《分数的基本性质》教学设计
作为一名默默奉献的教育工作者,时常需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的《分数的基本性质》教学设计,希望对大家有所帮助。
《分数的基本性质》教学设计1
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的.两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
《分数的基本性质》教学设计2
1.教材简析
《分数的基本性质》是苏教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2.教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。、
6、在游戏活动中对数学知识进行拓展运用。
教学目标
1.知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的`思考,能对分数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
(2)体验数学与日常生活密切相关。
教学重点
理解分数的基本性质
教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
教学准备
师:电脑课件 学生:圆纸片 长方形纸
教学步骤:
一、故事引人,揭示课题。
1.教师讲故事。
话说唐僧师徒四人去西天去取经,这天走在路上,唐僧感觉饿了,就叫孙悟空去化斋,孙悟空答应了声驾起筋斗云走了,不一会,他就带回了三块一样大的饼,唐僧说:三块饼,我们四个人怎么吃呢?孙悟空说:“你分给我一块饼的四分之一就行了” 唐僧就把第一块饼平均分成四块,给了一块给孙悟空。沙僧说:“我想要两块”
唐僧把第二块饼平均分成八块,给了2块给沙僧。猪八戒比较贪心,他说:“我要三块,我要三块”,于是唐僧把第三块饼又平均分成12块,给了猪八戒3块。同学们,你知道孙悟空、猪八戒、沙僧三人谁分的多吗?
[ 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2、组织讨论,动手操作。
(1)小组讨论,谁分的多
(2)拿出三张纸,分别涂出它们的1/4、2/8、3/12。
(3)比较涂色部分的大小,有什么发现,得出什么结论。
既然他们三个分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(4)教师演示
3、教学例1
(1)引导比较。
师问:这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
你知道其中哪些分数是相等的吗?
根据学生回答板书:1/3=2/6=3/9
师追问:你是怎么知道这三个分数相等的?(图中观察出来的)
(2)师演示验证大小。
(3)完成“练一练”第1题
学生先涂色表示已知分数,再在右图中涂出相等部分。
完成填空后,说说怎么想的。
4、教学例2。
(1)组织操作。
师:取出正方形纸,先对折,用涂色部分表示它的1/2。
学生完成折纸、涂色。
师问:你能通过继续对折,找出和1/2相等的其它分数吗?
学生在小组中操作,教师巡视指导。
学生展开折法并汇报,可能出现的方法有:
连续对折两次,平均分成4份。如图:
1/2=1/4
②连续对折三次,平均分成8份。如图:
1/2=4/8
③连续对折四次,平均分成16份。
师追问:每次对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?
得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
板书:1/2=2/4=4/8=8/16=16/32……
(2)发现规律。
师:你有什么发现?(如学生观察有困难,可进行以下提示)
①、从左往右看,它们的分子、分母是怎样变化的?你有什么发现?
学生观察、思考,在小组中交流。
师问:观察例1中的1/3=2/6=3/9,有这样的规律吗?
《分数的基本性质》教学设计3
教学内容:人教版小学数学第十册第75页至78页。
教学目标:
1、分数是数学中常见的表示形式,它由分子和分母组成,可以表示部分和整体之间的关系。学生在学习分数时,需要掌握分数的基本性质,比如分子和分母可以同时乘以一个非零数,来得到一个等价的分数。这样做不会改变分数的大小,只是改变了分数的形式。这个性质在简化分数、比较分数大小等问题中非常有用。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学准备:
课件、长方形纸片、彩笔。
教学过程:
一、创设情境,忆旧引新
悟空师徒四人来到一个小国家——算术王国,猪八戒饥肠辘辘,悟空便对他说:“我给你10块馒头,平均分2天吃完,怎么样?”八戒闻言大怒:“太少了,你这猴子欺负我!”悟空眯起眼睛说:“那我就给你100块馒头,平均分20天吃完,可以了吧。”八戒听后大喜:“太好了!太好了!这下每天我可以多吃点了!”
同学们,你们认为八戒说得有道理吗?(没道理)
很久很久以前,在一个神秘的森林里,一只小松鼠和一只小松鼠精灵相遇了。小松鼠问道:“你是谁?为什么看起来和我这么像?”小松鼠精灵神秘地笑着说:“或许我们有着某种特殊的联系,但这个谜团需要我们一起去解开……”
为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)
先算出商,再观察,你发现了什么?
被除数和除数同时扩大(或缩小)相同的倍数,商不变。
同学们,再想一想除法与分数有什么关系,并完成这些练习吧。
8÷15=? 3÷20=?? 14÷27=
二、动手操作 、导入新课
同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)
我们把三张纸片比喻成三块饼,大家一起比较,每人的三块饼大小是相同的吗?请拿出第一块饼,我想与你每人一块,确保它们大小一样,你能做到吗?你给我的那块饼为什么是这块饼的一半呢?用分数怎么表示呢?
我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?
当我们想要平均分配四块给你和我时,你觉得这种分配方式可行吗?用分数来表示这种分配又是怎样的呢?这三个分数的大小是否相等呢?为什么呢?在本节课中,我们将一起探讨这个数学问题。
这里是一个小故事:小明手里拿着三根不同长度的绳子,他想知道这三根绳子的长度是否相等。于是,他将三根绳子分别放在桌子上比较。经过比较后,小明发现这三根绳子看起来似乎长度相等。这让小明感到很惊讶,他开始思考为什么这三根绳子的长度看起来一样。这个问题困扰着小明,他决定继续探究原因。
三、探索分数的基本性质
你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?
1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?
2、学生交流、讨论并 汇报 ,得出初步分数的基本性质。
分数的分子、分母同时乘以或除以相同的数,分数的大小不变。
3、将结论应用到
(1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。
(2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)
(3)是怎样变化成与之相等的 的?
(4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)
4、当两个数相乘或相除时,其中一个数增大,另一个数减小,结果会更接近前者。不过,不能同时乘或除以0,因为0不能作为除数。
5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?
四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)
有一位父亲将一块土地留给了他的三个儿子。大儿子认为这块土地是他的,二儿子认为这块土地是他的,三儿子也认为这块土地是他的。大儿子和二儿子觉得自己吃亏了,于是他们开始争吵。这时,阿凡提路过,询问了争吵的原因后,他笑了笑,给了他们一些建议,三兄弟因此停止了争吵。
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。
⒍小结。
从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
学生通过观察和比较发现,当分子和分母同时扩大或缩小相同的倍数时,所得的分数的大小并不会改变。这说明分数的大小取决于分子和分母的比例关系,只有在同向、同倍变化的情况下,分数的大小才能保持不变。这一规律也适用于其他分数,只要分子与分母按相同的比例变化,所得的分数大小仍然保持不变。因此,我们可以得出分数的基本性质:分子与分母是同时变化的',是同向变化的,是同倍变化的。
五、巩固练习
⒈卡片练习:
⒉做P96“练一练”1、2。
⒊趣味游戏:
数学王国即将举办一场音乐会,分数大家族的节目是女声大合唱,演出时间紧迫,需要大家快速帮助合唱队的成员按照要求排好队伍。请尽快协助整理队伍,谢谢!
要求:第一排是所有同学的分数值等于,第二排是所有同学的分数值等于,还有一位同学是指挥,他是小明。我选择小明作为指挥是因为他在团队合作中展现出了出色的领导能力和组织能力,能够有效地协调大家的行动,确保任务顺利完成。
【通过练习,分数是数学中的一个重要概念,可以表示一个整体被等分成若干份的情况。分数由分子和分母组成,分子表示被等分的部分数量,分母表示整体被等分的份数。分数可以用来表示部分与整体之间的关系,比如$frac{1}{2}$表示一个整体被等分成两份中的一份。在分数的运算中,我们需要掌握分数的基本性质,比如分数的大小比较、分数的化简、分数的四则运算等。对分数的基本性质有深刻的理解可以帮助我们更好地应用分数解决实际问题。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
七、布置作业
做P97练习十八2。
《分数的基本性质》教学设计4
教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
重点难点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。理解分数的基本性质。
教具学具: 课件,每人一张白纸,一张圆纸片,彩笔
教学时间:1课时
教学流程:
一、复习引入
1、120÷30的商是多少?被除数和除数同时扩大3倍,商是多少?被除数和除数同时缩小10倍,商是多少?
120÷30=4
(120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
除法与分数之间有什么联系?
被除数÷ 除数=被除数/除数
教师板书:分数的基本性质
二、动手操作
(1)用分数表示涂色部分。
( )
( ) )
( ) )
①请大家拿出1张长方形纸片,现在我们把它对折平均分成4份,涂出其中的3份,写上分数。
②把它继续对折平均分成8份,看看原来的3/4现在成了?(6/8)
③继续折成16份,看看原来的3/4现在又成了?(12/16)
(2)小结:原来,这张纸的3/4 、6/8、 和它的12/16同样大!看来不管选择哪种折法,分到的数都一样多!
(教师随机板书 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
(2)用分数表示涂色部分。
( ) )
( ) )
( ) )
根据上面的过程,你能得到一组相等的分数吗?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、发现规律
1、请大家观察每个等式中的两个分数,它们的.分子。分母是怎样变化的?
学生观察、思考,完成上面的图形,再在小组内交流。
学生交流后,教师集中指导观察,板书这组数字,说出其中的规律。
3/4=6/8=12/16 8/12=4/6=2/3
从这些数字中可以得出:
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(相同的数,这个数能不能是0 ?)
教师举例说明:3/4,8/12分子和分母分别乘以零,分数大小怎么样?
得出分数基本性质: 分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。这叫做商不变性质。
3、课件出一组分数让学生练习填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、练一练(课件出示)
1、判断.(手势表示。)
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。() (2)把 15 /20 的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3) 3 /4 的分子乘3,分母除以3,分数的大小不变。 ( )
( 4)把3/5的分子加上4,要使分数的大小不变,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不变的分数。(课件出示 )
3、数学游戏(课件出示)
说出相等的分数 1/4和2/8
(1)你能根据分数的基本性质,再写出一组相等的分数?
所写的分数是否相等?你是怎样想的?
(2)根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
五、课本练习中的第1,2题。
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的分数的基本性质要注意什么?我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
七、板书设计:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。这叫做分数基本性质。
《分数的基本性质》教学设计5
教学要求
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点理解分数的基本性质。
教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
板书:====
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
====
4.练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的.成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
《分数的基本性质》教学设计6
【教材依据】
《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。
【设计理念】
根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。
【学情与教材分析】
《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。
【教学目标】
1、经历探索分数基本性质的过程,理解分数的基本性质。
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。
【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。
【教学过程】
一、创设情境,激趣导入
师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?
生1:四、五、六年级分的地一样多。
生2:……
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知
1,小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2,汇报结果
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。
生5:……
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)
4、探索分数的基本性质。
师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书=)
生:分数的分子分母发生了变化分数的大小不变。
师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?
生:分子分母同时乘2,……
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的'分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时相同0除外
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三:应用新知,练习巩固。
(一)练一练
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二)判断(抢答)
1、分数的分子、分母都乘过或除以相同的数分数的大小不变。
2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。
3、给分数的分子加上4,要是分数的大小,分母也要加上4。
(四)测一测
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四:总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)
五:作业练习册2、4题
【板书设计】
分数的基本性质
给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。
【教学反思】
本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!
这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。
本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。
在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。
《分数的基本性质》教学设计7
一、学习目标:
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。
二、重、难点:
理解和掌握分数的基本性质。
三、学习过程:
一、导入
(1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
(2)你发现了什么?
二、学习新知
1、师板书 = =
2、观察三组分数,它们的分子和分母是怎样变化的?
分小组讨论,并填写
1 ( ) 2 1 ( ) 4
2 ( ) 4 2 ( ) 8
4 ( ) 2 2 ( ) 1
8 ( ) 4 4 ( ) 2
总结:分数的分子和分母同时 或 相同的数,分数的大小
3、应用
根据分数的'基本性质,我们可以写出很多相等的分数
⑴的分子和分母同时乘2,等于( );同时乘4,等于( );
同时乘5,等于( );同时乘7,等于( )
总结: =( )=( )=( )= ( )
⑵= 说出你这样填的理由
= 说出你的理由
4、巩固练习
⑴第80页 (直接做在课本上)
⑵.在下面的括号里填上适当的数。
在下面的()里填上适当的数,在○里填上“×”号或“÷”,使等式成立
⑶
请你当法官(说明理由)
⑷下面的分数化成分母是12,而大小不变的分数
⑸下面的分数化成分子是6,而大小不变的分数
5、拓展练习
判断
1、分数的分子和分母同时加上或者减去相同的数,分数的大小不变。( )
2、把 的分子增加1,分母增加3,分数的大小不变。( )
3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )
思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
《分数的基本性质》教学设计8
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的`分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
《分数的基本性质》教学设计9
一、教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
二、教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
三、教学难点:
理解和掌握分数的基本性质,初步建立数学模型。
四、教学准备:
课件、正方形的纸。
五、教学设计过程:
(一)迁移旧知.提出猜想
1、回忆旧知
猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3
你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数÷除数=
谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
A、 看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的.分数分在一起。
B、 讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究规律
师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者
除以一个相同的数
得到的分数
研究对象与得到的分数相等吗?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
D、质疑完善
3/4 = 3×( )/ 4×( )
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
(三) 练习升华
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、 和 哪一个分数大,你能讲出判断的依据吗?
(四)总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)
六、作业p87-1、2
板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
《分数的基本性质》教学设计10
【教学内容】:
【教学目标】:
1、使学生理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3、在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣,提高学生发现问题的能力。
【教学重点】:经历质疑、猜想、验证、观察、归纳的学习过程,探究分数的基本性质。
【教学难点】:理解和掌握分数的基本性质。
【教学方法】:
本节课我综合采用了谈话法,情境创设法、引导探究法、直观演示法,组织学生经历观察,猜测,得出结论。
【学法指导】:
为了有效的达成上述教学目标,秉着新课程标准的精神指导,在整个教学活动中力求充分体现学数学就是做数学,数学教学就是数学活动的教学的理念,以学生为主体,以学生发展为本。在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法。引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
【教学准备】:
1、媒体准备:白板
2、资源准备:PPT
【资源运用】:
1、导入——课件出示问题-——唤醒旧知
2、探究新知——PPT课件——突破重点、分解难点
3、拓展延伸
【教学过程】:
一、联系旧知,质疑引思。
1、在自然数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的自然数吗?
2、在小数的范围内,可以找到两个大小相等但各个数位上数字又都不相同的小数吗?
3、在分数的范围内,可以找到两个大小相等但分子和分母又都不相同的分数吗?
谁能说一个与《分数的基本性质》教学设计
【唤醒学生已有知识经验而且引发学生的数学思考,为主动探究新知积聚动力。】
二、自主操作,验证猜想
1、初步验证
(1)提出问题
谁能说一个与《分数的基本性质》教学设计
如果让你证明他们确实和《分数的基本性质》教学设计
(2)汇报方法
2、深入验证:
(1)在纸上写上一组你认为可能相等的分数;
(2)用你喜欢的方法来证明。
(3)学生操作。
(4)汇报交流。
3、概括性质,深化理解
(1)在操作的过程中,你有什么发现?分子分母怎样变化分数的大小才不变?
(2)归纳概括,总结规律,揭示课题。
(3)根据我们以前学过的分数与除法的关系,以及整数除法中商不变的性质,来说明分数的基本性质吗?
4、运用规律,完成例2。
(1)理解题意
(2)要把他们化成分母是12而大小不变的分数,分子应该怎么变化?变化的根据是什么?
(3)独立完成,交流汇报
【给学生提供开放的'探究空间,满足学生的探索欲望。】
三、知识应用,巩固提升
1、判断
(1)分数的分子、分母同时乘以或除以一个数,分数的大小不变。
(2)两个分数的分子、分母都不相同,这两个分数一定不相等。
(3)《分数的基本性质》教学设计
2、五年级有《分数的基本性质》教学设计
3、把《分数的基本性质》教学设计
才能使分数的大小不变?
四、回顾总结,完善认知
通过本节课的学习,你有什么收获?
【教学反思】:
1、课前准备不足,我用的20xx版做的,结果上课电脑是xxxx年版本的,展台没有试,影响教学流程。
2、教学机智不足,没有关注学情,总想到20分钟的课,时间短,有些赶,知识落实不够扎实。
3、课堂提问语言不够准确精炼,课堂评价不够丰富、准确。例如开课语及结束语言有歧义。
《分数的基本性质》教学设计11
教学内容:苏教版小学数学第十册第95页至97页。
教学目标:
知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。
情感目标:让学生在学习过程当中养成互相帮助、团结协作的良好品德。
教学准备:圆形纸片、彩笔、各种卡片。
教学过程:
一、创设情境,激发兴趣
孙悟空有3根一模一样的甘蔗,小猴子贝贝、佳佳、丁丁看见了,一哄而上,叫嚷着要吃甘蔗。孙悟空说: “好,贝贝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”贝贝、佳佳听了,连忙说:“孙大圣,不公平,我们要分得和丁丁的同样多。”孙悟空真的分得不公平吗?(学生思考片刻)
【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】
二、动手操作 、导入新课
师:我们也来分分看。(学生拿出准备好的圆形纸片。)师:我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想要一块,而且大小要是第一块饼的一半,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?我现在想要两块,而且大小要跟刚才给我的饼一样大,你又能做到吗?用分数怎样表示呢?我如果想要四块,大小跟前两次给我的一样,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。
【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】
三、观察对比, 由“数”变 “式”
你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(==)(从这里你能看出,孙悟空分甘蔗,分得公平吗?)
四、概括分析,由“式”变 “语”
⒈观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的.大小为什么会不变呢?要弄清楚这个问题,我们必须先研究分数的分子、分母是怎样变化的。
⒉先从左往右看,是怎样变为与它相等的的?
(1)分母乘2,分子乘2。
根据分数的意义,""表示把单位"1"平均分成2份,取其中的1份,而现在把单位"1"平均分成4份,也就是把原两份中的每一份又平均分成2份, 所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==
即原来把单位"1"平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。
(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==
(3)谁能用一句话说出这两个式子的变化规律?
⒊再从右往左看
(1) 是怎样变化成与之相等的的?
原来把单位"1"平均分成4份,取其中的2份,现在把同样的单位"1"平均分成2份,即把原来的每两份合并成 1份,现在要取得跟原来的同样多,只需取几份?[2÷2=1(份)]也就是现在把平均分的份数和取的份数都缩小了2倍,得到,分数的大小没有变。
==
(2) 又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)
==
(3)谁能用一句话说出这两个式子的变化规律?
⒋综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
⒌这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。
(1)理解概念。
学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?
(2)瘃木鸟诊所。(请说出理由)
分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )
⒍小结。
从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】
五、巩固练习
⒈卡片练习:
⒉做P96“练一练”1、2。
⒊趣味游戏:
数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。
要求:第一排是分数值等于的,第二排是分数值等于的,还有一位同学是指挥,他是谁?你是怎样想的?
【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】
六、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
七、布置作业
做P97练习十八2。
《分数的基本性质》教学设计12
教学目标:
结合趣味故事经历认识分数的基本性质的过程。
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣
教学重点:理解掌握分数的基本性质。
教学难点:归纳分数的性质。
学生准备:长方形纸片。
一、创设故事情境,激发学生学习兴趣并揭示课题。
编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?
让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。
二、小组合作,探究新知:
1、动手操作、形象感知
出示课件,让学生观察讨论图中分数的涂色部分是多少?
A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?
B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?
C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。
2、观察比较、探究规律
(1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。
(2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?
(3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题
(4)通过从左到右的观察、比较、分析,你发现了什么?
使学生认识到这四个正方形同样大,虽然平均分的.份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。
【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】
3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?
观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:
先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律?
4、归纳规律
提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?
学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”
6、小结
同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?
【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】
四、巩固强化,拓展应用
多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。
五、游戏找朋友。
六、布置作业:
在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。
《分数的基本性质》教学设计13
教学目标
1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。
教学重、难点:
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
教学过程:
一、复习旧知,了解学习起点
二、创设情境,激趣引入
课件动画显示:蓝猫、菲菲、霸王龙最喜欢吃淘气做的饼。有一天淘气做了3块大小一样的饼分给蓝猫、菲菲、霸王龙。蓝猫说:“我功劳最大,我要吃一大块。”菲菲说:“我要吃两块。”霸王龙抢着说:“我个头最大,我要吃3块。”淘气想了想便动手切饼满足了他们的要求,并向他们提问:“刚才,我把3个同样大小的饼,平均分成2份、4份、6份,分别给了你们1块、2块、3块,你们知道谁吃的多吗?”淘气的问题,立刻引起了他们的争论。同学们,你们知道他们谁吃得多吗?
三、探究新知,揭示规律
1.动手操作,形象感知。
(1)折。请学生拿出3张同样大小的圆形纸,把每张圆形纸都看做单位“1”,用手分别平均折成2份、4份、6份。
(2)画。在折好的圆形纸上,分别把其中的1份、2份、3份画上阴影。
(3)剪。把圆中的阴影部分剪下来。
(4)比。把剪下的阴影部分重叠,比一比结果怎样。
2.观察比较,探究规律。
(1)通过动手操作,谁能说一说动画片中蓝猫、菲菲、霸王龙各吃了一个饼的几分之几?(板书。)
(2)你认为他们谁吃的多?请到讲台上一边演示一边讲一讲。
学生汇报后,教师用电脑演示。
把3块同样大小的饼分别平均分成2份、4份、6份,依次表示。把平移、重叠,明显地看出块饼、块饼、块饼大小相等。通过分饼、观察、验证得出结论:“蓝猫、菲菲、霸王龙分的饼一样多。”
(3)既然他们3个吃的同样多,那么、的大小怎样?我们可以用什么符号把他们连接起来?(板书。)
(4)聪明的淘气是用什么办法既满足蓝猫、菲菲、霸王龙的要求,又分得那么公平呢?这就是我们今天研究的内容“分数的基本性质”。(板书课题。)
(5)这3个分数的分子、分母都不同,为什么分数的`大小却相等?你们能找出它们的变化规律吗?请同学们4人为一组,讨论这几个问题。(课件出示讨论题。)
讨论题:
①它们之间有什么关系?它们的什么变了?什么没有变?
②从左往右看,是按照什么规律变化的?从右往左看,又是按照什么规律变化的呢?
(6)学生汇报,师生讨论情况。
师:这3个分数是相等的关系。可以写成,它们的分子、分母变了,而分数的大小没有变。
师:从左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份数和表示的份数都扩大2倍,就得到。同理的分子、分母都乘以3,就得到,而分数的大小不变。(板书:都乘以相同的数。)
从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析,比较,,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(7)抓住焦点,辨中求真。
的分子、分母能否同时乘以或者除以零呢?围绕这个问题展开讨论、辩论。通过讨论、争辩,使学生认识到“因为分数的分子、分母都乘以0,则分数成为”。
《分数的基本性质》教学设计14
教学内容:人教版五年级数学下册57页内容及58、59页练习。
教学目标:
知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。
过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。
情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质。
教学难点:应用分数的基本性质解决问题。
教学准备:预习生成单、作业纸、课件
教学课时:一课时
教学过程:
一、导入新课,揭示课题
1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)
2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。
3、指名学生汇报。
4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。
二、检查预习,自主探究
1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)
2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)
3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,
4.师:其他同学还有补充吗?你们得出这个结论了吗?
三、合作交流,探究新知
1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。
2.出示合作要求(课件),指名学生读一读。
3.学生合作交流,探究学习。
4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?
5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?
6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。
7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)
8.再读一读,说说这句话中哪个词比较关键。
9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。
9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。
四、应用拓展,新知内化
1.出示例2,指名读题,理解题意。
2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)
3.学生独立在练习本上完成,指名板演,集体订正。
4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的'基本性质,下面就应用分数的基本性来解决一些实际问题。
五、当堂检测
(一)、下面每组中的两个分数是否相等?相等的在括号里画“√”,不相等的画“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分数化成分母是10而大小不变的分数。
===
(四)、涂色表示出与给定分数相等的分数。
(五)、如果一堂课40分钟,哪个班做练习用的时间长?
六、课堂小结:通过这节课的学习,你学会了什么?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
这节课最多的考虑就是分数的基本性质这个规律怎样才能让学生真正的夯实,怎样设计才能让学生水到渠成的加深了理解。在练习的设计和过渡语的设计都是关键。
《分数的基本性质》教学设计15
一、故事引人,揭示课题。
1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
[一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。
(3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了, 分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。
思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
[得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于学生顺利地运用分数与除法的.关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
二、比较归纳,揭示规律。
1.出示思考题。
2.比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。
板书:
(2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。
(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以 相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都除以 )
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
[新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]
【《分数的基本性质》教学设计】相关文章:
分数的基本性质教学设计06-14
分数基本性质教学设计08-07
分数的基本性质教学设计08-11
分数的基本性质教学设计(优选)08-31
分数的基本性质教学设计15篇(优选)08-25
《分数的基本性质》教学反思02-25
《分数的基本性质》教学反思05-12
分数的基本性质教学反思10-30
《比的基本性质》教学设计08-17