- 相关推荐
一元二次方程教学设计
作为一名辛苦耕耘的教育工作者,就有可能用到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。一份好的教学设计是什么样子的呢?以下是小编为大家收集的一元二次方程教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
一元二次方程教学设计1
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.
Ⅱ.讲授新课
一、例题讲解
投影片:(§2.8.1A)
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么
(1)h与t的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.
[师]请大家先发表自己的看法,然后再解答.
[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.
(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.
还可以观察图象得到.
[师]很好.能写出步骤吗?
[生]解:(1)∵h=-5t2+v0t+h0,
当v0=40,h0=0时,
h=-5t2+40t.
(2)从图象上看可知t=8时,小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0.
∴t(t-8)=0.
∴t=0或t=8.
t=0时是小球没抛时的时间,t=8是小球落地时的时间.
二、议一议
投影片:(§2.8.1B)
二次函数①y=x2+2x,
②y=x2-2x+1,
③y=x2-2x+2的图象如下图所示.
(1)每个图象与x轴有几个交点?
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
[师]还请大家先讨论后解答.
[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的.根1或一个根1;方程x2-2x+2=0没有实数根.
(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;
二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.
由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.
[师]大家总结得非常棒.
二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
三、想一想
在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?
[师]请大家讨论解决.
[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此当小球离开地面2秒和6秒时,高度都是60m.
Ⅲ.课堂练习
随堂练习(P67)
Ⅳ.课时小结
本节课学了如下内容:
1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.
2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.
Ⅴ.课后作业
习题2.9
板书设计
§2.8.1 二次函数与一元二次方程(一)
一、1.例题讲解(投影片§2.8.1A)
2.议一议(投影片§2.8.1B)
3.想一想
二、课堂练习
随堂练习
三、课时小结
四、课后作业
备课资料
思考、探索、交流
把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?
解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则
S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.
即当x=25时,S最大=625.
(2)S正方形=252=625.
(3)∵正三角形的边长为 m,高为 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= .
∴S圆=πr2=π·( )2=π· = ≈796(m2).
所以圆的面积最大.
一元二次方程教学设计2
教学目标
掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用。
通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目。
重难点关键
1。重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac<0 一元二次方程没有实根。
2。难点与关键
从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。
教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)用公式法解下列方程。
(1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0
老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=<0,方程没有实根。
二、探索新知
方程b2—4ac的值b2—4ac的符号x1、x2的关系
(填相等、不等或不存在)
2x2—3x=0
3x2—2 x+1=0
4x2+x+1=0
请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。
从前面的具体问题,我们已经知道b2—4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解。
因此,(结论)(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。
(2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。
(3)当b2—4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根。
例1。不解方程,判定方程根的情况
(1)16x2+8x=—3 (2)9x2+6x+1=0
(3)2x2—9x+8=0 (4)x2—7x—18=0
分析:不解方程,判定根的情况,只需用b2—4ac的.值大于0、小于0、等于0的情况进行分析即可。
解:(1)化为16x2+8x+3=0
这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128<0
所以,方程没有实数根。
三、巩固练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0
(5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x
四、应用拓展
例2。若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。
分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)<0就可求出a的取值范围。
解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。
∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8<0
a<—2
∵ax+3>0即ax&
gt;—3
∴x<—
∴所求不等式的解集为x<—
五、归纳小结
本节课应掌握:
b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac<0 一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用。
六、布置作业
1。教材P46 复习巩固6 综合运用9 拓广探索1、2。
2。选用课时作业设计。
第7课时作业设计
一、选择题
1。以下是方程3x2—2x=—1的解的情况,其中正确的有( )。
A。∵b2—4ac=—8,∴方程有解
B。∵b2—4ac=—8,∴方程无解
C。∵b2—4ac=8,∴方程有解
D。∵b2—4ac=8,∴方程无解
2。一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。
A。a=0 B。a=2或a=—2
C。a=2 D。a=2或a=0
3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的取值范围是( )。
A。k≠2 B。k>2 C。k<2且k≠1 D。k为一切实数
二、填空题
1。已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。
2。不解方程,判定2x2—3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根")。
3。已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。
三、综合提高题
1。不解方程,试判定下列方程根的情况。
(1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0
2。当c<0时,判别方程x2+bx+c=0的根的情况。
3。不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。
4。某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团20xx年投入新产品开发研究资金为4000万元,20xx年销售总额为7。2亿元,求该集团20xx年到20xx年的年销售总额的平均增长率。
一元二次方程教学设计3
学情分析
学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式。
教学目标:
知识技能
1、理解一元二次方程的概念.
2、掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法
1、通过一元二次方程的引入,培养学生分析问题及解决问题的能力.
2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感态度
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
教学重难点
重点:一元二次方程的概念及一般形式.
难点:探求问题中的等量关系,建立方程模型
教学突破:
1、方程是否为一元二次方程,主要看是否满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数为2次
2、一元二次方程的各项系数均是相对于一般形式而言的,因此在教学中应强调:若要确定各项的系数,应先将方程化为一般形式。另外,一定要注意符号,尤其符号不能漏掉。
教学过程设计
一、创设情境引入新课
问题1:
在长30米,宽20米的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500平方米,求道路的宽度?.
通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程.
问题2:
参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,求有多少家参加商品交易会?
二、启发探究获得新知
1、一元二次方程的概念:经整理后,,只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
说明:(1)由一问题得到2个方程,由学生观察归纳这2个方程的`特征,给出名称并类比一元一次方程的定义,得出一元二次方程的定义.
(2)一元二次方程必须同时具备三个特征:a)整式方程; b)只含有一个未知数; c)未知数的最高次数为2.
眼疾口快:
请抢答下列各式是否为一元二次方程:
(4)5x+3=10
说明:此环节采取抢答的形式,提高学生学习数学的兴趣和积极性.
2、一元二次方程的一般式:
试一试:
例1、下面给出了某个方程的几个特点:
它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
请你写出一个符合条件的的一元二次方程
说明:此题设置的目的在于加深学生对一般形式的理解
三、运用新知体验成功
小试牛刀:
1.将下列方程化成一元二次方程的一般形式,并
写出其中的二次项系数、一次项系数和常数项.
(1)5x 2 -1= 4x;
(2)4x 2 = 81;
(3)4x(x+2)=25;
(4)(3x – 2)( x + 1 ) = 8x - 3
说明:巩固练习学生整理一般形式的方法,并准确找出各项系数.此环节可找学生口答结果.另让学生落实将刚才教师板书的整理一般形式的过程,再次突出本节课的重点内容
2.
(1)小区20xx年底拥有家庭轿车64辆,20xx年底家庭轿车的拥有辆达到100辆,若该小区这两年的年平均增长率相同,求年平均增长率x;
(2)一个矩形的长比宽多2厘米,面积是100平方厘米,求矩形的长x;
(3)要组织一次篮球联赛,每两队之间都赛一场,计划安排21场比赛,有多少队参加?
说明:这几题有在实际生活中应用的意义,以此题为例,教师板书整理一元二次方程的过程,让学生学会如何整理任意一元二次方程的一般形式,并能准确找到各项系数.
教师在此活动中应重点关注:
(1)由一个学生列出方程,并解释解题方法,教师进行引导,点评,引起其他学生的关注,认同.
(2)教师在归纳点评过程中,应注意把两队只打一场比赛解释清楚,以便学生理解题意.
(3)整理一般形式后,教师应强调整理过程中应用到的等式变形方法,如去括号,移项,合并同类项,去分母等.
(4)让学生指出各项系数时,教师强调系数须带符合.
例2、当m取何值时,方程(m-2)xm2-2+3mx=5
是关于x的一元二次方程?
此题由学生思考,讨论,并由学生给出结果并进行解释.
说明:此活动过程中,教师应重点关注:
(1)此题目在上一题的基础上继续加大难度,第(1)题须强调先进行整理,再考虑二次项系数是否为零;第(2)题须先求出m值,再代入二次项系数中,验证是否为0,得到结果.
(2)学生解答过程中,教师把整理的一般形式书写在黑板上,以便全体学生理解.
(2)学生解答过程中,教师把整理的一般形式书写在黑板上,以便全体学生理解.
四、归纳小结拓展提高
1.问题:
本节课你又学会了哪些新知识?
说明:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。
2.还有什么疑惑?
五、布置作业:
教科书第21.1第1、2、3题.
板书设计
21.1一元二次方程
一元二次方程的概念:方程两边都是整式,并且只含有一个未知数,未知数的最高次数是2的方程叫一元二次方程。
一元二次方程的一般形式
a表示二次项系数,b表示一次项系数,c表示常数项。
例1.例1、下面给出了某个方程的几个特点:
它的一般形式为
(2)它的二次项系数为5;
(3)常数项是一次项系数的倒数的相反数。
请你写出一个符合条件的的一元二次方程
例2、当m取何值时,方程(m-2)xm2-2+3mx=5
是关于x的一元二次方程?
学生学习活动评价设计:
关注学生在学习活动中的表现,如能否积极的参加活动,能否从不同的角度去思考问题,等等,而不是仅局限于学生列方程,判断学生各项系数的正确与否。
重视学生应用新知解决问题的能力的评价,鼓励学生使用数学语言,有条理地表达自己的思考过程,鼓励大胆质疑和创新。
一元二次方程教学设计4
第一课时
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:
会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:
根据数与数字关系找等量关系。
3.教学疑点:
学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:
列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1 两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,
(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一) 设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二) 设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
解法(三) 设较小的奇数为,则另一个奇数为。
据题意,得
整理后,得
解得,,或。
当时,。
当时,。
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3.选出三种方法中最简单的一种。
练习1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。
例2 有一个两位数等于其数字之积的'3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数十位数字个位数字。
三位数百位数字十位数字个位数字。
解:设个位数字为x,则十位数字为,这个两位数是。
据题意,得,
整理,得,
解这个方程,得(不合题意,舍去)
当时,
答:这个两位数是24。
以上分析,解答,教师引导,板书,学生回答,体会,评价。
注意:在求得解之后,要进行实际题意的检验。
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.
一元二次方程教学设计5
一、学生知识状况分析
学生已经学习了一元二次方程及其解法,对于方程的解及解方程并不陌生,实际问题的应用,有些抽象,虽然学生在七、八年级已经进行了有关的训练,但还是有一定的难度。
本节内容针对的学生是才进入九年级的学生,他们已经具备了一定的抽象思维和建模能力,也具备一定的生活经验和初步的解一元二次方程的经验。
二、教学任务分析
本节课的主要是发展学生抽象思维,强化学生的应用意识,使学生能通过抽象思维将一个应用题抽象成一元二次方程使问题得以解决,这也是方程教学的重要任务。但学生抽象意识和能力的发展不是自发的,需要通过大量的应用实例,在实际问题的解决中让学生感受到其广泛应用,并在具体应用中增强学生的应用能力。因此,本节教学中需要选用大量的实际问题,通过列方程解决问题,并且在问题解决过程中,促进学生分析问题、解决问题意识和能力的提高以及抽象思维的初步形成。显然,这个任务并非某个教学活动所能达成的,而应在教学活动中创设大量的问题解决的情境,在具体情境中发展学生的有关能力。为此,本节课的教学目标是:
知识目标:
通过分析问题中的数量关系,抽象出方程解决问题,认识方程模型的重要性,并总结运用方程解决实际问题的一般过程。
能力目标:
1、经历分析,抽象和建模的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型;
2、能够抽象出一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;
情感态度价值观:
在问题解决中,经历一定的合作交流活动,进一步发展学生合作交流的意识和能力。
三、学法指导
本课是学生学习完一元二次方程的解法后的应用课,虽然学生在七八年级已经进行了一定的训练,但本课对学生而言还是有一定的难度。本课采用启发式、问题串讨论式、合作学习相结合的方式,引导学生从已有的知识和生活经验出发,以教材提供的素材为基础,引导学生对对问题中的数量进行分析从而抽象出方程解决问题;学生之间的合作交流、互助学习,能更好地调动学生的学习积极性,更符合学生的认知规律。无论是例题的分析还是练习的分析,尽可能地鼓励学生动脑、动手、动口,为学生提供展示自己聪明才智的机会,并且在此过程中发现学生分析问题、解决问题的独到见解以及思维的误区,更好地进行学法指导。
四、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固,情境导入;第二环节:做一做,探索新知;第三环节:练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;情境导入
活动内容:提出问题:还记得梯子下滑的问题吗?
在这个问题中,梯子顶端下滑1米时,梯子底端滑动的距离大于1米,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?如果梯子长度是13米,梯子顶端下滑的距离与梯子底端滑动的距离可能相等吗?如果相等,那么这个距离是多少?
分组讨论:
怎么设未知数?在这个问题中存在怎样的等量关系?如何利用勾股定理抽象出方程?
活动目的:以学生所熟悉的梯子下滑问题为素材,以前面所学的勾股定理为切入点,用熟悉的情境激发学生解决问题的欲望,用学生已有的知识为支点抽象出一元二次方程使问题得以解决,进一步让学生体会数形结合的思想。
活动的实际效果:大部分学生能够联系以前学过的勾股定理的三边关系抽象出方程对上述问题进行思考,能够在老师的引导下主动地探究问题,取得了比较理想的效果,而且也调动了学生的学习热情,激发了学生的思维,为后面的探索奠定了良好的基础。
第二环节探索新知
活动内容:见课本P53页例1:
如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头。小岛F位于BC中点。一艘军舰从A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。
已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)
在教学中要给学生充分的时间去审清题意,分析各量之间的关系,不能粗线条解决。在讲解过程中可逐步分解难点:审清题意;找准各条有关线段的长度关系;通过抽象思维建立方程模型,之后求解。
实际应用问题比较抽象,因此教学中老师要给学生充分的时间去审清题意,让学生自己反复审题,弄清各量之间的关系,分析题目中的已知条件和要求解的问题,并在这个前提下抽象出图形中各条线段所表示的量,弄清它们之间的关系,从而抽象出方程模型解决问题。
在学生分析题意遇到困难时,教学中可设置问题串分解难点:
(1)要求DE的长,需要如何设未知数?
(2)怎样建立含DE未知数的等量关系?从已知条件中能找到吗?
(3)利用勾股定理建立等量关系,如何构造直角三角形?
(4)选定后,三条边长都是已知的吗?DE,DF,EF分别是多少?
学生在问题串的引导下,逐层分析,在分组讨论后抽象出题目中的等量关系即:
速度等量:V军舰=2×V补给船
时间等量:t军舰=t补给船
三边数量关系:
弄清图形中线段长表示的量:已知AB=BC=200海里,DE表示补给船的路程,AB+BE表示军舰的路程。
学生在此基础上选准未知数,用未知数表示出线段:DE、EF的长,根据勾股定理抽象出方程求解,并判断解的.合理性。
巩固练习:1、一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角的面积是多少?
文本框:8cm2、如图:在RtACB中,∠C=90°,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半?
3、在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?
说明:三个题目的设计从简单问题入手,第一题通过勾股定理抽象出一元二次方程解决直角三角形边长问题;第2题构造了一个可变的直角三角形,抽象出方程解决面积问题;第三题也是面积问题,在这个问题中常设道路宽为x米,通过平移道路使六块田地变成一块田地,从而根据矩形面积公式抽象出方程解决问题。
活动目的:一元二次方程的应用题的类型较多,像数字问题、面积问题、平均增长(或降低)率问题、利润问题等;本节课以教材上的引例作为出发点,作为素材来呈现,可以将应用类型作适当的拓展,在练习中将教材中的应用问题归类呈现出来,便于学生理解和掌握。本课由数形结合问题拓展到面积问题,后面可以在练习中增加数字问题,为学生呈现更多的应用类型,让学生在不同的情境中体会数学抽象和建模的重要性。
活动实际效果:应用问题设置都经过精心准备。通过问题串的设立,将比较复杂、难以理解的题目分成多个小的题目去理解,使学生在不知不觉中克服困难,体会到通过抽象出方程解应用题的三个重要环节:整体系统的审清题意;寻找等量关系;正确求解并检验解的合理性。采取的是一讲一练,从巩固练习的准确程度上来看,学生掌握得比较好,能够达到预期的效果。
第三环节:练一练,巩固新知
活动内容:1、在一块正方形的钢板上裁下宽为20cm的一个长条,剩下的长方形钢板的面积为4800cm2。求原正方形钢板的面积。
2、有这样一道阿拉伯古算题:有两笔钱,一多一少,其和等于20,积等于96,多的一笔钱被许诺赏给赛义德,那么赛义德得到多少钱?
3、《九章算术》“勾股”章有一题:甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3。乙一直向东走,甲先向南走了10步,后又斜向北偏东方向走了一段后与乙相遇。那么相遇时,甲、乙各走了多远?
活动目的:通过三道问题的解决,查缺补漏,了解学生的掌握情况和灵活运用知识的程度。在教学过程中要以学生为主体,引导学生自主发现、合作交流。活动实际效果:学生在前面活动中积累的经验,可以帮助学生比较顺利地分析上述问题,遇有疑难可以让学生在合作交流中解决,学生在训练过程中更加理解数学抽象和建模的重要性.大部分学生能够独立解决问题。
第四环节:收获与感悟
活动内容:提问:
1、列方程解应用题的关键;2、列方程解应用题的步骤;3、列方程应注意的一些问题。
学生在学习小组中回顾与反思,并进行组间交流发言。
活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,还有什么疑难问题希望得到解决;通过对三个问题的解决,加深学生通过抽象思维抽象出方程解决实际问题的意识和能力;并且通过学生间的合作学习帮助不同层次的孩子解决实际困难,增强孩子学好数学的信心。
活动实际效果:学生通过回顾本节课的学习过程,体会利用抽象思维抽象出一元二次方程解决实际问题的方法和技巧,进一步提高自己解决问题的能力。
第五环节:布置作业
1、甲乙两个小朋友的年龄相差4岁,两个人的年龄相乘积等于45,你知道这两个小朋友几岁吗?
2、一块长方形草地的长和宽分别为20m和15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为246,求小路的宽度。
3、一个两位数等于其数字之积的3倍,其十位数比个位数小2,求这两位数。
一元二次方程教学设计6
一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析
本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习课时小结——布置作业。
1、复习引入:
这节课,我首先从旧知
问题(1)用配方法解方程2x28x90的练习引入,
问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。
设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。
2、问题呈现:
你能用配方法解一般形式的.一元二次方程吗?
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出 )
问题:①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,
应加以强化。
最终总结出:
当b24ac<0时,原方程无实数解。
当b24ac≥0时,原方程有实数解,
再进一步谈论:b24ac=0与b24ac>0时,两个解区别?
(b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)
由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。
同时,方程的解是可以将a、b、c
的值带入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例题讲解
例4:用公式法解下列方程
总结步骤:
1、把方程公成一般形式,并写出a,b,c的值。
2、求出b24ac的值
4、写出方程的解:x1= ,x2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。
4、巩固练习
解下列一元二次方程:①x2x60
②4x2x90
③x2100
设计意图:
(1)熟悉公式法,强化解题格式,
(2)及时发现错误及时解决。
例5:解方程:x(x1)(x2)
化简得12212x3x40 2
强调:
①当方程不是一般形式时,应先化成一般形式,再运用求根公式。
②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。
5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。
(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。
6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。
四、板书设计
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。
通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。
一元二次方程教学设计7
一、教学内容分析
华师版九年级(上)23章《一元二次方程的根的判别式》一节,教材中作为阅读材料。从推导到应用都比较简单。但是它在整个中学数学中占有重要的地位。
从知识的发展来看,学生通过对一元二次方程的根的判别式的学习,可以巩固已学过实数、整式、二次根式、一元一次不等式、一元二次方程的相关概念、一元二次方程的解法等知识,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究二次函数的图像与x轴交点情况,二次三项式以及二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。
通过这一节的学习,使学生会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,感受数学的简洁美。
教学重点:根的判别式的正确理解和运用
教学难点:含字母系数的一元二次方程根的判别式的运用。
二、学情分析
学生已经学过一元二次方程的四种解法,并对的作用已经有所了解,在此基础上来进一步研究作用,它是前面知识的深化与总结。
九年级学生的认识水平渐渐由具体直觉占优势过渡到抽象思维占优势。教师的指导方法应适应他们的认知特点和相应规律。
从数学思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。
三、教学目标
知识和技能目标:
1、能运用根的判别式,判别方程根的情况和进行有关的推理论证;
2、会运用根的判别式求一元二次方程中字母系数的取值范围;
过程和方法目标:
1、经历一元二次方程的根的判别式的产生的过程;
2、向学生渗透分类的数学思想;
3、培养学生的逻辑思维能力以及推理论证能力。
情感态度价值观目标:
1、体验数学的简洁美;
2、培养学生的探索、创新精神和协作精神。
四、教法、学法:
教法:
1、探索发现:本着“以学生发展为本”的教育理念,教师启发、诱导,学生探索发现新知识;
2、观察演示:通过典型例题的分析、研究,引发学生的思考、质疑、解疑;
3、归纳总结:通过课堂小结,完善认知结构,提高认识能力;
4、讲练结合:通过变式训练、拓展训练,让学生学会分类、类比、转化等数学思想,培养学生分析问题和解决问题的能力。
学法:
1、自主探索:为了体现课改中“以学生为主体”的教育理念,通过创设一定的问题情境,注重由学生自己探索,让学生参与发现、归纳验证以及演绎证明等整个数学思维过程。
2、合作交流:课上通过师生之间的互动,学生与学生之间的互动,充分发挥学生的主体作用。
五、教学过程:
教学流程 | 设计说明 |
<一>设置悬念,引发兴趣: 1、我们已经学会了怎么解一元二次方程,一元二次方程的根有哪几种情况?能不能不解方程便判断出它们根的情况? 2、由学生举出几个一元二次方程的例子,教师直接判断出它们根的情况 | 这样设计,能激发学生的学习兴趣和求知欲,为后面发现结论创造最佳的心理状态。 |
<二>设置练习,创设情境。 用公式法解下列一元二次方程 | 使学生亲身感知一元二次方程根的情况,回顾已有知识 |
<三>启发引导,发现结论: 观察解题过程,可以发现:在把系数代入求根公式之前,都是先确定了a、b、c的值,然后求出的值,为什么要这样做呢?学生能说出 的作用是:它能决定方程是否可解。 由此可见:在解一元二次方程时,代数式起着重要的作用,显然我们可以根据的值的符号来判断一元二次方程 的根的情况,因此我们把 叫做一元二次方程的根的判别式,通常用符号“△”来表示,即△=。在今后的数学学习中还会遇到用一个简单的符号来表示一个数学式子的情况,同学们要适应这一点,它体现了数学的简洁美。 | 让学生明白: 的值的符号在解一元二次方程中所起的重要作用,从而很自然地引出了根的判别式概念。 培养学生从具体到抽象的观察、分析与概括能力并使学生从感性认识上升到理性认识,真正体验自己发现结论的成功乐趣。 |
<四>引导学生,理论验证: 利用配方法,可以把一元二次方程变形为: ∵ ∴ , 故的值是正数、零还是负数直接对方程的根产生影响 (1)时,可得: ,而且 (2)时,, 显然 (3)时,, ∵ 负数没有平方根 ∴ 方程没有实数根 | 培养学生思维的严谨性,养成严格论证问题的习惯。 |
<五>揭示定理: (1)由此我们就得出了关于一元二次方程 的根的判别式定理: 在一元二次方程中, 若△>0 则方程有两个不相等的实数根 若△ = 0 则方程有两个相等的实数根 若△<0 则方程没有实数根 (若△≥0 则方程有实数根) (2)这个定理的逆命题也成立,即有如下的逆定理: 在一元二次方程中, 若方程有两个不相等的实数根,则△>0 若方程有两个相等的实数根, 则△= 0 若方程没有实数根, 则△<0 (若方程有实数根, 则△≥0) | 培养学生学会如何用数学语言来阐述发现的结论,如何将感性认识上升到理性认识,以及加深学生对定理的认识,为正确运用做好铺垫。 |
<六>应用定理,解决问题: 练习一:不解方程,判别下列方程根的情况 分析:判别方程根的.情况,根据定理可知,就是要确定△值的符号 练习二: 不解方程,判别下列方程根的情况 | (4)题补充了一个含有字母系数的方程,补充此题的目的是:发展学生的符号意识,为今后解综合性问题打好基础。 以上练习的设计,主要是为了给学生创造一个知识运用迁移及巩固的机会,同时也为了吸引和调动全班同学参与到积极动脑,各抒己见的活跃气氛中来,并培养学生分析问题,解决问题的能力。 |
思考:已知关于的方程,当取什么值时,方程 (1) 有两个不相等的实数根 (2) 有两个相等的实数根 (3) 没有实数根 分析:要解决这个问题,应先根据方程根的情况,得出△的取值,从而求出的取值范围。 | 本题是一个用逆定理来解决的问题,以巩固逆定理的运用方法,本题让学生自己分析,教师只帮助学生理清思路,最后让学生自己完成。 |
<七>归纳小结 一元二次方程中, 方程有两个不相等的实数根 方程有两个相等的实数根 方程没有实数根 | 使学生系统地了解和掌握本节课的内容 |
< 八>作业布置: (必做题)不解方程判定下列方程根的情况: (选做题)已知:方程有两个实数根, 求:的取值范围 | 使学生能及时巩固本节课所学知识,同时对学有余力的学生留出自由的发展空间。 |
一元二次方程教学设计8
一、复习引入
1、已知方程 x2—ax—3a=0的一个根是6,则求a及另一个根的值。
2、有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?
3、有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1= ,x2= 、观察两式左边,分母相同,分子是—b+√b 2—4ac与—b—√b 2—4ac。两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方 程x1x2x1+x2x1、 x2
x2—2x=0
x2+3x—4=0
x2—5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程 x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的'两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方 程x1x2x1+x2x1、 x2
2x2—7x—4=0
3x2+2x—5=0
5x2—17x+6=0
小结:1、根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2—4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=—p, x1、 x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。
即: 对于方程 ax2+bx+c=0(a≠0)
∵ ∴
∴ ,
(可以利用求根公式给出证明)
例1:不解方程,写出下列方程的两根和与两根积:
例2:不解方程,检验下列方程的解是否正确?
例3:已知一元二次方程的两个根是—1和2,请你写出一个符合条件的方程、(你有几种方法?)
例4:已知方程 的一个根是 ,求另一根及k的值、
变式一:已知方程 的两根互为相反数,求k;
变式二:已知方程 的两根互为倒数,求k;
三、巩固练习
1、已知方程 的一个根是1,求另一根及m的值、
2、已知方程 的一个根为 ,求另一根及c的值、
四、应用拓展
1、已知关于x的方程 的一个根是另一个根的2倍,求m的值、
2、已知两数和为8,积为9,求这两个数、
3、 x2—2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6、是否正确?
五、归纳小结
1、根与系数的关系:
2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零、
六、布置作业
1、不解方程,写出下列方程的两根和与两根积。
(1)x2—5x—3=0 (2)9x+2= x2 (3) 6 x2—3x+2=0 (4)3x2+x+1=0
2、 已知方程x2—3x+m=0的一个根为1,求另一根及m的值、
3、 已知方程x2+bx+6=0的一个根为—2求另一根及b的值、
一元二次方程教学设计9
课型:新授课
学习目标:
1.能根据具体问题中的数量关系列出一元二次方程并利用它解决具体问题.
2.学会运用数学知识分析解决实际问题,体会数学的价值。
重点:列一元二次方程解应用题
难点:学会分析问题中的等量关系
一、知识回顾
列方程解应用题的一般步骤是①②③④⑤⑥
二、自学教材、合作探究
1、自学教材45页,学习分析“探究一”中的数量关系
设每轮传染中平均一个人传染了x个人。开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,那么,用代数式表示,第一轮后共有( )人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有( )人患了流感。则可列方程为:
2、解这个方程,得
3、想一想:三轮传染后有多少人患流感?四轮呢?
三、检查自学效果
1.(xxxx年毕节地区)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )
A.8人B.9人C.10人D.11人
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件;全组共互赠了182件.如果全组有x名学生,则根据题意列出的'方程是( )
A. B. C. D.
四、指导学生应用
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(xxxx广东中考9分)
解:设每轮感染中平均每一台电脑会感染台电脑,1分
4分
解之得6分
8分
答:每轮平均每一台电脑会感染台电脑,3轮感染后,被感染的电脑超过700台。
五、巩固训练:
1.一个多边形的对角线有9条,则这个多边形的边数是( ).
A.6 B.7 C.8 D.9
2.元旦期间,一个小组有若干人,新年互送贺卡一张,已知全组共送贺卡132张,则这个小组共有( )人
A.11 B.12 C.13 D.14
3.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x名同学,依题意,可列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.参加中秋晚会的每两个人都握了一次手,所有人共握手10次,则有( )人参加聚会。
5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有个球队参加了这次比赛。
6.甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?
反思:2题和4题列方程时为何不一样呢?
六、归纳小结:
1.本节课我们学习了列一元一次方程解应用题,要注意解题步骤,特别地,要检验解的结果是否正确与符合题意,并注意题型的积累。
2.(方法归纳)解应用题地步骤是:审、设、列、解、检、答,关键是寻找等量关系,可以采用列式法,线段图示法,列表法等来帮助寻找,并注重检验。
七、效果测评:
1.解下列方程。(1)+10x+21=0(2)-x=1
2.两个相邻的偶数的积是240,求这两个偶数。
3.参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?
一元二次方程教学设计10
【教学目标】
1、会根据具体问题中的数量关系列一元二次方程并求解。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
【教学过程】
一、复习回顾:
1、解一元二次方程都有哪些方法?(学生口答)
2、列一元一次方程解应用题有哪些步骤?(学生口答)
①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答
二、问题探究:
(一)思考课本探究1回答下列问题:
(1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感。
(2)在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感。
(3)根据等量关系列方程并求解。为什么要舍去一解?
(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?
(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)
三、例题学习:
例1:青山村种的水稻20xx年平均每公顷产7200kg,20xx年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率。 (学生独立思考、练习。一学生板书,教师巡视后讲解)
例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的.成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本平均下降率较大。)
四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)
1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
2、有一人患了流感,经过两轮传染后共有121人患了流感,毎轮传染中平均一个人传染了几个人?
五、总结反思:(由学生自己完成,教师作适当补充)
1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。
2、探究2是平均增长率或降低率问题。若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有: (常见n=2)
教后记:
本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的方法,为学习本节知识打好了基础。
二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、
2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、
3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。
一元二次方程教学设计11
一、教学目标:
1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3。能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:
教学重点:
1。体会方程与函数之间的联系。
2。能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1。探索方程与函数之间关系的过程。
2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
[活动1] 检查预习 引出课题
预习作业:
1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。
2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。
师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境 探究新知
问题
1。课本P16 问题。
2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的'高度是20m?
(结合预习题1,完成课本P16 观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的图象和x轴交点
一元二次方程ax2+bx+c=0的根
一元二次方程ax2+bx+c=0根的判别式=b2—4ac
两个交点
两个相异的实数根
b2—4ac 0
一个交点
两个相等的实数根
b2—4ac = 0
没有交点
没有实数根
b2—4ac 0
教师重点关注:
1。学生能否把实际问题准确地转化为数学问题;
2。学生在思考问题时能否注重数形结合思想的应用;
3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3] 例题学习 巩固提高
问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4] 练习反馈 巩固新知
问题:(1) P97。习题 1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5] 自主小结,深化提高:
1。通过这节课的学习,你获得了哪些数学知识和方法?
2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1。题促使学生反思在知识和技能方面的收获;
2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6] 分层作业,发展个性:
1。(必做题)阅读教材并完成P97 习题21。2: 3、4。
2。(备选题)P97 习题21。2:5、6
设计意图:分层作业,使不同层次的学生都能有所收获。
七、教学反思:
1。注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2。关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。
3。强化行为反思
反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4。优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
一元二次方程教学设计12
一、教学目标:
1、知识与能力:理解配方法,会利用配方法以一元二次式进行配方。通过对比、转化,总结得出配方法的一般过程,提高分析能力。通过对一元二次方程二次项系数是否为1的分类处理,锻炼学生的抽象概括能力。
2、过程与方法:会用配方法解简单的数学系数的一元二次方程。发现不同方程的转化方式,运用已有知识解决新问题。
3、情感态度价值观:通过配方法的探究活动,培养学生勇于探索的良好学习习惯。感觉数学的严谨性以及数学结论的确定性。
二、教学重难点:
1、重点---会利用配方法熟练解一元二次方程。
2、难点---对于二次项系数不为1的一元二次方程通过系数化1进行适当变形后再利用配方法求解。
三、教学过程
(一)活动1:提出问题
要使一块长方形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?设计意图:让学生在解决实际问题中学习一元二次方程的解法。
师生行为:教师引导学生回顾列方程解决实际问题的基本思路,学生讨论分析。
(二)活动2:温故知新
1.填上适当的数,使下列各式成立,并总结其中的规律。(1)x+ 6x+ =(x +3 ) (2) x+8x+ =(x+ )(3)x2-12x+ =(x- )2 (4) x2- 5x+ =(x- )2 (5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )2 2.用直接开平方法解方程:x2+6x+9=2设计意图:第一题为口答题,复习完全平方公式,旨在引出配方法,培养学生探究的兴趣。
1
222
用心
爱心
专心(三)活动2:自主学习
自学课本P31---P32思考下列问题:
1.仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?2.怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)
3.讨论:在框图中第二步为什么方程两边加9?加其它数行吗?4.什么叫配方法?配方法的目的是什么?5.配方的关键是什么?交流与点拨:
重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用a2±2ab+b2=(a±b)2。
注意:9=(),而6是方程一次项系数。所以得出配方的关键是方程两边加上一次项系数一半的平方,从而配成完全平方式。
设计意图:学生通过自学经历思考、讨论、分析的过程,最终形成把一个一元二次方程配成完全平方式形式来解方程的思想
(四)活动4:例题学习
例(教材P33例1)解下列方程:(1)x-8x+1=0 (2)2x+1=-3x (3)3x2-6x+4=0教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。
交流与点拨:用配方法解一元二次方程的一般步骤:
(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)(2)移项,使方程左边只含有二次项和一次项,右边为常数项。(3)配方,方程两边都加上一次项系数一半的平方。(4)原方程变为( mx+n)2=p的形式。
(5)如果右边是非负数,就可用直接开平方法求取方程的解。设计意图:牢牢把握通过配方将原方程变为(mx+n)2=p的形式方法。
(五)课堂练习:
1.教材P34练习1(做在课本上,学生口答)2.教材P34练习2师生行为:对于第二题根据时间可以分两组完成,学生板演,教师点评。设计意图:通过练习加深学生用配方法解一元二次方程的方法。
四、归纳与小结:
1.理解配方法解方程的含义。
2.要熟练配方法的技巧,来解一元二次方程,
3.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。 4.配方法解一元二次方程的解题思想:“降次”由二次降为一次。
五、布置作业
教材P42习题22.2第3题
---教后反思
通过本节课的学习,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的'学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。
1:学生对这块知识的理解很好,学生自己总结了配方法的具体步骤,即:①化二次项系数为1;②移常数项到方程右边;③方程两边同时配上一次项系数一半的平方;④化方程左边为完全平方式;⑤(若方程右边为非负数)利用直接开平方法解得方程的根。理解起来也很容易,然后再加以练习巩固
2:教学方法上的几点体会:①需要创造性地使用教材,可以根据学生的实际情况对教材内容进行适当调整。②相信学生要为学生提供充分展示自己的机会本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。 3:当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:①二次项系数没有化为1就盲目配方;②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=﹡的形式(应为x1=x2=﹡);④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x。对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。
4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。
5、在我本节课的教学当中,也有如下不妥之处:①对不同层次的学生要求程度不适当;②在提示和启发上有些过度;③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。
一元二次方程教学设计13
一、教学目标
1.知识与技能
(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;
2.过程与方法
通过猜想、探讨构建一元二次方程模型.
3.情感、态度与价值观
(1)通过自主、探究性学习,使学生养成良好的思维习惯;
(2)通过对方程解的合理性解释,培养学习实事求是的作风.
二、教学重点难点
1.重点
找出问题中的数量关系;
2.难点
找等量关系并列出相应方程.
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.
四、教学过程与互动设计
(一)温故知新
1.请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的.实际意义后,写出答案(包括单位名称.)
2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.
我们先来解一些具体的题目,然后总结一些规律或应注意事项.
(二)创设情景,导入新课
1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动
1米吗?
(2)列出底端滑动距离所满足的方程.
【答案】①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.
2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8 某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.
解:设平均降价百分率为x,根据题意,得
56(1-x)2=31.5
解这个方程,得
x 1 = 1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1 = 1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%.
【跟踪练习】
某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.
(三)应用迁移,巩固提高
1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是( )
(
A)200(1+a%)2=148 (B)200(1-a%)2=148
(C)200(1-2a%)=148 (D)200(1-a2%)=148
2.为绿化家乡,某中学在20xx年植树400棵,计划到20xx年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800
2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.
,一元二次方程的解法
3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
一元二次方程教学设计14
教学目标
一、 教学知识点
1、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2、 理解二次函数与 x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.
3、 理解一元二次方程的根就是二次函数与y =h 交点的横坐标.
二、 能力训练要求
1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探 索能力和创新精神
2、通过观察二次函数与x 轴交 点的个数,讨论 一元二次方程的根的情况,进一步培养学生的数形结合思想.
3、通过学生共同观察和讨论,培养合作交流意识.
三、 情感与价值观要求
1、 经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2、 具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何 时方程有两个不等的实根、两个相等的实根和没有实根.
3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标.
教学难点
1、探索方程与函数之间的`联系的过程.
2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法
教学过程:
1、 设问题情境,引入新课
我们已学过一元一次方程kx+b=0 (k0)和一次函数y =kx+b (k0)的关系,你还记得吗?
它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方 程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.
2、 新课讲解
例题讲解
我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度.一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么
(1)h 与t 的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?
小组交流,然后发表自己的看法.
学生交流:(1)h 与t 的关系式是h =-5 t 2+v 0t +h 0,其中的v 0
为40m/s,小球从地面抛起,所以h 0=0.把v 0,h 0带入上式即可
求出h 与t 的关系式h =-5t 2+40t
(2)小球落地时h为0 ,所以只要令 h =-5t 2+v 0t +h 0中的h=0求出t即可.也就是
-5t 2+40t=0
t 2-8t=0
t(t- 8)=0
t=0或t=8
t=0时是小球没抛时的时间,t=8是小球落地时的时间.
也可以观察图像,从图像上可看到t =8时小球落地.
议一议
二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像如下图所示
(1)每个图像与x 轴有几个交点?
(2)一元二次方程x2+2x=0 , x2-2x+1=0有几个根?解方程验证一下, 一元二次方程x2-2x +2=0有根吗?
(3)二次函数的图像y=ax2+bx+c 与x 轴交点的坐标与一元二次方程ax2+bx+c=0 的根有什么关系?
学生讨论后,解答如 下:
(1)二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像与x 轴分别有两个交点、一个交点,没有交点.
(2)一元二次方程x 2+2x=0有两个根0,-2 ;x2-2x+1=0有两个相等的实数根1或一个根1 ;方程x2-2x +2=0没有实数根
(3)从图像和讨论知,二次函数y=x2+2x与x 轴有两个交点(0,0),(-2,0) ,方程x2+2x=0有两个根0,-2;
二次函数y=x2-2x+1的图像与x 轴有一个交点(1,0),方程 x2-2x+1=0 有两个相等的实数根1或一个根1
二次函数y=x2-2x +2 的图像与x 轴没有交点, 方程x2-2x +2=0没有实数根
由此可知 ,二次函数y=ax2+bx+c 的图像与x 轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.
小结:
二次函数y=ax2+bx+c 的图像与x 轴交点有三种情况:有两个交点、一个交点、没有焦点.当二次函数y=ax2+bx+c 的图像与x 轴有交点时 ,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax2+bx+c=0的根.
基础练习
1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标.
(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4
2、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是
3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是 .
4、已知抛物线y=x2+px+q与x 轴的两个交点为(-2,0),(3,0),则p= ,q= .
5. 已知抛物线 y=-2(x+1)2+8 ①求抛物线与y轴的交点坐标;②求抛物线与x轴的两个交点间的距离.
6、抛物线y=a x2+bx+c(a0)的图象全部在轴下方的条件是( )
(A) a0 b2-4ac0(B)a0 b2-4ac0
(B) (C)a0 b2- 4ac0 (D)a0 b2-4ac0
想一想
在本节一开始的小球上抛问题中,何时小球离地面的高度是60 m?你是怎样知道的?
学生交流:在式子h =-5t 2+v 0t +h 0中v 0为40m/s, h 0=0,h=60 m,代入上式得
-5t 2+40t=60
t 28t+12=0
t=2或t=6
因此当小球离开地面2秒和6秒时,高度是6 0 m.
课堂练习 72页
小结 :本节课学习了如下内容:
1、若一元二 次方程ax2+bx+c=0的两个根是x1、x2, 则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0 ), B( x2,0 )
2、一元二次方程ax2+bx+c=0与二次三项式ax2+bx+c及二次函数y=ax2+bx+c这三个二次之间互相转化的关系.体现了数形结合的思想3、二次函数y=ax2+bx+c何时为一元二次方程?
一元二次方程教学设计15
教材分析
一元二次方程是九年级数学一个非常重要的内容,是首次出现的高于一次的方程。其解法的策略就是将其“降次”转化为一次方程。通过解比较简单的一元二次方程,引导学生认识直接开平方法解方程,再通过对比一边为完全平方形式的方程,使学生认识配方法的基本原理并掌握其具体方法,为后面的求根公式做准备。
学情分析
1. 教学对象:本班学生58人,这个班的特点是两头力量少,中间力量多,基础知识薄弱。但学习气氛较浓,能调动学生学习数学的积极性和挑战性
2. 学生的认知分析:学生虽然具备初步的解题思路,但缺乏融会贯通和应用的能力。应适当地创设一些难易、新旧相结合的问题,加强学生对知识的应用。在学习过程中培养学生自主探索与合作交流的紧密结合,促使学生在探究的`过程中,更多地获得成功的体验。
教学目标
1、知识与技能:学生会用直接开平方法解方程,x2=p,x2+2mx+m2=p(p≥0)建立一元二次方程模型解决简单的实际问题,循序渐进的让学生掌握直接开平方法的做法,通过对比学会配方法解数字系数的一元二次方程
2情感目标:渗透转化思想,掌握一些转化技能
教学重点和难点
重点:直接开平方法,简单的配方法
难点:配方,把一元二次方程转化为形如(x-a)2=b的过程
【一元二次方程教学设计】相关文章:
一元二次方程教学反思05-17
解一元二次方程教学反思05-15
《一元二次方程的应用》教案03-29
一元一次不等式教学设计10-27
卖炭翁教学设计《卖炭翁》教学设计11-13
头饰设计教学设计10-04
设计校园教学设计05-21
教学设计10-15
教学设计07-13
一元一次不等式教学反思06-24