【必备】倍数与因数教学设计15篇
作为一无名无私奉献的教育工作者,通常需要用到教学设计来辅助教学,编写教学设计有利于我们科学、合理地支配课堂时间。教学设计应该怎么写呢?下面是小编为大家收集的倍数与因数教学设计,仅供参考,希望能够帮助到大家。
倍数与因数教学设计1
【教学内容】
人教版数学五年级下册P12一14,练习二。
【教学过程】
一、操作空间,初步感知。
1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。
2.学生动手操作,并与同桌交流摆法。
3.请用算式表达你的摆法。
汇报:1x12=12,2x6=12,3x4=12。
【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。
二、探索空间,理解新知。
1.理解因数和倍数。
(1)观察3x4=12,你能从数学的角度说说它们之间的关系吗?师根据学生的表达完成以下板书:3是12的因数12是3的倍数4是12的因数12是4的倍数3和4是12的因数12是3和4的倍数
(2)用因数和倍数说说算式1x12=12,2x6=12的关系。
(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。
2.求一个数的因数。
(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。学生汇报。
师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。
出示要求:
①可独立完成,也可同桌合作。
②可借助刚才找出12的所有因数的方法。
③写出36的所有因数。
④想一想,怎样找才能保证既不重复,又不遗漏。教师巡视,展示学生几种答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比较喜欢哪一种答案?为什么?
用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)
师:有序思考更能准确找出一个数的所有因数。完成板书:描述式、集合式。
(3)30的因数有哪些?
【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。
3.求一个数的倍数。
(1)3的倍数有:——,怎样
有序地找,有多少个?
找一个数的倍数,用1,2,3,4?分别乘这个数。(2)练一练:6的倍数有:,40以内6的倍数有:一o
【评析】
由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。
4.发现规律。
观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现?根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。
【评析】
通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。三、归纳空间,内化新知。
师生共同总结:
(1)因数和倍数是相互的,不能单独存在。
(2)找一个数的`因数和倍数,应有序思考。
四、拓展空间,应用新知。
1、15的因数有:——,15的倍数有:——。
2.判断。
(1)6是因数,24是倍数。()
(2)3.6÷4=0.9,所以3.6是4的因数。()
(3)1是1,2,3,4?的因数。()
(4)一个数的最小倍数是21,这个数的因数有1,5,25。()
3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。
4、举座位号起立游戏。
(1)5的倍数。
(2)48的因数。
(3)既是9的倍数,又是36的因数。
(4)怎样说一句话让还坐着的同学全部起立。
【评析】
本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。
【反思】
本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:一、留足空间,让探索有质量。
留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思
维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。二、适度引导,让探索有方向。
引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。
在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。
整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。
倍数与因数教学设计2
一、教学内容
1.因数和倍数
2.2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
1.精简概念,减轻学生记忆负担。
三方面的调整:
A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
四、具体编排
1.因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的'概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3.质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
五、教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2.要注意培养学生的抽象思维能力。
倍数与因数教学设计3
教学内容:
苏教版小学数学四年级(下册)第70-72页。
教学目标:
1、使学生结合乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法。
2、使学生在探索的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
3、增强学生学习数学的兴趣,感受到成功的快乐。
教学重点:
理解倍数和因数的含义,探索并掌握找一个数的倍数和因数的方法。
教学难点:
理解倍数和因数的含义及倍数和因数的相互依存关系。
教学准备:
学生:每人准备12个同样大小的正方形。教师:课件
教学过程:
一、认识倍数和因数
1、提出活动要求:每一桌的同学合作,用12个同样大小的正方形拼成一个长方形,想想有几种不同的摆法,并用乘法算式把不同的摆法表示出来。看看哪桌的同学最快完成。
2分组操作活动,师巡视指导。
3、指名汇报,出示课件,全班交流。汇报时是引导学生根据“每排摆几个”“摆了几排”这两个问题说出三种不同的乘法算式。师提示:每排摆5个,能摆几排,明确只有这三种摆法。
4、教学“倍数”和“因数”的概念。
(1)结合4×3=12,说明12是4的倍数,12也是3的倍数,4和3都是12的因数。并板书。
(2)齐读这三句话,板书课题:倍数和因数
(3)指名看式子说。
(4)请学生根据6×2=12和12×1=12两道算式,照样子说
一说哪个数是哪个数的倍数?哪个数是哪个数的因数?
追问:如果说12是倍数,3是因数,可以吗?为什么?
明确:倍数和因数都是指两个数之间的关系,是相互依存的。
教师指出阅读底注明确:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。不是0的自然数,0要考虑吗?那从什么数开始。如1、2、3、4、5、6、7、8、9…….在小数和分数等其他数中就也没有倍数和因数的说法了。(可根据具体的算式说明,如0×3=0,1.5×2=3。)
(5)练习:“想想做做”第1题。每位同学都各选一个乘法算式同桌之间互相说一说,
三、探索找倍数和因数的方法
1、探索找一个数的倍数的方法
(1)提出问题:什么样的数会是3的倍数呢?明确:3的倍数是3与一个数相乘的积。你能找到多少个3的倍数?先让学生独立思考,再组织交流。
(2)启发:谁能按从小到大的顺序有条理的说出3的倍数?根据什么样的乘法算式?明确:可以按从小到大的顺序,依次用1、2、3、4……与3相乘,每次乘得的积都是3的倍数。同时板书:
3×1=(3)3×2=(6)……
追问:能把3的倍数全部说完吗?应该怎样表示3的倍数有哪些呢?
根据学生的回答课件演示:3的倍数有3、6、9、12、15……
(3)完成后面的`试一试。提醒学生注意有序的思考,并规范的表示出结果。
(4)一个数的倍数的特点。
提问:观察上面的几个例子,你发现一个数的倍数有什么特点?根据学生的交流归纳:一个数的倍数中,最小的是它的本身,没有最大的倍数,一个数的倍数的个数是无限的。
提问:现在你能很快说出6的最小倍数是多少吗?10呢?
2、探索找一个数的因数的方法
(1)提出问题:什么样的数是36的因数?
学生举例说明。明确:如果有两个数相乘的积是36,那么这两个数都是36的因数。
板书()×()=36
(2)提问:你能找出36的所有因数吗?启发:要做到不重复,不遗漏,怎样才能有条理地找出36的所有因数?
学生试着在练习本上列式找出。
(3)学生汇报交流,根据学生的回答课件演示。
(4)进一步启发:我们知道除法是乘法的逆运算,根据除法算式,也可以找一个数的因数。。根据36÷1=36可以找到1和36……
请同学们看书71页,完成书上的填空。
(5)完成“试一试”。提醒学生有序的思考,做到不重复,不遗漏。
学生汇报,说说你是怎样找的。
(6)观察发现
提问:观察上面的例子,你发现一个数的因数有什么特点?
小结:一个数因数的个数是有限的,一个数的因数中,最小的是1,最大的是它本身。
提问:现在你能很快说出18的最小因数和最大因数是多少吗?25呢?
四、巩固练习
1、“想想做做”第2题。
组织学生读题,理解题意。表中每栏的应付元数各是怎样算出来的?他们都是4的什么数?你还能说出4的哪些倍数?能把4的倍数全部说完吗?
2、“想想做做”第3题。
组织学生读题,理解题意。表中每栏的每排人数是各怎样算出来的?排数和每排人数都是24的什么数?
五、全课总结
这节课你学会了什么?
倍数与因数教学设计4
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
根据学生的汇报板书:
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本P12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:11÷2=5……1。问:11是2的倍数吗?为什么?
生:我认为不是,因为11除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2×4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
师出示:0×3 ?0×10
0÷3 ?0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的'关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
三、课堂练习
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①( )是4的倍数
( )是60的因数
( )是5的倍数
( )是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:( )是1的倍数。
师:哗,全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
倍数与因数教学设计5
教学目标:
1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。
2.使学生经历探索求一个数的因数或倍数的'方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。
3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。
教学重点:
认识因数和倍数。
教学难点:
求一个数的因数、倍数的方法。
教学准备:
小黑板、准备12个同样大的正方形学具。
教学过程:
一、操作引入,认识意义
1.操作交流。
引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。学生操作,用算式表示,教师巡视。
交流:你有哪些拼法?请你说一说,并交流你表示的算式。
结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。
2.认识意义。
(1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。
(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。
(3)小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。
倍数与因数教学设计6
一、教学目标
(一)知识与技能
理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。
(二)过程与方法
通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。
(三)情感态度和价值观
在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。
二、教学重难点
教学重点:理解因数和倍数的含义。
教学难点:自主探索有序地找一个数的因数和倍数的方法。
三、教学准备
教学课件。
四、教学过程
(一)理解因数和倍数的意义
教学例1:
1.观察算式的特点,进行分类。
(1)仔细观察算式的特点,你能把这些算式分类吗?
(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)
第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。
2.明确因数和倍数的意义。
(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。
(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?
(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。
【设计意图】引导学生从“整数的除法算式”中认识因数和倍数的意义,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。
3.理解因数和倍数的依存关系。
(1)独立完成教材第5页“做一做”。
(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?
【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而应该说4是24的因数,24是4的倍数。
4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。
(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?
课件出示:
乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。
(2)今天学的“倍数”与以前的“倍”又有什么不同呢?
“倍数”是相对于“因数”而言的,只适用于整数;而“倍”适用于小数、分数、整数。
(3)交流汇报。
【设计意图】“一个数的因数和倍数”与学生已学过的乘法算式中的“因数”以及“倍”的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的“因数”和“倍数”意义的'难点。通过观察、对比、交流,引导学生发现一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。
(二)找一个数的因数
教学例2:
1.探究找18的因数的方法。
(1)18的因数有哪些?你是怎么找的?
(2)交流方法。
预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。
因为18÷1=18,所以1和18是18的因数。
因为18÷2=9,所以2和9是18的因数。
因为18÷3=6,所以3和6是18的因数。
方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。
因为1×18=18,所以1和18是18的因数。
因为2×9=18,所以2和9是18的因数。
因为3×6=18,所以3和6是18的因数。
2.明确18的因数的表示方法。
(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?
(2)交流方法。
预设:列举法,18的因数有:1,2,3,6,9,18。
图示法(如下图所示)。
3.练习找一个数的因数。
(1)你能找出30的因数有哪些吗?36的因数呢?
(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?
【设计意图】让学生通过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会“一对一对”有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及“最大因数、最小因数”的特征。
(三)找一个数的倍数
教学例3:
1.探究找2的倍数的方法。
(1)2的倍数有哪些?你是怎么找的?
(2)交流方法。
预设:方法一:利用除法算式找2的倍数。
因为2÷2=1,所以2是2的倍数。
因为4÷2=2,所以4是2的倍数。
因为6÷2=3,所以6是2的倍数。……
方法二:利用乘法算式找2的倍数。
因为2×1=2,所以2是2的倍数。
因为2×2=4,所以4是2的倍数。
因为2×3=6,所以6是2的倍数。……
(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?
(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)
2.练习找一个数的倍数。
你能找出3的倍数有哪些吗?5的倍数呢?
【设计意图】在理解“倍数”的基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及“最小倍数”的特征。
(四)一个数的因数与倍数的特征
1.从前面找因数和倍数的过程中,你有什么发现?
2.讨论交流。
3.归纳总结。
预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。
(五)巩固练习
1.课件出示教材第7页练习二第1题。
(1)想一想,怎样找不会遗漏、不会重复?
(2)哪些数既是36的因数,也是60的因数?
【设计意图】通过练习,让学生再次体会“1是所有非零自然数的因数”“一个数最大的因数是它本身”和“一个数的因数的个数是有限的”。同时,渗透两个数的“公因数”的意义。
2.课件出示教材第7页练习二第3题。
(1)学生独立完成,交流答案。
(2)思考:5的倍数有什么特征?
【设计意图】渗透5的倍数的特征。
3.课件出示教材第7页练习二第5题。
(1)学生独立完成,交流答案。
(2)你能改正错误的说法吗?
(六)全课总结,交流收获
这节课我们学了哪些知识?你有什么收获?
倍数与因数教学设计7
教学要求:
1、通过学生自学让学生理解掌握因数和倍数的意义,明确因数和倍数是相互依存的。
2 、通过学生合作学习,让学生掌握找一个数的因数的方法。
3、培养学生的自学能力、观察能力、抽象概括能力以及学生的合作探究能力。
4 、培养学生的合作意识、探究意识、以及热爱学习数学的情感。
教学重点:
理解因数和倍数的意义
教学重点:
掌握找一个数因数的方法
教学过程:
一、创设情境,引入新课
师:同学们,你们喜欢唱歌吗?
生:喜欢。
师:今天老师特别想听一首歌《世上只有妈妈好》,你们愿意唱给老师听吗?
生:(可以)生唱。
师:谁愿意介绍一下自己妈妈姓什么吗?
生:我妈妈姓马。
师:我们叫她马阿姨可以吗?
生:可以。
师:你能用马阿姨和陈果说一句话吗?
生:马阿姨是陈果的妈妈,陈果是马阿姨的儿子。
师:能不能单独的说马阿姨是妈妈,陈果是儿子?
生:不能。因为他们不能分开,必须说谁是谁的妈妈,谁是谁的儿子。
师:其实在数学中也有这样的`两个数,它们是相互依存的,他们也是不能单独存在的,那就是——《因数和倍数》,今天我们一起来学习。
师:板书因数和倍数。请同学们齐读课题。
生:齐读课题
师:读了课题你想知道什么?
生1:想知道因数和倍数的意义。
生2:怎样找一个数的因数。
生3:怎样找一个数的倍数?
师:这些问题是老师告诉你们,还是你们自己去学习?
生:我们自己学习。
【评析:用学生最熟悉的歌创设情境,既激发了学生的兴趣,又拉近了师生之间的距离,创设了一个宽松、和谐的氛围,以此从熟悉的母子或父子关系出发,让学生理解了相互依存的关系,为理解倍数和因数的相互依存关系作铺垫,体现了数学来源与生活。】
二、自学引导
1 、请同学们带着想知道的问题先自学教材12-13,然后完成学案一
2 、检测自学情况
(一)、填空
(1)3×4=12
3是12的()
4也是12的()
12是3的()
12也是4的()
2×6=12
2和6是12的()
12是2和6的()
1×12=12
1和12是12的()
12是1和12的()
12的因数有:()
(2)a×b=c (a、b、c均为非零自然数)
a是c的()b是c的()
c是a的()c是b的()
(二)、判断
(1)、因为0.8×5=4所以0.8是4的因数。()
(2)、因为3×6=18所以18是倍数,3和6是因数。()
(3)、因为24÷6=4所以24是6的倍数,4是24的因数。
(生自学并完成学案一,师指导)
师:有谁愿意把你的学习作品展示大家。
生:展示学习作品。
师:看了张江楠的学习作品你想说点什么?(没有学生举手)你们没有问题,那老师有问题请教你们了。
师:在a×b=c中,为什么a、b、c均为非零自然数?
生:为了方便,我们研究因数和倍数只是整数(不包括零)
师:请同学齐读这句话。
生:齐读
师:因为0.8×5=4所以0.8是4的因数。()这句话对吗?
生:不对,因为0.8是小数不是整数。
师:因为3×6=18,所以18是倍数,3和6是因数。()这句话对吗?
生:不对,因为因数和倍数是相互依存的,是不能单独存在的。
师:因为24÷6=4所以24是6的倍数,4是24的因数。
生:对
师:请读a×b=c (a、b、c均为非零自然数)
a是c的(因数)b是c的(因数)
c是a的(倍数)c是b的(倍数)
生:齐读。
师:通过你们的自学初步理解因数和倍数的意义。你们会找一个数的因数吗?
生:会
师:我们试试行吗?
生:行
师:来个大的,还是小的。
生:来个大的。
师:30可以吗?
生:可以
师:学号是30的因数的请起立,(不完整)看来找一或几个不难,要找得既准确又完整,就需要方法了。你们有没有信心自己去探究。
生:有
师:那好,你们4人小组合作找出30的因数,并完成学案二。
【评析:把课堂留给学生,让学生通过自学完成学案,体现了学在前,老师指导在后,充分让学生独立思考,获取知识。这样通过自学----完成学案---适时指导,让学生真正成为学习的主人,理解因数和倍数的意义。】
三、合作学习探究找一个数因数的方法。
四、总结。
1、这节课你有什么收获?
2、如果还有不懂的小组内讨论。
倍数与因数教学设计8
教学内容:
《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:
理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……
生:父子(父母、母子、母女)关系。
师:我和你们的关系是……
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
二、认识因数与倍数
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
根据学生的汇报板书:
1x12=12 2x6=12 3x4=12
12x1=12 6x2=12 4x3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本P12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12x1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:11÷2=5……1。问:11是2的倍数吗?为什么?
生:我认为不是,因为11除以2有余数。
师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?
生:2x4=8,2和4是8的因数,8是2和4的倍数。
生:40÷2=20,40是2和20的倍数,2和20是40的因数。
师出示:0x3
0x10
0÷3
0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的`数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2x6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2x6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
三、课堂练习
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2
4和24
72和8
20和5
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3x6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①()是4的倍数
()是60的因数
()是5的倍数
()是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:()是1的倍数。
师:哗,全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
倍数与因数教学设计9
教材分析:
这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。
了解学生:
学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。
教学目标:
1、知识技能:
(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。
(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。
(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。
3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。
教学重点:学会求一个数的因数或倍数的方法。
教学难点:理解和掌握因数和倍数的概念。
教学准备:课件、作业纸。
教学过程:
一、创设情境——找朋友
1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)
2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)
学生完整叙述:“xx是李老师的朋友,李老师是xx的朋友”。
3、引入新课:同学们说的很好,那能不能说老师是朋友,xx是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)
二、探究新知
1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的'乘法算式表示出排列的方法。
学生可能得到:每排6人,排成2排,2x6=12;
每排4人,排成3排,4x3=12;
每排12人,排成1排,1x12=12。
课件出示相应的图和算式。
2、揭示概念:以2x6=12为例。
边说边板书:()是12的因数,()是12的因数;
12是()的倍数,12是()的倍数。
学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)
突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)
3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。
学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)
倍数与因数教学设计10
教学内容:义务教育课标实验教科书青岛版数学三年级下册P109——P110。
教学目标:
知识与技能:使学生结合具体情境初步理解因数和倍数的含义,初步理解因数和倍数相互依存的关系。
过程与方法:使学生依据因数和倍数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数的因数和倍数的方法。
情感与态度:使学生在认识因数和倍数以及找一个数的因数和倍数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:理解因数和倍数的含义。
教学难点:探索并掌握找一个数的因数和倍数的方法。
教学过程:
一、认识因数、倍数
1、操作:用这12个正方形拼成一个长方形,每排摆几个,摆了几排,摆完后在练习本上写出乘法算式。
汇报:你是怎么摆?算式是什么?
指名说,师板书:1×12=12 2×6=12 3×4=12
2、学习“因数、倍数”的概念
师:刚才通过摆不同的长方形,我们得到了3道不同的乘法算式,别小看这3个算式,其实在这里面有许多数学奥秘。今天我们就来研究数学的新奥秘。
师指3×4=12 说:因为3×4=12,所以我们就说3是12的因数(板书:因数),4是12的因数;12是3的倍数(板书:倍数);12是4的倍数。
小结:是呀,我们不能直接说谁是因数,谁是倍数,而要清楚的表达出来谁是谁的因数,谁是谁的倍数。看来,因数和倍数是相互依存的(板书:和)。为了方便,在研究因数和倍数时,一般不讨论0。
二、探索找一个数的因数的方法
1、师:看黑板上的3个算式,你能找到12的所有的因数吗?(学生齐说。)
问:如果没有算式,你能找出24所有的因数吗?先想想怎样找?然后写在练习本上。
学生写一写,师巡视。
汇报展示:(2人)
问:你是怎么找的?(学生说方法)
评价:他找的怎么样?(学生评一评)
师讲解:想知道老师是怎么找的吗?(师边讲解边一对一对的板书24的因数)24的因数有:1,2,3,4,6,8,12,24
小结:其实老师就是按从小到大的顺序一对一对找的,这样就能做到既不重复又不遗漏了。看来,有序的思考问题对我们的帮助确实很大。
2、练习
师:用这种方法写出18的因数。
汇报:你找的18的因数都有哪些?(指名说,师板书)
3、发现规律
问:仔细观察这几个数的因数,你能发现什么规律?
小结:一个数的因数最小的是1,最大的是它本身。
三、探索找一个数的倍数的方法
1、方法
学生找3的倍数,写在练习本上。
汇报:指名说,师写在黑板上。(3的倍数有:3,6,9,12,15……)
问:你能说的完吗?写不完怎么办?(用省略号)
你是怎么找的?
评一评:他的方法怎么样?
问:还有别的方法吗?
问:怎么找一个数的倍数?
指名说。
师:按从小到大的`顺序,用3依次去乘1、2、3、4……,乘得的积就是3的倍数。
2、练习
找出5的倍数,写在练习本上。
指名说,师板书,问:你是用什么方法找的5的倍数?
3、发现规律
问:观察一下,你发现一个数的倍数有什么特点?
师小结:一个数的倍数的个数是无限的,最小的是它本身,没有最大的。
问:一个数的倍数个数是无限的,一个数的因数的个数呢?(有限)
(课件出示)
四、巩固练习
1、写一写:6的因数、9的因数、50以内7的倍数。
集体订正。
2、选一选
8的倍数有哪些?48的因数又有哪些?
学生填一填,集体订正。
3、数学小知识:完美数。
师:6的因数有(1,2,3,6),把前三个因数相加,你会发现什么?(1+2+3=6)
倍数与因数教学设计11
教学内容:新人教版小学数学五年级下册第13~16页。
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:理解因数和倍数的含义;自主探索并总结找一个数的因数和倍数的方法。
教学难点:自主探索并总结找一个数的因数和倍数的方法;归纳一个数的因数的特点。
教学具准备:学号牌数字卡片(也可让学生按要求自己准备)。
教法学法:谈话法、比较法、归纳法。
快乐学习、大胆言问、不怕出错!
课前安排学号:1~40号
课前故事:说明道理:学习最重要的是快乐,要掌握学习的方法。
教学过程:
一、复习
问:“我们在因数与倍数的学习中,研究的数都是什么数?”(整数)
谁能说说10的因数,你是怎么想的?
今天,我和大家一道来继续共同探讨“因数与倍数”
二、合作交流、共探新知
b、探究找一个数的因数的方法(谈话法、比较法、归纳法)
1、谁来说说18的因数有哪些?
a、让学生举手回答,随意点名回答。回答完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?
b、学生再次依照1x18,2x9,3x6的顺序一个个讲出乘法算式。接着追问:那18的因数就有?从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?
学生预设:有的学生可能会说还有6x3,9x2,18x1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。
c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?
d、介绍写一个数因数的方法
可以用一串数字表示;也可以用集合圈的方法表示。
说一说:
18的因数共有几个?
它最小的因数是几?
最大的因数是几?
2、做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)
a、30的因数有哪些,你是怎么想的?
b、36的因数有几个?你是怎么想的?为什么6x6=36,这里只写一个因数?
c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?
d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?
学生总结:
板书:
一个数最小的因数是1;
最大的因数是它本身;
因数的个数是有限的。
轻松一下:
我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的'数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)
b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)
因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。
过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。
a、2的倍数有哪些?你是怎么想的?从1开始做手势:1x2=2,2x2=4,2x3=6,一倍一倍地往上递加。
发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?
b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好
c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?
(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)
倍数与因数教学设计12
教学内容:
教学目标:
1 让学生理解倍数和因数的意义,掌握找一个非零自然数的倍数与因数的方法,发现一个非零自然数的倍数和因数中最大的数、最小的数以及一个非零自然数的倍数与因数个数的特征。
2 让学生初步意识到可以从一个新的角度,即倍数和因数的角度来研究非零自然数的特征及其相互关系,培养学生观察、分析与抽象概括的能力,体会数学学习的奇妙,对数学产生好奇心。
教学重点:理解倍数和因数的意义。
教学难点:从倍数和因数的意义出发,寻找一个非零自然数的倍数与因数。
教学过程:
一、直接导入
师:自然数是我们在数的王国中认识的第一种数,今天我们将从一个特定的角度,即倍数和因数的角度来研究自然数的特征及其相互关系。(板书课题:倍数和因数)
[评析:课始直接进入主题,揭示本节课新知识研究的方向,使学生产生探究新知的心理需求。]
二、教学倍数和因数的意义
(屏幕出示12个完全相同的正方形)
师:用这12个完全相同的正方形,能拼出一个长方形吗?(生:能)你能用一道乘法算式,表示你拼出的长方形吗?
生:我可以拼出一个3×4的长方形。
师:你们猜猜看,这会是一个什么样的长方形?
生:每排摆3个正方形,摆4排;或每排摆4个正方形,摆3排。(课件演示学生所猜的长方形,并让学生明白这两种拼法其实是相同的)
生:我还可以拼出一个2×6的长方形。
生:我还可以拼出一个1×12的长方形。(师问法同上,略)
师:同学们可别小看这三道算式,今天我们学习的内容,就将从研究这三道乘法算式拉开帷幕。
[评折:准确把握学生的学习起点,让学生根据所列乘法算式猜想可能拼成的长方形,大屏幕随之展示学生猜想的长方形,更加激起学生的求知欲。]
师:根据3×4=12,我们可以说(屏幕出示):12是3的倍数,12也是4的倍数;3是12的因数,4也是12的因数。
师:同学们一起来读一读,感受一下。
师:你读懂了些什么?(引导学生感知什么是倍数、什么是因数,即倍数和因数的意义;明白在乘法算式中,积就是两个乘数的倍数,两个乘数就是积的因数)
师:请你从6×2=12和12×1=12这两道算式中任选一题,用上面的话说一说。
师(出示18÷3=6):谁是谁的倍数?谁是谁的因数?为什么?
生:因为18/3=6可以改写成3×6=18,所以18是3和6的倍数,3和6是18的因数。(引导学生明白根据乘除法的互逆关系,在除法算式中也可以说谁是谁的倍数、谁是谁的因数)
屏幕出示:4是因数,24是倍数。
师:这句话对吗?(让学生理解倍数和因数是两个数之间的相互依存关系,必须说谁是谁的倍数、谁是谁的因数)
师:我们再看屏幕上这三道乘法算式(1×12=12、2×6=12、3×4=12),善于观察的同学一定发现在这三道乘法算式中。我们其实已经找到了12的所有因数,你知道都有哪些吗?(引导学生说一说)
屏幕出示一组数:36、4、9、0、5、2。
师:请你从这组数中任选两个数,用倍数和因数的关系来说一说。(生可能会选36和4、36和9、4和2这几组数)
设疑:
(1)为什么不选0呢?(让学生理解倍数和因数是针对非零的自然数)(屏幕演示将“0”去掉)
(2)为什么不选5呢?(例如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)(屏幕演示将“5”去掉)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数;当然,36也是36的因数,36也是36的倍数)
[评析:倍数和因数意义的学习层次分明。(1)猜想:由1 2个完全相同的正方形拼成一个长方形的不同拼法,得出三道乘法算式。根据3×4=12这道算式中三个数的关系,让学生初次感知倍数和因数的意义。(2)拓展:根据除法算式中“存在一个自然数等于两个自然数乘积”这一条件,揭示除法算式中依然存在着倍数和因数的关系,拓展了对倍数与因数意义的理解。(3)深化:探索并感知倍数和因数的相互依存关系。“从一组数中任选两个数”说意义的训练,巩固与深化了对倍数和因数意义的理解。]
三、探讨找一个数的因数的方法
1 师:在刚才这组数(36、4、9、0、5、2)中,2、4、9和36都是36的因数。除了这些,36的因数还有吗?(生一个一个地举例)这样一个一个杂乱无序地找,你们觉得这种方法好吗?(生:不好!)不好在哪儿呢?
生:容易漏掉或重复。
师:你们有没有什么好办法,能一个不落地将36的所有因数都找到呢?同学们可以独立完成这个任务,也可以同桌的两位同学合作完成。如果你全部找到了,就请将36的所有因数写在练习纸上。同时将你找因数的方法写在横线的下方。(教师巡视,学生讨论交流)
展示学生的作品,学生可能出现的答案有:
(1)根据1×36=36、2×18=36……分别得出1、36、2、18、3、12、4、9、6等数都是36的因数;
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等数都是36的因数。
在写法上,可能出现的答案为1、36、2、18、3、12、4、9、6(一对一对地写),或按照从小到大的顺序写,即1、2、3、4、6、9、12、18、36。然后引导学生比较这两种写法的不同。将方法优化:运用除法算式一对一对地找一个数的因数更为简便,并且不重复、不遗漏,做到答案的完整性;在写的时候,可以一头一尾地写,这样可以做到答案的有序性。(板书:有序、完整)
2 探讨一个数的因数的特征。
课件出示12的因数、15的因数和36的'因数。(从小到大排列)
学生观察、讨论下面的问题(课件出示问题):一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?
课件出示描述一个非零自然数的因数的特征的表格(如下),学生讨论、交流后再反馈。
师(小结):一个非零自然数的最大因数是它本身,最小因数是1,因数的个数是有限的。
[评析:找一个数的因数是本节课的教学难点。教学中,教师调整教材的编排顺序,先学习找一个数的因,数,通过置疑“一个个地找36的因数,这种方法好吗?不好在哪”,启发学生根据因数的意义和乘除法的互逆关系,有序地找出36的所有因数,并及时优化方法。同时,引导学生自主探索,在观察中发现一个数的因数的有关特征,最后进行总结,培养了学生解决问题的能力。]
四、探讨找一个数的倍数的方法
1 师:我们已经掌握了如何有序地、完整地找出一个非零自然数的所有因数的方法。如果让你找出一个数的所有倍数,你会找吗?(生:会)那么,我们就一起来找找3的倍数。(学生试着找出3的倍数,教师巡视,对有困难的学生给予帮助)
2 师:你是怎样有序地、完整地找出3的倍数的?
生:用3分别乘1、2、3……得出3的倍数。
生:用3依次地加3得到3的倍数。
师:你认为哪种方法能更迅速地找出3的倍数?(学生讨论交流)
师:3的倍数能找得完吗?(生:找不完)那么,可以怎样表示3的倍数的个数呢?(生:用省略号表示)(相机板书:3、6、9、12、15……)
3 写出30以内5的倍数。(做在练习纸上)
4 课件出示3的倍数、4的倍数、5的倍数,让学生从最大倍数、最小倍数、倍数的个数三个方面去描述一个数的倍数的特征(见下表)。
师(小结):一个非零自然数的最小倍数是它本身,没有最大的倍数,所以倍数的个数是无限的。
[评析:借助学习一个数的因数的方法,以此为基础,让学生自主探索找一个数的倍数的方法。在探索交流中,优化寻找一个数的倍数的方法,获得一个数的倍数的特征。]
五、组织游戏,深化认识
师:这节课,我们通过三道乘法算式与倍数和因数进行了两次的亲密接触。第一次的接触,让我们了解了倍数与因数的意义;第二次的接触,通过找一个数的倍数和因数,我们了解了一个数的倍数和因数的特征。通过这两次的亲密接触,相信 同学们对于今天所学的知识,已经有了比较深刻的理解。下面,就让我们轻松片刻。一起来玩一个特别好玩的游戏,感兴趣吗?
游戏——请到我家来做客
(每位学生的手中,都有一张写有该名学生的学号卡片)
课件演示并配有话外音:春天来了,浓浓的春天气息让森林里好客的小动物们,纷纷拿出自己最珍贵的食物款待大家。
(1)屏幕上出现了可爱的小狗向同学们走来(配音):24的因数是我的朋友。如果你卡片上的数是24的因数,欢迎你,我的朋友!(卡片上的数若符合要求,就请这位学生站起来)
(2)屏幕上出现了笨笨的小猪向同学们挥手(配音):我邀请的朋友是5的倍数,喜欢我,就快快来吧!
(3)瞧!可爱的小猫咪也来了。(屏幕上出现了俏皮、可爱的小猫咪)配音:如果你卡片上的数是1的倍数,请来我家做客吧!
(每位学生卡片上的数都符合要求,所以全班学生都站了起来)
师:小猫咪这么好客,老师也想去她家做客。你们来为老师想一个符合要求的数,好吗?(生答略)
师:是不是所有的自然数都可以呢?
生:除了0。
屏幕出示:所有非零自然数都是1的倍数。
(4)配音:威严的老虎来了!它请的朋友很特别,它是所有非零自然数的因数。这个数是几呢?(生讨论交流)
屏幕出示:只有1才符合要求,因为1是所有非零自然数的因数。
六、挑战自我,拓展升华
师:虽然我们只合作了这短短的三十分钟,但老师已经深深感到我们这个班的同学非常聪明,不仅善于观察,而且爱动脑筋,所以老师特别准备了一个富有挑战性的节目想考考大家,你们敢不敢接受挑战?(生:敢!)
挑战——你猜、我猜、大家猜I(屏幕演示动画标题)
规则:下面每组数,去掉一个数,剩下的数便是其中一个数的倍数或因数。你能找出这个数吗?
(1)20、5、4、3。
答案:去掉3(屏幕演示隐去“3”),剩下的数是20的因数,或20是它们的倍数。
(2)4、12、18、3。
答案有两种:一是去掉18(屏幕演示隐去“18”),剩下的数便是12的因数,或12是它们的倍数;二是去掉4(屏幕演示隐去“4”),剩下的数便是3的倍数。
[评析:设计游戏环节,对整节课的知识点进行总结深化,并引导每位学生参与其中,积极主动地思考本节课所学的知识,教学过程真实、有效。]
七、全课总结
师:通过今天这节课的学习,你有什么收获?你们学得开心吗?玩得开心吗?其实。数学就是这么简单而有趣,让我们每天都乐在其中!
总评:
本节课的教学特色是严谨灵活、细腻奔放。在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略。
1 意义教学引导学生自主构建。
在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和5、3和4这几组数之间的有机联系。
本课中,倍数和因数的意义教学分三个层次:
1 借助三个问题让学生通过想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。
2 通过除法算式找因倍关系。
3 渗透倍数和因数的相互依存性。
2 合理组织教材,将找一个数的因数及其特征教学提前。
寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。
教学中,教师出示一组数,如36、4、9、0、5、2,让学生从这组数中任选两个数,用倍数和因数的关系来说一说。
最后设疑:
(1)为什么不选O呢?(让学生理解倍数和因数是针对非零的自然数)
(2)为什么不选5呢?(如36和5,因为找不到一个自然数和5相乘能得到36,或者36除以5有余数)
(3)去掉了0和5,剩下的这些数和36有什么关系呢?(它们都是36的因数,或36是它们的倍数)
这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。
3 寻找一个数的因数和倍数的方法让学生自己生成。
在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台。
寻找一个数的倍数和因数。方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。
4 增强游戏中数学思维的含量。
知识在游戏中深化,在挑战中升华。
本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的游戏活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验。
倍数与因数教学设计13
教学目标:
1.通过动手操作和写不同的乘法算式,认识倍数和因数。
2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。
3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
教学重点、难点分析:
由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。
教学课时:
人教版五年级下册第二单元《因数与倍数》第一课时
教具学具准备:
1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。
2.教师准备多媒体课件。
教学过程:
一、创设情景,明确探究目标
师:人与人之间存在着许多种关系,我和你们的关系是……?
生:师生关系。
师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)
1.操作激活。
师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。
2.全班交流。
1×12=12、2×6=12、3×4=12
12×1=12、6×2=12、4×3=12
12÷1=12、12÷2=6、12÷3=4
12÷12=1 、12÷6=2、12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生汇报。
师:(指着第②组)像这样的'乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
小组合作,交流汇报。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。
师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
3.举例内化:
你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
二、自主探究,找因数和倍数
1.拓展提升,主动建构:
⑴迁移尝试:请学生试着找出36的所有因数。
⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法()×()=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷()=()的方法想,而且是有顺序地从小到大全部写出:1,2,3,4,6,9,12,18,36。
⑶启迪思考:怎样找才能不重复不遗漏?
⑷试一试找20的所有因数。
⑸介绍36的因数的另一种写法----集合
用集合形式写18的因数
2.创设情境,自主探究:
3.迁移内化,自主探究:
⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。
2的倍数有:2,4,6,8,10,12……
5的倍数有:5,10,15,20,25……
⑵引导观察:请学生观察以上这些数的倍数,有什么发现?
(一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)
(3)还记得因数吗,出示课件
观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)
三、变式拓展,实践应用
指导学生做书本“练习二”的第2题和第3题。
四、全课总结
师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?
课堂练习:游戏:“我的朋友在哪里?”
游戏规则:
(1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”
(2)相应学号的同学站起来,其他同学判断是否正确。
作业安排:
引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数
倍数与因数教学设计14
一、教材分析:
整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。
二、设计思想:
这节课教学倍数和因数的认识,学习找一个自然数的倍数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数的方法。
三、教学目标:
1、通过操作活动得出相应的乘法算式,帮助学生理解倍数和因数的意义;探索求—个数的倍数的方法,发现一个数的倍数的特征。
2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。能在1-100的自然数中找出10以内某个数的所有倍数。
3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,
四、教学重点:
理解倍数和因数的意义和掌握求一个数的倍数的方法。
五、教学难点:
倍数与因数关系的理解。
六、学情分析:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的'个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学过程:
一、创设情境,引入新课。
1.同学们,你们已经是五年级的学生了。还记得刚入学时你们学得那些数吗?师准备一些豆子让学生数。师介绍自然数及非零自然数。
2.师:我们知道人和人之间存在着这样、那样的关系,其实,数和数之间也存在着多种关系,这一节课,我们一起来探究两数之间的一种关系。
二、认识倍数和因数
1.操作活动:
师:一起看大屏幕,老师这儿有12个大小相同的正方形,如果请你把这12个正方形摆成一个长方形,会摆吗?能不能用一个乘法算式来表示,试试看。
2.学生汇报算式,然后思考是怎样摆的。
师:12个同样大小的正方形能摆出3种不同的长方形,并能写出3个乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。
3.认识倍数和因数。
师:以第一道乘法算式为例,4×3=12,数学上我们就说:12是4的倍数,12也是(3的倍数)
师:大家很会联想,反过来说,4是12的因数,同样,3也是(12的因数)。(课件出示这四句话)
师:这就是我们今天研究的内容(板书课题)
师:仔细观察这个算式,齐读一下。
师:这儿还有两道乘法算式,选你喜欢的一个,说一说谁是谁的因数?谁是谁的倍数吗?
师:为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。
师:现在你能写一个算式,找一找其中的倍数和因数吗?(同桌互相交流)
师:屏幕上也有几个算式,你能不能说一说其中谁是谁的倍数,谁是谁的因数呢?
(重点是最后一个算式18÷3=6)
生:18是3的倍数,也是6的倍数,3是18的因数,6也是18的因数。
师:看来,我们不仅可以用乘法算式,同样也可以用除法算式来找一个数的因数和倍数。
三、探索找一个数的倍数的的方法
1.找一个数倍数的方法
师:在刚才的学习中我发现12是3的倍数,18也是3的倍数,那3的倍数只有12和18吗?(不是的)
师:你能把3的倍数写出来吗,给你们1分钟的时间,开始。
师:我们一起来写3的倍数,在写一个数的倍数时,一般可以从小到大写前面5个,后面用省略号表示。
师:现在你会找一个数的倍数了吗?(会了)
师:写出2的倍数行不行?(行)5的倍数呢?(行)。
2.发现一个数的倍数的特征
师:刚才我们分别找了3、2、5的倍数,下面请同学们观察3、2、5的倍数,你能发现这些数的倍数有什么共同的特征吗?和你的同桌交流一下
生:最小的和它一样
师:一个数最小的倍数就是它“本身”。(板书:最小本身)
师:最大呢?(生:找不到最大的)
师:也就是说一个数没有最大的倍数。(板书:最大没有)
生:一个数的倍数有无数个
师:无数个我们也可以说是“无限”(板书:个数无限)
四:拓展练习
1.
(1)一共有多少个鸡蛋?
(2)说一说谁是谁的倍数.
2.判断题.
(1)36÷9=4,36是倍数,9是因数。
(2)12的倍数只有24、36、48.
(3)57是3的倍数。
(4)1是1、2、3......的倍数。
3.下面的数哪些是4的倍数,哪些是6的倍数,哪些既是4的倍数,又是6的倍数?
42121869203048
4.写出100以内8的全部倍数.
五:全课小结
这节课你学习了什么知识?有什么收获?
倍数与因数教学设计15
教学目标:
1、使学生初步理解倍数和因数的含义,知道倍数和因数相互依存的关系。
2、使学生依据倍数和因数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数倍数和因数的方法,能在1—100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。
3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。
教学重点:
理解因数和倍数的含义,知道它们的关系是相互依存的。
教学难点:
探索并掌握找一个数的因数的方法。
教学准备:
12个小正方形片、每个学生的学号纸。
教学过程设计:
一、认识倍数、因数的含义
1、操作活动。
(1)明确操作要求:用12个同样大的正方形拼成一个长方形。每排摆几个?摆了几排?用乘法算式把自己的摆法记录下来。
(2)整理、交流,分别板书4×3=1212×1=126×2=12
2、通过刚才的学习,我们发现用12个同样的小正方形可以摆出3种不同的长方形,由此,还得出3道不一样的乘法算式。4×3=12可以说12是4的倍数,12也是3的倍数;反过来,4和3都是12的因数。
3、今天我们就来研究倍数和因数的知识。
(揭示课题:倍数和因数)
(1)那其它两道算式,你能说出谁是谁的倍数吗?你能说出谁是谁的因数吗?
指名回答后,教师追问:如果说12是倍数,2是因数,是否可以?为什么?
小结:倍数和因数是指两个数之间的关系,他们是相互依存的。
(2)出示:20×3=60,36÷4=9。同桌相互说一说谁是谁的倍数?谁是谁的因数?
指出:为了方便,我们在研究倍数和因数时,所说的数都是指不是0的自然数。
二、探索找一个数倍数的方法。
1、从4×3=12中,知道12是3的倍数。3的倍数还有哪些?从小到大,你能找到几个?同桌交流自己的思考方法。
2、提问:什么样的数是3的倍数?你能按从小到大的顺序有条理的说出3的倍数吗?能全部说完吗?可以怎么表示?
3、议一议:你发现找3的倍数有什么小窍门?
明确:可以按从小到大的顺序,依次用1、2、3……与3相乘,乘得的积就是3的倍数。
4、试一试:你能用学会的窍门很快地写出2和5的倍数吗?
生独立完成,集体交流。注意用……表示结果。
5、观察上面的3个例子,你发现一个数的倍数有什么特点?
根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数,一个数倍数的个数是无限的。
6、做“想想做做”第2题。
学生填表后讨论:表中的应付元数是怎么算的?有什么共同特点?你还能说出4的哪些倍数?说的完吗?
二、探索求一个数因数的方法。
1、学会了找一个数倍数的方法,再来研究求一个数的因数。
你能找出36的所有因数吗?
2、小组合作,把36的所有因数一个不漏的写出来,看看哪个组挑战成功。并尽可能把找的方法写出来。教师巡视,发现不同的找法。
3、出示一份作业:对照自己找出的36的因数,你想对他说点什么?
4、交流整理找36因数的方法,明确:哪两个数相乘的积等于36,那么这两个数就是36的因数。(一对一对地找,又要按次序排列)
板书:(有序、全面)。正因为思考的有序,才会有答案的全面。
5、试一试:请你用有序的思考找一找15和16的因数。
指名写在黑板上。
6、观察发现一个数的因数的特点。
一个数的因数最小是1,最大是它本身,一个数因数的个数是有限的。
7、“想想做做”第3题。
生独立填写,交流。观察表格,表中的排数和每排人数与24有怎样的关系。
四、课堂总结:学到这儿,你有哪些收获?
五、游戏:“看谁反应快”。
规则:学号符合下面要求的请站起来,并举起学号纸。
(1、)学号是5的倍数的。
(2、)谁的学号是24的因数。
(3、)学号是30的因数。
(4、)谁的学号是1的倍数。
思考:
1、倍数和因数是一个比较抽象的知识,教学中让学生摆出图形,通过乘法算式来认识倍数和因数。用12个同样大的正方形拼一个长方形,观察长方形的摆法,再用乘法算式表示出来,组织交流出现积是12的不同的.乘法算式。即:4×3=122×6=121×12=12。根据乘法算式,从学生已有知识出发,学习倍数和因数,初步体会其意义
2、在得出这些乘法算式以后,先根据4×3=12说明12是3和4的倍数,3和4都是12的因数,使学生初步体会倍数和因数的含义。在学生初
步理解的基础上,再让他们举一反三,结合另两道乘法算式说一说。在这一个环节中,我设计了一个练习。即“根据下面的算式,同桌互相说说谁是谁的倍数,谁是谁的因数”第一个是20×3=60,根据学生回答后质疑“能不能说3是因数,60是倍数”,从而强调倍数和因数是相互依存的。第二个是36÷4=9,让学生根据除法算式说出谁是谁的因数,谁是谁的倍数,并追问:你是怎么想的?使学生知道把它转化为乘法算式去说。
在学生有了倍数、因数的初步感受后,再向学生说明:我们在研究倍数和因数时,所说的数一般指不是0的自然数,明确了因数和倍数的研究范围。
3、P71例一:找3的倍数,先让学生独立思考,“你还能再写出几个3的倍数?你是怎样想的?”在学生交流的基础上,适时提出:什么样的数就是3的倍数?你能按照从小到大的顺序有条理地说出3的倍数吗?使学生明确:找3的倍数时,可以按从到大的顺序,依次用1、2、3……与3相乘,而每次乘得的积都是3的倍数。在此基础上,引导学生进一步思考:你能把3的倍数全都说完吗?从而使学生学会规范地表示一个数的所有倍数,并初步体会到一个数的个数是无限的。随后,让学生试着找出2和5的倍数,并正确表达2和5的所有倍数。最后引导学生观察写出的3、2和5的所有倍数,发现一个数的倍数的特点,即:一个数的最小的倍数是它本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、例二:找36的所有因数,准备让学生独立尝试,但这部分内容对学生来说是个难点,所以我采用了四人小组合作的方式让学生试着找出36的所有因数。在找36的因数时,无论想乘法算式还是想除法算式,学生一般都从无序到有序,从有重复或遗漏到不重复不遗漏。所以,我在教学时允许他们经历这样的过程。先按自己的思路、用自己的方法写36的因数,能写几个就写几个,是什么顺序就什么顺序。然后在交流中互相评价,让他们知道一组一组地找比较方便,可以利用乘法算式,按一个因数从小到大的顺序,同时又让他们掌握按次序地书写。此外,结合例题和试一试,通过比较和归纳,使学生明确:一个数的因数的个数是有限的,一个数的因数中最小的是1,最大的是它本身。
5、教材P72第2题让学生解决实际问题在表里填数,把4依次乘1、2、3、……得出“应付元数”,然后思考下面的问题,可以使学生进一步认识把4依次乘1,2,3,……所得的积,就是4的倍数,进一步理解找倍数的方法。第3题也是解决实际问题填写表里的数,并提出问题让学生思考,使学生明确两个相乘的数都是它们积的因数,求一个数的所有因数,可以想乘法一对一对地找出来,理解找一个数的因数的方法。
为了提高学生学习兴趣,巩固所学的知识。最后安排了一个游戏,让学生在游戏中进一步练习找一个数倍数或因数的方法。。
【倍数与因数教学设计】相关文章:
倍数与因数教学设计07-26
小学数学倍数与因数教学设计03-20
公因数教学设计05-14
3的倍数教学设计05-10
五年级下册因数和倍数教学反思04-04
2倍数特征教学设计05-21
《最小公倍数》教学设计11-22
倍数的特征教学反思04-21
认识倍数教学反思02-14