学生在学习“倍数”概念时,已经接触“互为并不是指一个数,而是两数之间的关系”这种情况,当时花了很多的时间练习谁和谁互为倒数,目的是让学生体会,进而理解。
然后提问:整数没有分子和分母,那么整数是否有倒数呢?如果有的话,你能举例说明吗?在学生掌握总结出求整数的倒数的方法后,再提出两个特殊的整数的倒数的研究,通过集体讨论,加深了学生对“1”和“0”倒数的认识。同时也将倒数的认识引向本质内涵:两数乘积为1。
在本节课也有一些不足:让学生讨论过多,求倒数的方法,我只是口述,应该板书,效果会更好;还有就是时间没有掌握好,本打算练习后讲小数、带分数的倒数的求法,但由于时间没有分配好,最后没有提及,课后才进行补充。
《倒数》教学设计3
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的倒数的求法。
教具准备:课件
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
出示例7
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
师:2/5和5/2的积是1,我们就说??(生齐说)
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的'两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数 求带分数的倒数的方法:带分数
三、 分数倒数。 倒数。 假分数
师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1 的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。 )
四、巩固练习
1、打开书,阅读课本P34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是( ) (2)9/7的倒数是( )
2/5的倒数是( )10/3的倒数是( )
4/7的倒数是( ) 6/5的倒数是( )
(3)1/3的倒数是( ) (4)3的倒数是( )
1/10的倒数是( )9的倒数是( )
1/13的倒数是( )14的倒数是( )
由学生说出各数的倒数。然后
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。
4、填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、课堂小结
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计
倒数的认识
乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。
0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小数的倒数的方法: 求带分数的倒数的方法:带分数
分数假分数 倒数。 倒数。
《倒数》教学设计4
教学目标:
1、通过独立计算以及小组讨论等活动认识倒数,理解倒数的意义,能准确的说出,互为倒
数的两个数乘积为一,并且相乘的两个数分子、分母颠倒了位置
2、通过合作交流探讨出求一个数的倒数的方法,并能正确的求出一个数的倒数。
3、在探究交流的.活动中,提高观察、抽象、概括的能力,发展数学思维。
教学重点:
认识倒数并能准确的求一个数的倒数。
教学难点:
小数求倒的方法
教具准备:
课件
教学流程(师生活动)设计
备课组成员
修改意见
一、创设情境,提出问题。
1、师:请同学们完成一下计算:
2、组织学生观察以上算式,说出你的发现。
3、你还能再列举出其他类似的算式吗?
4、师:乘积是1的两个数之间存在着一种特殊的关系——互为倒数。
今天我们就一起来认识倒数,研究倒数。
二、探索交流,解决问题。
①倒数的意义
问题 1:请认真阅读课本第 28 页例 1 以上的部分,然后告诉老师
什么是倒数?互为倒数的两个数有什么特点?“互为”两个字又是什么
意思?先独立思考,然后小组讨论。
生汇报,师引导交流评价。
【随堂小测 1】第 29 页第 2 题的(1)( 2)题
②求一个数的倒数
问题 2:通过交流、探讨,你发现怎样才能正确的求一个数的倒数?
独立思考后,小组间讨论。
【随堂小测 2】第 28 页做一做
问题 3:特殊数 0 和 1 的倒数你会求吗?你有什么发现?
小结:1 的倒数是 1,0 没有倒数。
问题 4:0.45 的倒数你会求吗?说说你的思考过程。
独立思考后,小组间讨论。
【随堂小测 3】第 29 页第 2 题的(3)( 4)
思考:互为倒数的两个数有什么特点?如何求整数的倒数?如何求
分数的倒数?
三、巩固应用,内化提高 。
四、回顾整理,反思提升。
通过这节课的学习,你有什么收获?有什么感受
板书设计
《倒数》教学设计5
教学目标
1.教学倒数的认识,使学生理解倒数的意义,掌握求一个数倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
教学重点
理解倒数的意义,掌握求倒数的方法。
教学难点
熟练写出一个数的倒数。
教学方法:讲练结合,以练为主
教具:多媒体
教学过程与内容设计
一、提出问题预习展示
1、通过预习你获得哪些知识?
2、口算成绩是一的算式,集体交流、发现问题提出问题?
你们能给这样的两个分数起个名吗?
2/3×2/3=1 4/5×5/4=1
3×1/3=17/9×9/7=1
1×1=1 0。1×10=1
8×1/8=160×1/60=1
结合学生汇报教师板书:板书课题“倒数”
乘积是1的两个数互为倒数。
3、举例子你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门?
板书:两个因数的分子和分母交换了位置
二、研究问题指导点拨
(一)研究倒数的意义
1、你能根据自己的理解说说怎样的两个数叫互为倒数吗
学生此时回答有两种可能:一种是乘积是1的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。
2、注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。
3、进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。
4、快速抢答下面的说法对吗?为什么?
和是1的两个数互为倒数。()
差是1的两个数互为倒数。()
商是1的两个数互为倒数。()
得数是1的两个数互为倒数。()
乘积是1的几个数互为倒数。()
乘积是1的两个数是倒数。()
(二)研究倒数的求法
出示例题:找出下列各数的倒数
6/75/361
小组讨论指名板演
1、提问:
你是怎么写出6/7的倒数的?
生:因为6/7与7/6乘积是1,所以6/7的倒数是7/6。(因为互为倒数的两个数的分子与分母正好调换位置。6/7的分子与分母调换位置后是7/6,所以6/7的倒数是7/6。)
2、你是怎么写出5/3的倒数的?
……
3、讨论:整数0除外的倒数是谁?1的倒数是谁?0的倒数呢?
(1的倒数是1)
师:能说明一下理由吗?
生1:因为6先化成分母是1的为6/1,在调整位置交换1/6。
生2:因为1与1的乘积还是1。(因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。)
师:0的倒数呢?
(1)0的倒数是0。因为1的倒数是1,所以0的`倒数是0。
(2)因为0与任何数相乘都得0,所以0的倒数是任何数。
(3)0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
(4)0可以写成0/1,0/1的倒数是1/0。
(5)不对,1/0分母是0,没有意义,所以0是没有倒数的。
4、完善求一个数的倒数的方法
(三)抽象概括
学生自行总结求倒数的方法。
板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
三、延伸
师:怎样求带分数、小数的倒数?
总结:带分数先化成假分数然后再调换位置。
小数先化成分数然后再分子分母调换位置。
四、(一)类化练习
1、请你填一填
2、小法官
3、你一定行
(二)谜语
五四三二一
(打一数学名词)谜语:倒数
五、谈收获
通过本节课的学习,你有什么收获?
《倒数》教学设计6
教学内容
教科书第28~29页例1、“做一做”及相关内容。
教学目标
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点
理解倒数的意义;求一个数的倒数。
教学难点
理解“互为倒数”的含义。
教学准备
教学课件、写算式的卡片。
教学过程
具体内容 修订
基本训练,强化巩固。(3分钟)
1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。(2分钟)
请个别学生说说分数乘法的计算方法,突出分子与分母的'约分。
提示目标,明确重点。(1分钟)
通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。(6分钟)
1. 观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。(4分钟)
让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。(8分钟)
1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
《倒数》教学设计7
教学内容:教科书第24页例1、例2及“做一做”。
教学目标:
1.使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。
教学过程
一、口算练习,唤醒对1的探究热情
A①×=②×=③×32=④×=
⑤×=⑥62×=⑦×=⑧×=
⑨×=⑩×=
B①×1=②×1=③×1=④×1=
⑤×1=⑥1×=⑦1×=⑧1×=
⑨1×=⑩1×=
C①÷1=②÷1=③÷1=④÷1=
⑤÷1=⑥÷1=⑦÷1⑧÷1=
⑨÷1=⑩÷1=
(课前,将三组口算练习题分别发给同桌两人,其中把A发给坐在右边的学生,把B、C发给坐在左边的学生))
师:请同学们拿出课前发的口算练习卡,现在我们来进行一个口算比赛,做完后请起立,两分钟时间,现在计时开始。
之后让学生思考为什么做两组的比做一组的还快呀?学生交流后,再屏幕出示口算题让学生找找原因。
师:看来秘诀就在1这个数上。1在运算中有一些特点,任何数乘1还得原数,如果除以1,也是这样。所以这个1,在数学运算中有自己独特的地方。板书:1想一想,谁除以谁会等于1呢?能用最简洁的语言概括一下吗?
二、观察比较,抽象概念
提问:谁乘谁等于1呢?板书:×()=1
在练习本上写几组乘积是1的算式,时间1分钟,看看谁写得多。
交流:把学生的算式分类排列。(整数、分数、小数)
小结:3个臭皮匠赛过诸葛亮,集中大家的智慧,让我们把问题考虑的更全面。
观察:这些等于1的乘法算式,因数有什么特点?
预设:
1、在有分数的算式里,分母和分子都颠倒了。(他用了一个词颠倒,很好的概括了这些因数的特点。这样的两个分数相乘都等于1吗?能不能再举出一些例子来?)真的很有意思,分子分母颠倒过来的两个数相乘等于1.在数学上,知道这样的两个数叫什么吗?(板书:倒数)
2、很形象,分子分母交换了位置,通俗的讲就是倒过来了。那现在谁能简练的概括一下,什么是倒数?(板书:乘积是1的两个数互为倒数。)
理解:
在倒数的意义中,你觉得哪些词比较重要?为什么?
预设:
①乘积是1,强调了只能是乘法计算的结果,加法、减法、除法的结果是1的`两个数就不能说是互为倒数。
②两个数也很重要,它告诉我们不能是3个、4个或更多个数的乘积,只能是两个数的乘积是1.
③互为也很重要,互为是互相的意思,表示两个数之间的一种关系,一个数不能叫倒数。
练习:
现在我们通过几道小练习来检测一下大家是否弄清了倒数的意义。
1、×()=1
2、判断:
①因为×=1,所以是倒数,也是倒数。()
②××=1,所以、、互为倒数。()
③×的乘积为1,所以与互为倒数。()
三、运用概念,探究方法
提出问题:
我们理解了什么是倒数,那给一个数,你会找它的倒数吗?同桌两个人互相出数,然后想一想,怎样求这些数的倒数?
全班交流:
①分数(多找几对同桌先交流结果,再说一说找分数倒数的方法)
②整数(化成分母是1的分数,然后交换分子和分母的位置或用1除以这个数)有研究1的倒数的吗?0呢?
③小数(先化成分数,然后交换分子和分母的位置)
质疑:
有研究带分数的吗?带分数怎样找倒数呢?(举例验证,总结方法。)
四、分层练习,形成能力
1、写出下面各数的倒数。(课本24页做一做)
预设:学生可能会出现=
2、若m×=1,则m=()。
3、任何真分数的倒数都是()。
A真分数B假分数C不确定的数
4、游戏:找朋友。
①请4个同学到台上,给每人戴上一顶帽子,上面有、、0.5、2各数,本人看不到自己头上的数,但可以看到其他三个人的。
②5个不同的数:、、1、、3,每个数的倒数都在其中。
五、回顾全课,总结提升
今天这节课,你有什么收获?
师:同学们在动脑思考、合作交流中知道了什么是倒数,并知道了求一个数倒数的方法,还发现了两个特殊的数:1的倒数是1,0没有倒数。希望同学们在学习中能坚持善于观察、勤于动脑的好习惯,探索更多的数学知识。
《倒数》教学设计8
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的'关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:那么我们就说xx是xx的倒数,反过来(引导学生说)
xx是xx的倒数,也就是说和互为倒数。
xx和xxx存在怎样的倒数关系呢?2和呢?
2、深化理解
提问:
①什么是互为倒数?怎样理解这句话?(举例说明)
②0有倒数吗?为什么?1有倒数吗?什么?
3、求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?
《倒数》教学设计9
学习目标:
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
教学重点:
求一个数倒数的方法。
教学难点:
1和0倒数的问题。
教学过程:
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!
一、导入:
同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)揭示倒数的意义
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)
师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的`整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4.探讨带分数、小数的倒数的求法
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:
发现1:带分数的倒数都(小于)本身;
发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1.想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2.(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结
今天学习了什么?我们一起回顾总结出来好吗?
什么叫倒数?怎样找出一个数的倒数?
《倒数》教学设计10
教学内容:
数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:
理解倒数的意义和怎样求一个数的倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数。
一、游戏导入
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)
二、探究意义
1.找特点
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒 )
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1 )师及时板书
师:谁还能很快说出乘积是1的两个数吗?
(生回答)
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)
师:那么乘积是1 的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1 的两个数叫互为倒数)
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/5 7/2 8/6 5/12 10/4
(指名回答师板书)
师:你们是怎么找出每个数的倒数的?
(说自己的方法)
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:6 0.5 2 7/8 1
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论
0为什么没有倒数?(0和任何数相乘都不得1)
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)
四、小结并揭示课题
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空
1、乘积是()的两个数叫()倒数。
2、因为7/15 x 15/7 =1 所以7/15和15/7( )
3、 5的倒数是( )。 0.2的倒数是( )。
4、()的倒数是它本身。()没有倒数。
5、8×()=1 0.25×()= 1
()×2/3=1 7/2×( )=( )×8=( )×0.15 =1
2、当把小医生。
1、得数是1的两个数叫互为倒数。()
2a是一个整数,它的倒数一定是 1/a 。()
3、因为2/3×3/2=1,所以2/3是倒数。()
4、1的倒数是1,所以0的倒数是0。()
5、真分数的倒数都大于1。()
6、2.5和0.4 互为倒数。()
7、任何真分数的倒数都是假分数。()
8、任何假分数的倒数都是真分数。()
3、面各数的倒数
2.5 4 1/8 2 6/7 0.12
4、列式计算
1、7/6加上它的倒数的和乘2/3,积是多少?
2、 1减去它的倒数后除以0.12,商是多少?
3、已知A×3/2=B×3/5,(A、B都是不为0的数)
求A、B的大小
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的`意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
《倒数》教学设计11
教材分析
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学情分析
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
教学目标
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点和难点
理解倒数的意义,会求一个数的倒数。
教学过程
略
教学反思
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的.例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。
《倒数》教学设计12
一, 教学内容:国标版小学六年级数学上册第50页例7,练一练及第51页练习十第1-6题
二, 教学目标 :
知识目标:使学生经过探索理解倒数的意义,掌握求倒数的方法.
能力目标:能熟练地写出一个数的倒数.
情感目标:结合教学实际培养学生的抽象概括能力.
三, 教学重点:理解倒数的意义,掌握求倒数的方法.
四, 教学难点 :探索和理解倒数的意义
五, 教学过程 :
(一), 谈话
1.我们知道语文中有反义词,谁能举几个这样的例子呢
(学生举例)
2.导入 那么在数学上也有类似的这样的现象,今天我们就一起来探索一下这方面的知识.
(二),学习新知
1.学习倒数的意义
出示几组数据
3/8和8/3 5/4和4/5 2/3和3/2 10/7和7/10
你发现这几组数据有什么共同点吗
可能1:第一个 分数的 分子就是第二个分数的分母,第一个分数的分母就是第二个分数的 分子
可能2:两个分数的分子,分母相互调换了位置.
可能3:两个分数的乘积是1.
提问:谁能够根据刚才的回答给这几组数据起个名字呢 (注意可能1,倒过来的数字)(倒数)出示课题:倒数的认识
提问:那么怎样的两个数才互为倒数呢 我们一起来看看书上是咱们说的(指导看书).
思考:(1)什么是倒数 满足什么条件的两个数互为倒数
(2)你能找出互为倒数的`两个数吗.请举例
*注意帮助学生理解"互为"的意义,以及叙述时语言要规范,如 2/3和3/2互为倒数.
2教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置.2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 .
2.你是怎么找出7/4的倒数的
……
提问: 我们怎样才能很快地找到一个数的倒数 为什么
(分数的分子和分母的位置互换)
抢答:5/9 6/7 8/5 的倒数各是多少
3质疑1:1 的是谁 0的倒数呢
生:1的倒数是1
师:能说明一下理由吗
生1:因为1与1的乘积还是1.
生2:因为1可以化成1/1,1/1分子与分母调换位置后还是1/1,即1,所以1的倒数是1.(板书:1的倒数是1)
师:0的倒数呢 (引导学生质疑)
生1:0的倒数是0.因为1的倒数是1,所以0的倒数是0.
生2:因为0与任何数相乘都得0,所以0的倒数是任何数.
生3:0的倒数是没有的因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数.
生4:0可以写成0/1,0/1的倒数是1/0.
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的 (板书:0没有倒数)
4质疑2:5的倒数是几
5完善求一个数的倒数的方法
(三), 巩固练习
(1)练一练
写出下面各数的倒数
7/12 1/3 9/4 8 13/5
(2)判断*
1.得数是1的两个数互为 倒数.()
2.互为倒数的两个数乘积一定是1.()
3. 1的倒数是1,所以0的倒数是0 .()
4.分数的倒数都大于1.()
(3)完成练习十第1-3题
1.完成在书上
2.举几个例子,说说你是怎么做的
3.集体核对
(4)完成练习十第4题
1 分成4组,分别完成第1.2.3.4组
2.同桌相互讨论,你发现了什么现象 (引导学生观察)
3.归纳:
真分数的倒数都是大于1的假分数
大于1的假分数的倒数都是真分数
一个分数的分数单位的倒数都是整数
整数(0除外)的倒数都是几分之一
(5) 完成练习十第6题*
1.理解题意
2.学生独立完成解题,师巡视.
3.质疑:解题思路都一样吗 两个2/5有什么区别
四,总结:今天我们学习了什么知识 你现在会求一个数的倒数了吗
六 板书设计
倒数的认识
乘积是1的两个数互为倒数
1的倒数是1 0没有倒数
《倒数》教学设计13
教学目标:
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
教学重点:
理解倒数的含义,掌握求倒数的方法。
教学难点:
掌握求倒数的方法。
教学过程:
一、导入
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
二、教学实施
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的'倒数是它本身。
4、求倒数的方法。
(1)出示例1、
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1—5题。
三、课堂作业设计
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是(),()的倒数是六分之七。
(2)10的倒数是(),()的倒数是1。
(3)二分之一的倒数是(),()没有倒数。
《倒数》教学设计14
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的`两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0。2的倒数是0。25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/310.8(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
《倒数》教学设计15
【教案背景】
《倒数》是北师大版小学数学五年级下册第三单元的内容。这部分内容是在学习了分数乘法的基础上,进行教学的。它既与前面的内容有一定的联系,又具有相对的独立性,它是学习分数除法的关键知识,能否正确理解掌握倒数,决定着学生学习分数除法的水平,是学习分数除法的前提和必要条件。
【教学内容】
北师大版小学数学五年级下册第24页的内容。
【教材分析】
《倒数》主要有两部分内容:一是倒数的意义,即什么是倒数;二是倒数的求法。为了使学生对倒数意义的理解更深刻,教材列举了8道两个数乘积为1的乘法算式,设计了“算一算”的活动,目的就是想让学生通过实际计算更直接地感受这组算式中积的特点,从而在观察的基础上进一步发现这些算式的共同特点。教材中的文字内容,易于学生理解倒数的意义,强调倒数是对两个数来说的,不能孤立地说某一个数是倒数。教材中的“试一试”环节,及时巩固新知,教师还可以进一步规范学生的数学语言。“想一想”环节,解决1和0的倒数的问题。“练一练”环节 ,进一步理解和巩固倒数的求法。
【学情分析】
结合本班学生实际和教材特点。学生在理解倒数的意义时,对“互为”一词,会有一些困难,要联系本人和同学们相互成为好朋友来理解,强调倒数的互相依存性。学生对乘积是1,理解时可能会只关注得数是1,要进一步引导学生理解“和、差、商为1时,两个数不互为倒数”。因此,在教学时要创设必要的情境,让学生易于接受。
同时,结合以后学习的需要,教师适当补充带分数、纯小数、带小数这些数的倒数的求法,在掌握分子、分母调换位置求一个数的倒数的方法的基础上,引导学生迁移学习,逐步掌握“先变形,再换位”的方法求倒数。
【教学目标】
1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。
2、掌握求一个数的倒数的方法。
3、在教学活动中,培养学生归纳、推理能力。
【教学重点】
发现倒数的特征,理解倒数的意义。
【教学难点】
掌握求一个数的倒数的方法。
【教学方法】
创设情境、激趣质疑、自主探究、合作学习。
【教学课时】
一课时
【教学过程】
一、创设情境,导入新课
1、谈话:同学们,由于教师调动本学期我成了咱们班的数学老师,经过这几天的相处,我们都互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?
2、猜字谜:
同学们说的很好!咱们再来猜个字谜吧!
“吞”字上下颠倒是什么字?(吴)
“呆”字上下颠倒又是什么字?(杏)
3、引入新课:汉字真奇妙啊,把一个字的上下部分颠倒就可能会变成另外一个字,其实,在数学里也有这种奇妙的现象!你们想知道吗?猜猜看,谁能举出这样的例子。例如把倒过来就变成,颠倒就变成了,也就是( 7 )。我们给这些数起个名字就叫倒数(板书课题:倒数)
二、观察比较,抽象概念 71233217
1、课件出示课本24页8道算式,引导学生观察。
3111812×=() 2×=() ×=() ×10=( ) 22831110
915761×=() 7×=() ×=() ×5=() 776955
2、分组讨论: (1)、这些算式有什么特点?(预设:此处根据学生的回答,分子与分母相互颠倒。)
(2)、这些算式的结果有什么特点?(预设:此处根据学生的回答,乘积是1。)
3、小组交流,教师点评。
4、引导归纳倒数的概念:乘积是1的两个数互为倒数。(教师板书,学生口述。) 5、倒数的概念中哪些词比较重要?
(预设:此处根据学生的回答,依次理解两个数、乘积是1、互为。) 同学们可真是火眼金睛啊,关键词都找出来了!让我们再大声说一次什么是倒数。(生齐说概念 )倒数还有什么特点呢?(分子和分母相互颠倒)
6、教师小结:互为倒数的两个数的乘积必须是1,倒数是对两个数来说的,它们是互相依存的关系,必须说一个数是另一个数的.倒数,不能孤立地说某一个数是倒数。
7、你能说说大屏幕上的口算题中,谁和谁互为倒数吗?谁的倒数是谁?
生:因为( )×( )= 1 ,所以( )的倒数是 ( ),( )的倒数是 ( ),( ) 和( ) 互为倒数。
(此处引导学生说4句话,在进一步理解倒数意义的基础上,规范学生的数学语言)
8、你还能举出其它的例子来吗?请同桌同学互相说一些互为倒数的
例子,他说得对吗?你们怎么知道是对的?
(预设:用倒数的概念验证,把两个数相乘,看结果是否等于1。如果学生在此处举出特殊数1、0,则顺着学生的想法,及时展开讨论。如果没有则在下一环节进行。)
9、及时练习,巩固新知:我来当小老师。(判断对错,说清理由。)
(1)、2是的倒数。 ( )
(2)、和是1的两个数互为倒数
(3)、计算结果得1的两个数互为倒数。() (4)、因为×=1,所以是倒数。( )
三、引导探究,掌握方法
1、同学们已经认识了倒数,那么你们能根据刚才所学找到下面各数的倒数吗?(能)那就请同学们进入闯关环节,先独立完成,遇到困难可以同伴互助,看看哪些同学和小组能连闯三关,开始!
2、生开始做题,师巡视。(课件出示)
第一关:的倒数是( ),的倒数是(),的倒数是()。 第二关:4和( )互为倒数,5和( )互为倒数。
第三关:1的倒数是( ),0的倒数是( )。
3、全班交流反馈。
那么0的倒数又是几呢?(有争议)预设:
生:因为1的倒数是1,所以0的倒数是0.
生:可以把0看做,他的倒数就是。
生:对,0不能做分母,也不能做除数,所以0没有倒数。
生:0与任何数相乘都不得1,而是得0,所以我也觉得0没有倒数。 师:小结强化0的确没有倒数。
4、小结闯关情况:连闯三关的同学起立,你们真是善于动脑的同学,好样的,庆祝一下!掌声送给你们!
5、归纳方法:同学们通过闯关已经学会求一个数的倒数了,请你试 011034521923322312
着总结出求一个数的倒数的方法。
(1)课件:求一个数的倒数,只要把这个数的分子、分母调换位置。
(2)请问:这个数中包含0吗?0有没有倒数呢?
(3)完成板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
(4)课件:演示方法
6、质疑:关于如何求一个数的倒数大家还有什么疑问吗?
预设:⑴生:我想知道带分数的倒数怎么求?
⑵生:老师我也有一个问题:小数有倒数吗?
【《倒数》教学设计】相关文章:
倒数教学设计01-03
倒数的认识的教学设计01-27
倒数的认识教学设计12-16
倒数的认识教学反思10-26
《倒数的认识》教学反思09-19
倒数的认识教学反思15篇02-26
倒数的认识说课稿03-29
倒数的认识教案12-23
卖炭翁教学设计《卖炭翁》教学设计11-13