圆的周长教学设计15篇(精华)
作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那要怎么写好教学设计呢?以下是小编整理的圆的周长教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
圆的周长教学设计1
一、教学目标
1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2. 培养学生的观察、比较、分析、综合及动手操作能力;
3. 结合圆周率的学习,对学生进行爱国主义教育。
二、教学准备
一元硬币、圆形纸片等实物以及直尺,测量结果记录表
三、教学过程:
<一>、创设情境,引起猜想:
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2. 怎样才能知道这个正方形的周长?说说你是怎么想的?
3. 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)
化曲为直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
<二>、实际动手,发现规律:
(一)分组合作测算
1.明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系
2.生利用学具动手操作,师巡视指导、收集信息。
3.集体反馈数据(选取3~4组实验结果,黑板板书展示)
(二)发现规律,初步认识圆周率
1.看了几组同学的测算结果,你有什么发现?
2.虽然倍数不大一样,但周长大多是直径的几倍?
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的'测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3.这个倍数究竟是多少呢?我们来看一段资料。
(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5.解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1. 如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长 = 直径× 圆周率
C =πd
2. 如果知道圆的半径,又该怎样计算圆的周长呢
板书:C =2πr
追问:那也就是说,圆的周长总是半径的多少倍
<三>、巩固练习,形成能力
1.判断并说明理由:π = 3.14 ( )
2.选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确是:()
a.大圆的圆周率大于小圆的圆周率;
b.大圆的圆周率小于小圆的圆周率;
c.大圆的圆周率等于小圆的圆周率。
3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
<四>、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
圆的周长教学设计2
一、教学目标
(一)知识与技能
理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。
(二)过程与方法
经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。
(三)情感态度和价值观
通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
二、教学重难点
教学重点:理解和掌握圆的周长的计算方法。
教学难点:圆周率的探究。
三、教学准备
多媒体课件。
四、教学过程
(一)创设情境,引发思考
1.情境导入,揭示课题。
教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)
学生:给它加一个箍。
教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?
教师:求铁皮的长度,就是求圆的什么?
学生:求铁皮的长度,也就是求圆的周长。
教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)
学生:圆一周的长度叫圆的周长。
教师:圆的周长与我们之前学习过的图形的周长有什么区别?
学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。
2.合理猜想,确定方向。
教师:圆的周长与圆的什么有关?
学生:直径、半径。
教师:圆的周长是直径的几倍?
学生:……
教师:怎么验证你的猜测呢?
学生:量一量,算一算。
【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。
(二)设计方案,展开探究
1.探讨设计方案。
(1)如何化曲为直?
教师:圆是曲线图形,尺子是直的,怎么办?
学生:滚一滚,绕一绕……
(2)如何减少误差?
教师:测量结果可能不准确,有什么办法尽量准确一点呢?
学生1:多量几次,选出现次数量多的数据。
学生2:用计算器计算,提高正确率。
教师:除不尽怎么办?
学生1:用分数表示。
学生2:取近似数。
教师:一般保留两位小数,比较方便。
【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。
2.操作获取数据。
小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。
物品名称
周长
直径
周长与直径的比值
(三)交流讨论,提升认识
1.交流质疑。
(1)小组汇报,教师直接将结果输入电脑。
【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。
(2)质疑不同数据。
教师:为什么测量计算的结果不相同?
学生1:测量有误差,绳子绕的松紧程度不同。
学生2:尺子不够精确,不到一毫米只能估计。
教师:是不是尺子再精确一点,测量结果就准确无误?
教师:有没有其他的方法?
教师:有没有唯一的得数?
【设计意图】讨论是必须的,对于学生的`困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。
2.概括小结。
(1)圆周率的意义及读写。(课件出示内容。)
任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。
(2)概括周长计算公式。
如果用C表示圆的周长,就有C=d或C=2r。
(四)联系实际,解决问题
1.例题教学。
(1)出示教材第64页例1。
一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?
(2)学生尝试解答。
(3)规范书写。
C=2r
2×3.14×33=207.24(cm)≈2(m)
1000÷2=500(圈)
答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。
2.巩固练习。
(1)求下面各圆的周长。
①2×3.14×3=18.84(cm);
②3.14×6=18.84(cm);
③2×3.14×5=31.4(cm)。
(2)解决问题。
①一个圆形喷水池的半径是5 m,它的周长是多少米?
2×3.14×5=31.4(米)
答:它的周长是31.4米。
②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)
3.77÷3.14≈1.2(米)
答:这个圆柱的直径大约是1.2米。
【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。
(五)课堂小结,拓展延伸
1.这节课你有什么收获?说一说圆的周长与直径的关系。
2.介绍中国古代对圆周率的研究及伟大成就。
【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。
圆的周长教学设计3
一、说教材
《圆的周长》是义务教育课程标准实验教科书人教版六年级《数学》上册第四单元《圆》的第二部分内容。它是在学生学习了周长的一般概念,会计算长方形、正方形的周长,并初步认识了圆的基础上进行教学的。这部分知识的学习不仅对旧知识加以巩固,同时它又是学生初步研究曲线图形的基本方法的开始,为以后学习圆的面积,圆柱、圆锥等知识打下基础。
二、学情分析
六年级学生喜欢各种各样的探索活动,他们希望能够在活动中自己去研究事物、发现问题,更渴望能在研究活动中解决自己的疑问,从中获得成功的喜悦。因此,在学生已有的认知基础上,圆的周长这节课可让学生利用化曲为直的数学转化思想,在实验探究中测量、计算、猜测圆的周长和直径的关系并验证猜测,使学生自主发现、理解并掌握圆的周长的计算方法。
三、说教学目标
根据《课标》要求、教材特点和学生的实际情况,我制定以下教学目标:
1、知识目标:在具体情景中让学生理解圆的周长和圆周率的含义,探索圆的周长计算公式,能正确计算圆的周长。
2、能力目标:让学生通过观察、猜想、讨论、自主探究等教学活动过程,培养学生初步的分析、比较和推理能力。
3、情感目标:通过探讨圆周率、推导圆周长的计算公式,对学生渗透唯物主义的辩证思维方法。通过介绍我国古代数学家祖冲之对圆周率的研究事迹,对学生进行爱国主义教育。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的含义及圆周长计算公式的推导。
教学准备:
教师准备:课件、圆片、铁丝围成的圆、实验报告单(每组一份)。
学生准备:每组(4人一组)准备直径(取整数)不同的圆片3个、线绳、直尺。
四、说教法、学法
“教法为学法导航,学法是教法的缩影。”鉴于这样的认识,在教学过程中,我主要运用创设情境、质疑引导、组织探究等教学方法,课堂上学生通过小组合作、实验探究、计算、观察、发现规律等学习方法,最终发现圆的周长与直径的关系,推导出圆周长的计算公式。
五、说教学过程
本节课,我将按照以下五个部分展开教学:
(一)、创设情境,提出问题
出示课件:从大家熟悉的生活情境入手,让学生说一说:绕花坛骑一圈形成的轨迹是什么图形,即花坛一圈的长度就是一个圆的周长。从而揭示课题:圆的周长(板书)。师生谈话:长方形、正方形周长的求法我们已经学过,那么圆的周长该怎样求呢?利用问题设下认知障碍,激发学生的求知欲望。
(二)、引导探索,学习新知
这一部分是本节课的重点,共分5个环节来完成。
⒈教具演示,直观感知,认识圆周长。
心理学实验证明,理解的知识才能牢固掌握。学生通过花坛初步感知了“圆的周长”后,我出示教具圆片、铁丝围成的圆,让学生观察围成圆的线是一条什么线,这条曲线的长就是圆的什么。通过这个问题揭示圆周长概念。接着让学生拿出圆形学具摸一周,体验圆的周长。教师引导学生初步了解用绕线法、滚动法可测量圆形学具的周长,师生合作示范操作要点(前者注意线要拉紧,后者注意看好起点和终点)。
⒉揭示矛盾,产生探索新知的欲望。
出示图片:如果你坐摩天轮转动一周,在空中经过了多长的路程呢?这时学生会认识到绕线法、滚动法测量圆的周长有一定的局限性,进而引起认知上的冲突,使学生产生探究求圆周长的一般方法的迫切愿望。
⒊小组合作,操作实验。
这一环节分三个层次展开教学:
第一层次:观察猜想。让学生观察准备好的三个圆并猜一猜:
1、大圆、小圆谁的周长长?
2、圆的周长与它的什么有关呢?
第二层次:量一量,验证猜想。
数学《课标》明确指出:小学生应有一定的实践操作能力。学生小组合作进行实验探究,用不同方法分别量出三个直径不同圆的周长,并把数据填入下表中:
圆周长C(cm)直径d(cm)周长与直径的比值(保留两位小数)
①
②
③
通过学生交流汇报,观察数据对比发现:圆的直径越短,周长越短;直径越长,周长越长。说明圆的周长与它的直径有关系。
第三层次:比较数据,揭示关系。
学生继续实验,算出每个圆周长与它的直径的比值。通过比较又会发现:这三个圆中,每个圆的周长都是它的直径长度的3倍多一些。接着告诉学生:任意一个圆的周长与它直径的比值是一个固定不变的数,我们称它为圆周率,用字母π表示。它是一个无限不循环小数(π=…),在实际应用中一般只取它的近似值,即π≈。那么,圆的周长、直径和圆周率之间有什么样的关系呢?用字母表示就是:(板书)
⒋介绍有关圆周率的数学史。
学生自学教材“资料库”的内容。由我国古代数学家祖冲之与圆周率的故事谈感想,接受爱国主义教育,增强民族自豪感。
⒌圆周长公式的推导。
根据圆周长与它直径的关系,让学生思考:知道圆的直径、半径怎样求圆周长。学生会独立推导出圆周长的计算公式:圆的周长=圆周率×直径,用字母表示为C=πd或根据直径、半径的关系写成C=2πr(板书)。
(三)、初步应用,领悟新知
教材上安排的例1,是对前面刚总结出来的周长计算公式进行直接应用。小学高年级的学生已有了一定的自学能力,所以此例可让学生自主完成。根据学生汇报,教师示范板演。评价时要说明两点:
1、公式可以不写,直接计算就行;
2、π取两位小数,作为一般数值处理,计算结果不必再用≈表示。另外也可引导学生发现:花坛周长与车轮周长的比值就是花坛直径与车轮直径的比值(即转数40周),从而让学生体会解决问题方法的.多样性。
(四)、练习巩固,逐层提高
基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
1、选择填空。
(1)、车轮滚动一周,前进的距离是求车轮的( )。
A、半径B、直径C、周长
(2)、圆的周长是直径的( )倍。
π
(3)、大圆的周长除以直径的商( )小圆的周长除以直径的商。
A、大于B、小于C、等于
此类型题重在帮助学生巩固新概念,加深对圆周率的理解。
2、求圆的周长。
本题利用直观图形考查学生对求圆的周长两个公式的运用。
3、解决问题。
数学来源于生活,同时也服务于生活。应用学到的知识解决实际问题,让学生感受学习数学的价值。
(1)、公园里摩天轮的半径是5米,坐着它转动一周,大约在空中转过多少米?
(2)、银杏小学的运动场上有一个美丽的环形跑道(如下图),两端是半圆形,中间是长方形。根据所给的数据你能算出环形跑道的周长吗?试试看。
这些层层递进的反馈练习题,形式多样,既帮助学生巩固了当堂所学的基础知识,形成技能,又强化了教学的重难点。
(五)、畅谈收获,全课总结
课的最后,学生谈谈这节课的收获与感受,教师可以用一段带有激励性的结束语,给本节课画上圆满的句号。
总之,设计本节课时,我力求体现新课程的教育理念,关注学生已有的知识经验,让学生亲身经历知识的形成过程,人人参与活动,在丰富的数学活动中“思考”和“再创造”。
以上是我说课的全过程。不足之处,恳请各位评委老师多多指导。谢谢大家!
圆的周长教学设计4
教学目标:
1、在观察,测量,讨论等活动中经历探索圆的周长公式的过程。
2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。
3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。
教学难点:
理解圆周率的意义。
教具准备:
根据教学任务和学生学习的需要,我所准备的教具有直尺、圆形硬纸板、绳子、剪刀、圆周长演示器。多媒体课件。
学具准备:
学生准备的学具有直尺、圆形硬纸板(大中小各一个)、绳子、剪刀。
教学过程:
一、创设情境
1、出示情境图,让学生观察情境图,了解图中的事情,提出谁的车轮转动一周走的远,为什么?
师:那车轮转动一周,谁的车走得远呢?为什么?
学生自由回答
3、揭示车轮周长概念。
4、讨论:车轮的周长和什么有关,有什么关系?
师引入并板书课题:圆的周长。下面我们继续研究,看看圆的周长和直径还有什么关系?
二、自主探索
(一)测量硬币
1、让学生用准备好的材料测量1元硬币和直径和周长。
师:同桌合作,利用手中的材料测量出1元硬币的周长和直径。
学生活动,教师巡视并参与。
2、交流测量结果和方法,注意测量的过程要交流清楚。
3、计算并观察测量的数据,推测硬币的周长与直径之间有什么关系。
我估的'硬币的周长大约是直径的3倍。
大胆推算硬币周长与直径的关系。
(二)测量圆片
1、提出做一做的要求,让学生用教师准备好的圆片测量并计算。
2、交流各组测量和计算结果,然后让学生说一说发现了什么?
三个圆的周长都是它直径的三倍多一些
(三)总结圆的周长公式
1、教师介绍圆周率的发展历程,然后交流感受和启发,进行思想教育。
师:看来,任何圆的周长都是它直径的三倍多一些,其实这个倍数是固定不变的数,我们把它叫作圆周率。板书:圆的周长÷直径=圆周率。
师:由于我们在测量时有误差,所以得不到一个固定值。
师:圆周率可用字母π来表示。板书:π
教师范读,学生齐读,并在桌子上试着写一写。
师:我们今天课上研究的圆周率,早在几千年前,我们古人就开始研究了。
板书:π3.14
2、引导学生根据周长÷直径=圆周率,推导出圆的周长公式并用字母表示。
师:根据圆的周长÷直径=圆周率,如何求圆的周长呢?
生:直径×圆周率=圆的周长
师:如果周长用字母“c”表示,直径用“d”表示,谁来总结求圆周长的公式?
生:c=πd师:板书
师:那如果把直径d换成半径r呢?
生:c=2πr师板书
三、简单应用
让学生试着用公式求圆的周长
课件出示(书中例题和镜子实物图。目的:是让学生能够通过看着实物镜子,去理解金属条的长就是镜子的周长。)
学生自己完成,指名板演
集体订正。
四、交流收获
五、布置作业:83页第一题
板书设计:
圆的周长
圆的周长÷直径=圆周率(π≈3.14)
C=πd或c=2πr
3.14×40=125.6(厘米)
答:这根金属条的长至少是125.6厘米。
圆的周长教学设计5
教学内容:义务教育课程标准实验教科书六年级上册第62——64页。
教材分析:
这部分内容是在学习了周长的一般概念以及学习长方形、正方形、三角形的周长的计算的基础上进一步学习的内容。本课以探索圆的周长与它直径的倍数关系为重点,从而引出圆周率的概念,并总结出圆的周长计算公式。学生掌握了圆的周长的计算,可以解决生活中许多实际应用求圆的周长的问题,还为以后学习求圆柱的侧面积打好基础。
学情分析:
六年级学生已经有了一定的动手操作能力,也喜欢自己动手实践,教学时我充分认识到这一点。学生已经有了圆的周长的一般性概念,只是研究圆的周长与直径的关系。所以,教学的关键是引导学生通过动手操作发现圆的周长与直径之间的倍数关系。
教学目标:
1、知识与技能目标:使学生直观认识圆的周长,掌握圆的周长计算公式,能正确计算圆的周长。
2、过程与方法目标:通过对圆周率的值的探索,培养学生的观察、比较、分析、概括及动手能力,发展学生的空间观念。
3、情感态度与价值观目标:通过介绍祖冲之在圆周率方面所做的贡献,渗透爱国主义思想。
教学重难点:
重点:理解并掌握圆的周长计算方法。
难点:理解圆的周长公式的推导。
师生齐准备:
教师:4个直径分别是4厘米、6厘米、8厘米、10厘米的硬纸圆片。
学生:自作硬纸圆片、直尺、小剪刀、细绳、计算器。
设计思路:
《数学新课程标准》指出:“学生学习应当是一个生动活泼的、主动的和富有个性的过程。认真听讲、积极思考、动手实践、自主探索、合作交流等,都是学习数学的重要方式。”根据课标的要求,本课让学生积极思考、自主探索测量圆周长的方法,并在小组合作下动手实践,成功地测量出圆的周长。又让学生带着明确的目的通过计算、观察、分析发现规律,理解圆周率的意义。从而推导出圆的周长的计算方法,最后利用规律解决问题。这样的设计,能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。
教学过程:
一、课前准备,激发兴趣
1、亲自体验
大家都知道我们校园大道两旁的草坪上有两个花坛,左边一个是正方形、右边一个是圆形。请同学们分别沿着边沿走一圈,看看哪边的路长。
2、全班交流
要想知道哪边的路长,只要比较什么就可以了?怎样比较?全班交流一下,下节课把这些问题带到课堂上来。
【设计意图:让课堂回归学生的生活空间,回归学生的身边,大大激发了学生的学习兴趣,从而对学习充满了信心。】
二、解决悬念,导入新课
1、解决悬念
师:同学们,要想知道哪边的路长,只要比较什么就可以了?怎样比较?
通过课前的交流得出:要想知道哪边的.路长,只要比较正方形和圆的周长就可以了。
2、导入新课
同学们,你有办法计算正方形的周长吗?(生回答)圆的周长又该怎样计算呢?这节课我们就一起来研究圆的周长。(板书:圆的周长)
【设计意图:解决课前悬念,又让学生带着新的悬念进入学习,再次点燃了学生思维的火花。】
三、探索新知
1、认识圆的周长
师:我们已经学过正方形、长方形的周长,(师拿着这两种图形边演示边说)那么你们知道圆的周长在哪里吗?现在拿出课前准备的圆片,同桌互说并且用手演示给你的同桌看看。
(1)演示时应注意什么?(起点和终点)
(2)指名学生上台演示。
(3)学生试着用自己的话说一说什么是圆的周长,并充分交流。
(4)师生共同概括总结:围成圆的曲线的长度就是圆的周长。
【设计意图:让学生动手操作并充分交流得来的结果,学生对知识的得来更深刻。】
2、谈话激趣
师:我们要想知道圆形花坛的周长和手中圆片的周长,应该怎么做?(生:量)
师:如果这个圆很大很大怎么办?像我们的学校、甚至我们整个村委会、整个地球这么大,我们小学生还能量吗?(生:计算)
师:怎么计算呢?古今中外的数学家在千百次的实验中发现圆的周长与它的直径有着密切的关系,我们是不是也来做个实验,看看圆的周长与直径究竟有什么关系?
3、学生自主寻找测量圆的周长
师:把准备好的4个不同直径的圆片发给每个小组,并把下表格贴在黑板上
研究对象
直径
(厘米)
周长
(厘米)
周长与直径的比值
得数保留两位小数
(1)提问:圆的周长用直尺测量方便吗?用什么方法可以化曲为直,量出圆的周长呢?
(2)小组合作,寻找测量圆的周长的方法
教师巡视,也可以参与到学生的小组学习中去。
(3)组织交流
学生可能会出现以下两种方法:绕绳法和滚动法。
(4)寻找不同方法的学生分别上台演示,并说说测量方法的过程。
(5)不同小组汇报测量结果,教师把结果填入相应的表格里。
【设计意图:让学生通过小组合作,全体交流探索测量一般圆形周长的方法,目的是让学生通过动手操作,养成积极开动脑筋思考问题的良好学习习惯。】
4、探究圆周长与直径的关系
(1)学生计算
师:现在请同学们用计算器计算圆的周长与该圆直径的倍数关系,教师根据学生计算结果填入相应的表格里。
(2)引导学生观察发现
通过我们的实验和计算,再观察黑板的表格,请分析数据,你发现了什么?
(3)先在小组里交流,再全班交流。
(4)交流发现:圆的直径越长,圆的周长就越长;圆的周长总是它直径的3倍多一些。
【设计意图:在学生较好的获取了圆的周长的意义后,又让学生带着明确的目地和极高的兴趣在实验结果中观察、分析圆周长与它直径的关系,达到了感知和理解的目的。】
5、介绍圆周率
师指出:经过实验证明,圆周长确实是直径的3倍多一些,我们把它叫做圆周率,用字母∏表示,圆周率是一个固定的数,它是一个无限不循环小数,∏=3.1415926535…但在实际应用中一般是取它的近似值3.14。其实很早以前我国的数学家祖冲之就发现了这个规律,下面就请大家翻开课本第63页学习“你知道吗?”通过学习老师也希望大家像数学家祖冲之一样,在学习上有不断的探索精神,将来我们也能成为数学家。
【设计意图:通过介绍圆周率的来历,让学生为我国古老而悠久的文化与祖先的聪明才智所折服,激发学生的爱国热情及学习的积极性。】
6、推导圆周长的公式
师:根据圆周率的含义,你想说什么?
(1)引导学生说出:圆的周长是直径的∏倍。
(2)引导学生归纳:圆的周长=直径×∏。
如果用c表示圆的周长,d表示直径,字母公式你会表示吗?板书c=∏d。
如果知道半径r呢?板书c=2∏r。
师:同学们通过自己的努力得出了圆的周长的公式,要求圆的周长,需要知道什么条件呢?(直径或半径)
齐读公式
【设计意图:知识到这里已是水到渠成,放手让学生自己总结,充分相信学生,增强学生学习信心。
四、教学例题
(1)出示例1,学生读题,并说说了解到的信息和问题。
(2)学生独立解决问题。
(3)个别学生上黑板板演,并说说自己的想法。
(4)组织全体学生交流。
【设计意图:刚刚总结出来的公式,放手让学生试着用,从而增强学生学习的成功感。】
五、巩固运用
1、填表
半径r(m)
直径d(m)
周长c(m)
2、老师已经量过我们草坪上圆形花坛的半径是4米,请同学们算一算,沿着它的边沿走一圈是多少米?
课后回去再想办法求出正方形的花坛的周长,再比较一下圆形花坛的周长大,还是正方形花坛的周长大。
3、一个圆形喷水池的半径是5m,它的周长是多少米?
4、一个呼啦圈的直径是0.95米,它的周长约是多少米?(得数保留一位小数)
5、一只挂钟的分针长20厘米,经过30分钟后,分针的尖端所走的路程是多少厘米?经过45分钟呢?
【设计意图:练习的设计既注意公式的简单应用,又注重使学生能熟练应用公式解决不同情况的实际问题。体现数学在生活的价值。】
六、课堂小结
今天我们一起研究了圆的周长。请你告诉大家你学会了关于圆的周长的哪些知识?
【设计意图:让学生对本课知识进行回顾和总结,加深记忆和理解。】
七、板书设计
圆的周长
围成圆的曲线的长度就是圆的周长
绕绳法和滚动法
圆的周长=直径×∏
c=∏d或c=2∏r
【设计意图:使学生对本课知识更明了、清楚,一目了然。】
自我评析:
1、让学生在生活中学习数学
《数学课程标准》明确要求“使学生感受数学与现实生活的密切联系。”这是小学数学教学的基本任务。本节课选取实际生活周边的场景,让学生课前亲身体验,充分交流等学习方法进入新课学习,真真正正地把数学融入生活。
2、在亲自实验中实现新知识的生成
在学习探究圆周率这个环节中,我充分让学生在小组合作,动手操作以及观察、分析、归纳和概括为一体的活动中学习,一是为学生提供了自主探索学习的时间与空间,二是引导学生的多种感官参与学习过程,从而提高学生学习的主动性和积极性,突破了难点,水到渠成地实现新知识的生成。
3、精心设计练习,提高应用意识
把所学知识应用于生活实际,不但可以使学生感到知识是有用的,而且有利于提高学生灵活应用知识的本领。本节课的练习设计既注意公式的简单运用,又注重应用公式解决不同情况的实际问题。体现了“学数学,用数学”的教学观念。
总之本节课的设计从学生的实际出发,通过测量圆的周长、探索圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生是在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更重要的是态度、思想、方法,是一种探究的品质。
圆的周长教学设计6
一、设计思路
本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。
二、教学过程与设计意图
教学目标:
1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。
2、结合教学内容进行爱国主义教育,激发学生民族自豪感。
3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。
教学重点:掌握理解圆的周长公式推导过程
教学过程:
A、创设情境·激疑——提出问题
(出示摩托车里程表)(1)师:这里为什么能反映摩托车行的路程呢?
(学生思考后师出示有计数器的跳绳作提示)
(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。
(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。
(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。
(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?
设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。
B、师生共同提出假设
(1)请学生回忆正方形周长和边长的关系(边长×4)。
(2)师:能不能求圆周长时也找到这样的倍数关系呢?
(3)师:测量的圆的什么比较方便呢?生答:半径、直径
(4)师:请学生先画几条长短不一的线段作直径画圆
(5)师:观察自己画的圆你发现了什么?
学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系
(6)师:你估计周长是直径的几倍?
学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右
(7)师:你有办法验证吗?学生讨论
演示:用绳绕的方法验证(3倍多一点)
设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。
C、探索问题解决的方法·发现——构建新知
(1)师:你还有别的办法研究圆的周长和直径的关系吗?
(可以用绳绕滚动的办法分别测量一些圆的周长)
(2)学生在小小组内动手操作、测量进行验证
直径(厘米)周长(厘米)周长是直径的几倍
26.23倍多一点
39.13倍多一点
412.93倍多一点
(3)小结
a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)
b、结合圆周率进行爱国主义教育
师生共同推导计算圆的周长公式:(C=лd或C=2лr)
D、运用新知识解决数学问题
(1)学生尝试例题求圆的周长
(2)基本练习(略)
设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。
E、评价体验
(1)师:这节课研究了什么?
生1:周长和直径的关系
生2:圆的周长=直径×圆周率,即C=лd或C=2лd
(2)师:(出示一棵古树图片)你能测量它的直径吗?
生答:砍下来量一量
师问:这个方法简单,你们同意吗?学生思考后回答:
生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径
生2:在古树中间钻个小孔,量一量
生3:用四个木头搭成一个正方形,边长就是直径
(3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:
生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)
生2:用根长绳让它跟着轮子转
生3:装一个象跳绳一样的计数器,再算一算。
师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的'。
设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。
三、实践反思
1、联系学生生活实际,有利于激发学生学习的兴趣。
华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。
2、让学生带着问题去学习,有利于学生主动探索知识
美国数学家哈尔莫斯(P.Rhalmos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。
3、提高应用意识,努力体现课堂教学的开放性。
生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。
4、要讨论和研究的问题
(1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?
(2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?
圆的周长教学设计7
教学内容:圆的周长
内容分析 :通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。
学生起点 :对圆和周长的概念已有初步的认识
教学目标: 1、理解圆周长的概念,理解圆周率的意义。
2、使学生掌握圆周长的计算公式及公式的推导过程。
3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。
4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。
教学重点 :圆周长公式的推导。
教学准备 :直尺; 两个有厚度、标明直径、不同规格的圆片;棉线。
教学流程:
一、复习引入
1、学生说圆的认识;
(你对圆的知识有哪些了解)
2、揭示课题:
今天我们要一起来学习圆的周长。(板书:圆的周长)
二、新授
1.认识圆的周长;
(1)师拿出圆片让学生指出圆的周长;
(哪一部分是圆的周长)
(2)描出两个规格不同的圆的周长;感受圆的周长;
(请你描出练习纸上两个圆的周长。)
(哪一个周长长?)
(3)揭示圆周长的概念;
(用自己的话说说什么是圆的周长)
师小结:围成圆的曲线的长叫做圆的周长;
围成圆的一周的长叫做圆的周长。(幻灯出示)
2、理解、运用圆周长的`测量方法。
师问:圆的周长长短不一,该怎么测量?
生边演示测量圆片周长,边介绍绳测法。
要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。
学生汇报测量结果,师记录。
圆片测量记录单:
3.探究圆的周长与直径的关系。
(1)猜测跟圆周长相关的量;
(猜测一下,圆的周长长短跟什么量有关?)
计算记录单中周长与直径的比值,得数保留两位小数;
学生反馈比值;
周长(厘米)
直径(厘米)
周长与直径的比值(得数保留两位)
(2)认识圆周率
①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。
(板书:圆周率 π )
②幻灯片展示圆周率的由来,学生自主阅读;
总结圆周长的计算公式。
①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?
提示:从测量记录单中找取。
②如果周长用C表示,字母式是怎样的?
③周长跟半径又是怎样的关系呢?字母式呢?
(板书:圆周长=圆周率×直径 C=πd 或
圆周长=2×圆周率×半径 C=2πr
三、巩固练习
基本练习
一个圆的直径是10米,它的周长是多少? 一个圆的半径是10米,它的周长是多少? 判断。
只要知道圆的直径或半径就可以计算圆的周长。( ) 大圆的圆周率大,小圆的圆周率小。 ( ) 圆周率的值就是3.14. ( ) 4圆的周长是直径的 倍。 ( ) 能力拼比:
两个小朋友同时同速从A点到B点,谁先到达?
B
A
四、总结:学习了这堂课你有哪些收获?
圆的周长教学设计8
【教学内容】
《义务教育课程标准试验教科书. 数学》(苏教版)六年制五年级下册第十单元第98-102页,例4,例5和例6及练一练和练习十八。圆的周长,周长计算公式。
【教材分析】
这部分内容是在学生认识圆的基本特征的基础上,引导学生探索并掌握圆的周长公式。首先引导学生从生活经验出发,借助观察、比较进行猜想,再具体描述圆的周长的含义,并让学生通过进一步的思考,认识到圆的周长与直径的关系。最后引导学生根据对测量圆周长活动过程的理解,推导出圆的周长公式。然后让学生应用刚刚掌握的公式计算圆的周长,解决简单的实际问题,巩固对公式的理解。
【教学目标】
1、使学生理解圆的周长和圆周率的意义,理解并掌握圆的周长公式,并能正确计算圆周长。
2、培养学生的观察、比较、概括和动手操作的能力。
3、对学生进行爱国主义教育。
【教学重点】
圆的周长和圆周率的意义,圆周长公式的推导过程。
[教学难点]
圆周长公式的推导过程。
【教学准备】
多媒体课件、实物投影、圆、绳子、直尺、圆规等。
【教学过程】
一、情境创设,生成问题
1、出示一个正方形花坛和一个圆
问:这是什么图形?围着花坛跑一圈,哪个长哪个短呢?
预设一:看哪个跑得步子多。
预设二:计算它们的周长,进行比较更为简便。
2、什么是长方形的周长?怎样计算?这个长方形的周长与长和宽有什么关系?
预设一:C=(a+b)×2
预设二:C=2a+2b
3、什么是圆的周长?
让学生上前比划,圆的'周长在那?那一部分是圆的周长?
得出定义:围成圆的曲线的长叫做圆的周长。
二、探索交流,解决问题
(一)圆周长的公式推导。
1、探索学习。
(1)你可以用什么办法知道一个圆的周长是多少?
(2)学生各抒己见,分别讨论说出自己的方法:
预设一:用一根线,绕圆一周,减去多余的部分,再拉直量出它的长度,即可得出圆的周长。
预设二:把圆放在直尺上滚动一周,直接量出圆的周长。
那么用一条线的一端栓上小球在空中旋转。这样你能知道空中出现的圆的周长吗?
用滚动,绳测的方法可测量出圆的周长,但是有局限性。今天我们来探讨出一种求圆周长的普遍规律。
设计意图:引导学生从生活经验出发,借助观察、比较进行猜想:到底怎样测圆的周长。进而激发学生进一步探究圆的周长是如何求出来的兴趣。
2、动手实践。
(1)4人小组,分别测量学具圆,报出自己量得的直径,周长,并计算周长和直径的比值。
(2)引生看表,问你们看周长与直径的比值有什么关系?
预设:都是3倍多,不到4倍。
(3)你有办法验证圆的周长总是直径的3倍多一点吗?
(4)阅读课本P102,介绍圆周率,及介绍祖冲之。
∏=3.1415926535…… 是一个无限不循环小数。
3、得出计算公式。
圆的周长=圆周率×直径
C = ∏d或 C = 2∏r
设计意图:教材通过示意图对这两种方法做了清楚的说明,这有利于学生学会具体的测量圆周长的方法,又能使学生从中体验“化曲为直”的策略。
(二)、解决新问题。
1、解决情境题中的问题。
学生独立完成,小组内订正。
2、教学例1 : 圆形花坛的直径是20m,它的周长是多少米?小自行车车轮的直径是50m,绕花坛一周车约转动多少周?
小组内想出解决的办法,并在全班交流。
预设一: 已知 d = 20米 求:C = ?
根据 C =πd 20×3.14=62.8(m)
预设二: 已知: 小自行车d = 50cm
先求小自行车C = ? c=πd
50cm=0.5m 0.5×3.14=1.57(m)
再求绕花坛一周车约转动多少周?
62.8 ÷1.57=40(周)
答:它的周长是62.8米。绕花坛一周车约转动40周。
设计意图:引导学生根据圆的周长公式列式解答。这样有利于学生提高综合应用数学知识和方法解决实际简单的实际问题,巩固对公式的理解的能力。
三、巩固应用,内化提高
1、求下列各题的周长。
书本102页练习十八的第1、2题
2、判断正误。
(1)圆的周长是直径的3.14倍。 ( )
(2)在同圆,圆的周长是半径的6.28倍。( )
(3)C =2πr =πd 。 ( )
(4)半圆的周长是圆周长的一半。 ( )
设计意图:通过这些小题的练习,让学生进一步加深对相关知识的理解。
四、回顾整理,反思提升
通过这节课的学习你都知道了什么?还有什么不懂的呢?
圆的周长教学设计9
教学内容:
圆的周长
教学目标:
1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。
2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。
3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。
4、通过合作探究,使学生体验到实验对猜测的验证作用以及对问题的探索过程,并掌握学习方法,感受“转化”的数学思想。
教学重点:
经历探索圆周长公式的过程
教学难点:
理解圆周率的意义
教学用具:
多媒体课件
学习用具:
圆形学具、直尺、计算器、记录单
教学过程:
一、情境导入
同学们,你们都学习了圆的哪些知识?你们掌握的很好,今天我们继续学习圆的知识。
栗老师就在公园附近居住,(多媒体出示老师绕圆形花池)跑步图每天早上都要到公园的圆形花坛跑步10圈,你能算出栗老师每天跑了多少米吗?要想知道栗老师每天跑多少米。就要先算出一圈跑了多少米?也就是算出圆的周长,我们今天就来学习“圆的周长”。(板书课题:圆的周长)
二、探究新知
1、谁来摸一摸老师手里圆的周长?引出定义,(多媒体演示圆的周长)赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)
2、你能测量出圆的周长吗?(多媒体演示圆的周长测量)
生1:“滚动”——把实物圆沿直尺滚动一周;
生2:“缠绕”——用绸带缠绕实物圆一周并打开;
小结各种测量方法:(板书)化曲为直
3、创设冲突,体会测量的局限性
你能用刚才的方法测出老师跑步的圆吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方法。
4、合理猜想,强化主体
猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的.关系呢?(随着回答板书:圆的周长直径)
师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。
1、指导学习方法:那好,看学习要求。(多媒体出示测量要求和测量表)(指名读)
师提问:学习要求中提示我们要怎么做?
师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的周长和它的直径,并填好记录单,然后找到它们的倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始合作!
2、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。
3、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)
圆的周长
(厘米)
圆的直径
(厘米)
圆的周长与直径的比值
(得数保留两位小数)
师提问:如果我继续填下去,会出现什么情况?
那就用字母代替吧。填(Cd三倍多一些)
4、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率c÷d=π)它的值在之间,是一个无限不循环小数。(板书:)在小学阶段,我们计算时一般取两位小数,π≈(板书)
5、介绍祖冲之:每当提到圆周率,人们会自然的想到一个数学家——祖冲之。(课件)现在运用计算机可以将圆周率的值计算到小数点后上亿位。
6、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)
要想求圆的周长,必须告诉大家什么条件?(直径)
知道半径怎么样求圆的周长?(板书:c=2πr)
课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。
三、巩固练习:
解决实际问题:
(1)有了求圆周长公式,只要告诉你圆直径或半径就能求出圆的周长。(课件)(学生解答,订正)
(2)栗老师每天早上都要到圆形花坛跑步10圈,如果花坛的直径是25米,你能算出栗老师每天跑了多少米吗?
四、谈学习收获:
同学们,一节课很快就过去了,你能谈一谈这节课最大的收获是什么吗?
板书设计:
圆的周长
围成圆的曲线的长
圆的周长是它的直径π倍
C=πd
C=2πr
圆的周长教学设计10
设计理念:
本课教学从学生已有知识出发,将知识同化到学生原有的知识中,激发学生的学习兴趣,为学生提供从事动手操作,合作交流的空间,培养学生猜想、归纳、验证的数学思维能力。用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。
教学内容:
《义务教育课程标准实验教科书 数学》人教版六年级上册第89-91页《圆的周长》
学情与教材分析
本节课是在学生学习长方形、正方形及认识圆的基础上进行学习的,通过前面的学习学生已获得了对长方形、正方形周长的认识:它们的周长就是围成它一周的长度,这为学生认识、概括、归纳圆的周长提供知识技能基础。在教法上,以“铺垫孕状——新知探究——新知运用”为主线,又在各个环节中设置由浅入深,由易到难的问题,引导学生通过操作、合作交流、独立思考、各个击破、呈现重点、突破难点。在学情上,以学生为主体,发挥主全的能动性,经历探究、合作交流、自学等方式自主构建知识。
教学目的
1、理解圆的周长和圆周率的意义,推导圆的周长公式,并能正确计算圆的周长。
2、通过动手实践,自计探索与合作交流等活动发现和理解圆的周长的计算方法。
3、在探究中体验成功,增强信心。
4、结合圆周率的教学,激发学生的爱国热情。
教学准备
老师:课件、直尺、纸剪的圆、系有小球的绳子两具啤酒瓶、绳子。
学生:2个大小不同的硬纸圆片、直尺、彩带、学具。
教学过程:
一、创设情境,导入新课
1、课件播放:机器人轿车和跑车在两个赛道上比赛,轿车沿着正方形路线跑,跑车沿着圆形路线跑。
2、想一想
(1)要求轿车所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量了它的什么就可以?能说出你的依据吗?
(2)要求跑车所跑的路程,实际就是求圆的什么呢?板书课题:圆的周长。
3、从图上可以看出,圆的周长是一条什么线?谁来说说什么圆的周长?
【设计意图:利用课件演示,引导学生逐步认识圆的周长,归纳圆的周长的意义,突出正方形周长与它的边长的关系,加深学生对圆的周长的理解,为后继教学“圆的周长与直径的关系”作学习策略上的铺垫。】
二、引导探索,展开新课。
1、感知、测量:用手摸圆的一周<纸剪的圆>
(1)师演示用直尺测量圆的周长,你觉得怎样?能不能想出一个好办法来测量圆的的周长呢?
(2)利用学具操作,用不同方法测量圆的周长。
(3)想一想:用这些方法测量圆的周长有什么共同特点?
[设计意图:本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系。”]
2、合作研究:圆的周长与直径有什么关系?
(1)猜一猜:(老师拿出一个一端系有小球的绳子,手执另一端并不停地转动形成一个“圆”),你们还能利用刚才的方法测量出这个圆的周长吗?圆的周长可能与它们有关?
(2)比一比:同桌合作,用绕圆一周的彩带跟学具的'圆的直径比一比,看它们有什么关系?
(3)算一算:小组合作,量出圆的周长和直径,算出圆的周长和直径的比值。
【学情预设:由于测量有些误差,其结果有所不同,可让学生通过争辩来统一认识】
(4)、议一议:计算结果有不同,你发现了什么?
(5)、得出结论:通过以上活动,你发现圆的周长和直径之间有什么关系?
【设计意图:本设计从学生实际出发,通过量一量、想一想、猜一猜、比一比、算一算、议一议等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的关非纯粹的知识本身,更主要的是态度、思想方法,是一种探究的品质】
3、认识圆周率
(1)揭示圆周率的概念
这个3倍多一些的数,是个固定不变的数,称之为圆周率。圆周率一般用字母∏表示。
指导读写
(2)指导阅读第90页方框中的文字,了解让中国人引以为自豪的历史,介绍近代大于圆周率的研究成果。
4、推导圆的周长的计算方式
(1)问:已知一个圆的直径,该怎样计算它的周长?板书:C=∏d,学生任意挑选一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?
(2)问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:C=2∏r
(3)问:转动木条形成的圆的周长你会求吗?
(4)小结:要求圆的周长,一般需要知道它的直径或半径。
【设计意图:本设计通过学习自主的“探究—发现”,进一步理解周长与直径的关系,理解圆周率的意义。通过问题的层层深入,圆的周长公式就推导而出。】
三、初步运用,巩固新知
1、辨析、判断<课件>
(1)圆的周长是它直径的3倍多一些 ( )
(2)圆的周长是它直径的3.14倍 ( )
(3)圆的周长是它直径的∏倍 ( )
2、教学例1 <课件>
(1)在生读题后,问:求这张圆桌的周长是多少米?实际上是求什么?
(2)学生尝试,反馈评价。
3、完成第91页中间的“做一做”。
【设计意图;通过判断题的判断,加深了学生对圆的周长和直径间关系深刻认识,并有一个正确的认识。对桌面周长的计算,培养了学生对知识运用的能力,了解了数学与生活的联系业务,让学生获得不同程度的成功体验】
四、全课总结、
1、请学生说说收获。
2、回放两车比赛的课件;算一算,哪辆车跑的路程长?
3、生活中的数学
师演示;把两个啤酒瓶捆扎在一起。啤酒瓶的直径是T厘米,如果只扎一圈,至少要多少厘米绳子?(接头处不算)
设计思路
着名教育学家布鲁纳指出“探索是数学的生命线”。本设计求为学生创设“探究——发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华。
一、在操作中感悟。
教学过程是教师引导学生把人类的知识成果转为个体认识的过程,
是一种“再创造”的过程,在这个过程中,实践操作是最基本、最重要的手段和方法之一。本设计为学生的操作提供了充分的条件和充足的时间。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。
二、在探究中发现
儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过量一量、想一想、猜一猜等活动,让学生在亲身经历数学知识的操究过程中发现知识、理解知识、应用知识。这样学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。
三、在经历圆周率的研究历史中,渗透数学文化和数学思想。
在教学设计中,学生通过动手实验,得出圆的周长和直径的比值,进而介绍祖冲之的研究成果,最后,介绍看守代关于圆周率的研究成果。在这个过程中,使学生经历了圆周率的研究史,渗透数学文化和数学思想方法。同时,使学生产生情感的共鸣、丰富学生的情感体验,发展学生的情感、态度和价值观。
四、在实践中体会到知识的价值
在教学设计中,让学生用知识解决生活中的实际问题,使学生感受到数学知识在生活中的应用价值,进一步激发学生对数学的兴趣和爱好。
作者简介:
郑蓉,现任教于浦城县新华小学,1971年出生,大专学历,小学高级教师,担任校数学教研组组长,县学科带头人。
圆的周长教学设计11
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的`认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的最简整数比:
(1)一个圆的半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
圆的周长教学设计12
教学目标:
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点:推导圆的周长的计算公式,准确计算圆的周长。
教学难点:理解圆周率的意义。
教具准备:圆片、铁圈、绳子、直尺。
教学方法:观察、演示、小组合作交流
教学过程:
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的'圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
二、经历探究全程,验证猜想发现。
一圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
二圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)
三、感受数学文化,激发情感教育。
1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
2、介绍计算机计算圆周率的情况。
3、教学圆周率:π≈3.14。
四、归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd或C=2πr
圆的周长教学设计13
教学目的:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
1、理解圆周率的意义。
2、推导并总结出圆的周长的计算公式并能够正确计算。
教学难点:
深入理解圆周率的意义。
教学过程:
一、复习准备:
(一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?
(二)创设情境:龟兔赛跑。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
二、新授教学。
(一)定义。
1、小乌龟跑的.路程就是正方形的什么?小白兔呢?
2、什么是圆的周长?请你摸一摸你手中圆的周长。
3、今天我们就来研究圆的周长。
(二)推导圆的周长公式。
1、学生讨论。
(1)正方形的周长和谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2、猜测。
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?
3、实践操作。
(1)目的:用不完全归纳法得出圆的周长约是直径的几倍。
(2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。
(3)填写表格。
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(4)汇报小结
看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?
(三)认识圆周率、介绍祖冲之。
1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。
2、介绍祖冲之。
(四)总结圆的周长公式。
1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
教师板书:C=d
2、圆的周长还可以怎样求?
教师板书:C=2r
3、圆的周长分别是直径与半径的几倍?
(五)课堂反馈。
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
三、巩固练习。
(一)判断。
1、=3.14()
2、计算圆的周长必须知道圆的直径。()
3、只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1、较大的圆的圆周率()较小的圆的圆周率。
a大于b小于c等于
2、半圆的周长()圆周长。
a大于b小于c等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。
四、课堂小结:
通过这堂课的学习,你有什么收获?你还有什么问题吗?
五、课后作业。
(一)求下面各圆的周长。
1、d=2米
2、d=1.5厘米3.d=4分米
(二)求下面各圆的周长.
1、r=6分米
2、r=1.5厘米
3、r=3米
六、板书设计。
圆的周长
C=dC=2r
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
活动要求:
1、各个组成部分面积分配合理,布局合理。
2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。
3、要有娱乐活动场所、休息场所、小路。
4、算出各个部分的面积。
圆的周长教学设计14
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第一单元11至13页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的'时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆的周长的计算公式。
教学过程:
(一)创设情境,提出问题。
师:同学们,你们每天下课都会去学校中间的圆形花园玩。如果我绕着它的最大横截面走一圈,大约走多少米呢?这个问题是求什么呢?(板书课题:圆的周长)我们今天就来解决这个问题。
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
2、合作交流
在六人小组内讨论交流求圆周长的方法。
3、汇报展示
①用围的方法。指名演示。问:要注意什么?
②用滚的方法。指名演示。
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。无论是滚动法还是绳围法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么花园最大横截面的周长,还能用以上这些方法吗?
生:不能。
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
5、探讨圆的周长与直径的关系。
①小组合作
要求学生以六人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,三人同步计算计算圆的周长与直径的商,第六个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长
直径
周长与直径的商(保留两位小数)
1号圆片
2号圆片
3号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的圆计算出的周长与直径的商可能不完全相同,但实际上,这个商是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈。(板书:圆周率,π≈)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
6、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式:
C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看花园吧!已知花园最大的横截面的直径是15米,如果朱老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
(三)巩固新知,解决问题
1、判断
(1)圆的周长是直径的π倍。
(2)大圆的圆周率大于小圆的圆周率。
(3)π=
⑴、老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
⑵、请同学们以小组为单位,画一个周长是厘米的圆,先讨论如何画,再操作.
四、课内小结,扎实掌握:
通过今天的学习,你有什么收获?
五、课外引申,拓展思维:
一个茶杯口的直径你有什么方法知道?
结束语:同学们,圆形是一种很漂亮的图案,圆满的人生是我们一生的追求,只有我们努力拼搏、发愤图强才能使我们的人生圆满、国家强盛。
圆的周长教学设计15
张建华
知识与技能:
通过具体情境使学生直观认识圆的周长,知道圆的周长的意义。
理解圆周率的意义,推导圆周长的计算公式。
正确运用公式计算圆的周长和解答见到的实际问题。
对于六年级的学生,通过前五年的学习,学生已经有了一定的学习能力,他们掌握新知识的能力已经越来越好,对于学习新的操作技能的能力也越来越强。而整体学生的学习风格是思维活跃、反应迅速,但往往思维深度不够,准确性稍微欠缺,所以在教学时一定要特别注意结合教学经验和课堂观察,通过提出挑战性的问题、引导学生运用合作、探究等方式进行?
过程与方法:
通过摸一摸、动手操作、猜想验证等活动,使学生经历整个知识探究的过程。
通过对圆周率的研究,培养学生主动探究的精神,提高动手操作的能力和逻辑思维能力。
让学生经历圆的周长公式的推导过程,培养学生的比较、分析能力,体会化曲为直、转化和建模的数学思想方法。
情感、态度和价值观:
通过介绍古代的数学家祖冲之对圆周率方面的'伟大贡献,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团队合作精神。
体会圆的周长与日常生活的密切关系,感受数学知识的魅力。
重难点
重点:理解圆的周长和直径的倍数关系,掌握圆周长的计算公式。
难点:理解圆周率的意义。
五、教学过程
(一)创设情境,激发兴趣:
师:同学们喜欢听童话故事吗?(喜欢)在动物王国里国王精心挑选了小猫和小狗进行赛跑比赛,国王要求它们以同样的速度,小猫沿着正方形路线跑,小狗沿着圆形路线跑,你们猜一猜谁先获胜。(小狗先到)可是小猫觉得很委屈,其他小动物们也觉得不公平(动物的声音)你们有什么想法?
【圆的周长教学设计】相关文章:
圆的周长教学设计05-19
《圆的周长》教学设计03-06
《圆的周长》教学设计10-22
圆的周长优秀教学设计08-11
人教版《圆的周长》教学设计10-18
数学《圆的周长》教学设计09-18
《圆的周长》教学设计15篇06-21
(优选)圆的周长教学设计15篇09-11
(实用)圆的周长教学设计15篇08-30
《 圆的周长》教学反思07-30