当前位置:范文派>教学范文>说课稿>数学说课稿

数学说课稿

时间:2024-10-18 05:16:09 说课稿 我要投稿

实用的数学说课稿范文锦集5篇

  作为一位无私奉献的人民教师,通常需要用到说课稿来辅助教学,认真拟定说课稿,我们该怎么去写说课稿呢?下面是小编整理的数学说课稿5篇,仅供参考,希望能够帮助到大家。

实用的数学说课稿范文锦集5篇

数学说课稿 篇1

  一、说教材

  从教材地位、学习目标、重点难点、学情分析、教学准备五个方面阐述

  1、本课内容在教材中的地位

  本节教学内容是本章的重要内容之一。本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。从知识的前后联系来看,相似三角形可看作是全等三角形的拓广,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。

  从新课程对几何部分的编写来看,几何知识的结论较之老教材已经大为减少,教材首要关注的不是掌握多少几何知识的结论,相对更重视的是对学生合情推理能力的训练与培养。从这个角度上说,不论是全等还是相似,教材只是将它们作为训练学生合情推理的一个有效素材而已,正因为此,本节课应重视学生有条理的思考及有条理的表达。

  2.学习目标

  知识与技能方面:

  探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;

  过程与方法方面:

  培养学生提出问题的能力,并能在提出问题的基础上确定研究问题的基本方向及研究方法,渗透从特殊到一般的拓展研究策略,同时发展学生合情推理及有条理地表达能力。

  情感态度与价值观方面:

  让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。

  3.教学重点、难点

  立足新课程标准和学生已有知识经验、数学活动经验,我确立了如下的教学重点和难点。

  教学重点:相似三角形、相似多边形的性质及其应用

  教学难点:①相似三角形性质的应用;

  ②促进学生有条理的思考及有条理的表达。

  4.学情分析

  从七上开始到现在,学生已经经历了一些平面图形的认识与探究活动,尤其是全等三角形性质的探究等活动,让学生初步积累了一定的合情推理的经验与能力,这是学生顺利完成本节学习内容的一个有利条件。

  对相似形的性质的结论,学生是有生活经验与直观感受的。比如说两幅大小不等的中国地图,如果其相似比为2:1,我们在较大的地图上量出北京到南京的图上距离为4cm,问在较小的地图上北京到南京的图上距离是几厘米?学生肯定知道是2cm,这个问题中学生又没有学过相似形的性质,他怎么会知道呢?从中可以看出学生对比例尺的理解实际上是基于生活经验的。再比如说,如果你找一个没学过相似形性质的学生来问他:“如果用放大镜将一个小五角星的边长放大到原来的5倍,则这个小五角星的周长被放大到原来的几倍?面积被放大到原来的几倍?”这些问题学生基本上能给出较准确的回答。其实这就是学生对相似形性质的一种生活化的直观感受。

  大家知道,源于学生原有认知水平和已有生活经验的教学设计才更能激发学生学习的内驱力,从而取得良好的教学效果。所以本节课在教学设计过程中不能把学生当作是对相似形的性质一无所知的,而是应在充分尊重学生已有的生活经验的基础上展开富有成效的教学设计。

  5.教学准备

  教师:直尺、多媒体课件

  学生:必要的学习用具

  二、说教学策略

  从设计的指导思想、教学方法、学习方法三方面阐述

  新课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,那么如何让学生在教学过程中真正成为学习的主人,同时教师在教学过程中又引导什么,与学生如何合作?这就是我这节课处理教学设计时的指导思想。为了更好地体现“学生主体”“教师主导”的地位,我打算从两条主线进行教学设计:一是从知识研究的大背景出发,结合知识的生长点拓展延伸、合理整合、组织教学;二是从尊重学生已有的知识与生活经验出发,利用学生已有的生活本能体验感受相似形的一系列性质的结论,并在此基础上创设教学情境,组织教学。力图将这两条线索有机融合,行成完整的教学体系。

  采取引导发现法进行教学,充分发挥教师的主导作用与学生的主体作用,加强知识发生过程的教学,环环紧扣、层层深入,逐步引导学生观察、比较、分析,用探索、发现的方法,使学生在掌握知识的同时,逐步形成技能。

  有一位教育家说过:“教给学生良好的学习方法比直接教给学生知识更重要。”本节课教给学生的学习方法有:提出问题,感受价值,探究解决的研究问题的基本方法,从特殊到一般的拓展研究方法等。以此发展学生思维能力的独立性与创造性,逐步训练学生由“被动学会”变成“主动会学”。

  三、说教学程序

  (一)类比研究,明确目标

  师:同学们,回顾我们以往对全等三角形的研究过程,大家会发现,我们对一个几何对象的研究,往往从定义、判定和性质三方面进行。类似的我们对相似三角形的研究也是如此。而到目前为止,我们已经对相似形进行了哪些方面的'研究呢?

  生:已经研究了相似三角形的定义、判别条件。

  师:那么我们今天该研究什么了?

  生:相似三角形的性质。

  设计意图:

  从几何对象研究的大背景出发,给学生一个研究问题的基本途径。从而让学生自然明白本节课的学习目标:相似三角形的性质。

  (二)提出问题,感受价值,探究解决

  师:就你目前掌握的知识,你能说出相似三角形的1-2条性质吗?并说明你的依据。

  生:相似三角形的对应角相等,对应边成比例。根据是相似三角形的定义。

  师:对于相似三角形而言,边和角的性质我们已经得到,除边角外你认为还有哪些量之间的性质值得我们研究呢?

  设计意图:

  我们常常会说:提出问题比解决问题更重要。但是作为教师,我们应该清醒地认识到,学生提出问题的能力是需要逐步培养的。此处设问就是要培养学生提出问题的能力。我希望学生能提出周长、面积、对应高、对应中线、对应角平分线之间的关系来研究,甚至于我更希望学生能提出所有对应线段之间的关系来研究。估计学生能提出这其中的一部分问题。如果学生能提出这些问题(如相似三角形周长之比等于相似比等),就说明他的生活经验的直觉已经在起作用了。如果学生提不出这些问题,说明他的生活直觉经验还没有得到激发,我可以利用前面提到的放大镜问题、大小两幅地图问题等逐步启发,激发学生的一些源自生活化的思考,从而回到预设的教学轨道。

  师:对于同学们提出的一系列有价值的问题,我们不可能在一节课内全部完成对它们的研究,所以我们从中挑出一部分内容先行研究。比如我们来研究周长之比,面积之比,对应高之比的问题。

  师:为了让同学们感受到我们研究问题的实际价值。我们来看一个生活中的素材:

  给形状相同且对应边之比为1:2的两块标牌的表面涂漆。如果小标牌用漆半听,那么大标牌用漆多少听?

  师:(1)猜想用多少听油漆?(2)这个实际问题与我们刚才的什么问题有着直接关联?

  生:可能猜半听、1听、2听、4听等。同时学生能感受到这是与相似三角形面积有关的问题。

  设计意图:从学习心理学来说,如果能知道自己将要研究的知识的应用价值,则更能激发起学生学习的内在需求与研究热情。

  师:同学们的猜测到底谁的对呢?请允许老师在这儿先卖个关子。让我们带着这个疑问来对下面的问题进行研究。到一定的时候自然会有结论。

  情境一:

  如图,ΔABC∽ΔDEF,且相似比为2:1,DE、EF、FD三边的长度分别为4,5,6。(1)请你求出ΔABC的周长(学生只能用相似三角形对应边成比例求出ΔABC的三边长,然后求其周长)

  (2)如果ΔDEF的周长为20,则ΔABC的周长是多少?说出你的理由。(通过这个问题的研究,学生已经可以得到相似三角形周长之比等于相似比的结论)

  (3)如果ΔABC∽ΔDEF,相似比为k:1,且ΔDEF三边长分别用d、e、f表示,求ΔABC与ΔDEF的周长之比。

  结论:相似三角形的周长之比等于相似比。

  情境二:

  师:相似三角形周长比问题研究完了,下面我们该研究什么内容了?

  生:面积比问题。

  师:那么对于相似三角形的面积比问题你打算怎样进行研究?请你在独立思考的基础上与小组同学一起商量,给出一个研究的基本途径与方法。

  设计意图:人类在改造自然的过程中,会遇到很多从未见过的新情境、新课题。当我们遇到新问题的时候,确定研究方向与策略远比研究问题本身更有价值。如果你的研究方向与研究策略选择错误的话,你根本就不可能取得好的研究成果。而这种确定研究问题基本思路的能力也是我们向学生渗透教育的重要内容。所以对于相似三角形面积比的研究,我认为让学生探索所研究问题的基本走向与策略远比解题的结论与过程更有价值。

  (师)在学生交流的基本研究方向与策略的基础上,与学生共同活动,作出两个三角形的对应高,通过相似三角形对应部分三角形相似的研究得到“相似三角形的对应高之比等于相似比”的结论。进而解决“相似三角形的面积比等于相似比的平方”的问题。体现教材整合。

  (三)拓展研究,形成策略,回归生活

  拓展研究一:由相似三角形对应高之比等于相似比,类比研究相似三角形对应中线、对应角平分线之比等于相似比的性质;(留待下节课研究,具体过程略)

  拓展研究二:由相似三角形研究拓展到相似多边形研究

  师:通过上述研究过程,我们已经得到相似三角形的周长之比等于相似比,面积之比等于相似比的平方。那么这些结论对一般地相似多边形还成立吗?下面请大家结合相似五边形进行研究。

  情境三:如图,五边形ABCDE∽五边形A/B/C/D/E/ ,相似比为k,求其周长比与面积之比。

  说明:对于周长之比,可由学生自行研究得结论。对于面积之比问题,与前面一样,先由学生讨论出研究问题的基本方向与策略——转化为三角形——来研究。然后通过师生活动合作研究得结论。

  拓展结论1:相似多边形的周长之比等于相似比;

  相似多边形的面积之比等于相似比的平方。

  (结合相似五边形研究过程)

  拓展结论2:相似多边形中对应三角形相似,相似比等于相似多边形的相似比;

  相似多边形中对应对角线之比等于相似比;

  进而拓展到:相似多边形中对应线段之比等于相似比等。

  回归生活一:

  师:通过前面的研究,我们得到了有关相似形的一系列结论,现在让我们回头来看前面的标牌涂漆问题。你能确定是几听吗?如果把题中的三角形条件改成更一般的“相似形”你还能解决吗?

  回归生活二:(以师生聊天的方式进行)

  其实我们生活中对相似形性质的直觉解释是正确的,线段、周长都属于一维空间,它的比当然等于相似比,而面积就属于二维空间了,它的比当然等于相似比的平方了,比如两个正方形的边长之比为1:2,面积之比一定为1:4。甚至在此基础上我们也可以想像:相似几何体的体积之比与相似比的关系是什么?

  生:相似比的立方。

  设计意图:新课程标准指出“数学教学活动要建立在学生已有生活经验的基础上---”;教育心理学认为:“源于学生生活实际的教育教学活动才更能让学生理解与接受,也更能激发学生的学习热情,从而导致好的教学效果”;于新华老师在一些教研活动中曾经说过:“源于学生的生活经验与数学直觉来展开教学设计,构建知识,发展能力,最终还要回到学生的生活经验理解上来,形成新的数学直觉。这才是教学的最高境界。”

  而我的设计还有一个意图就是向学生渗透从生活中来回到生活中去的思想,让学生体会学好数学的重要性。

  (四)操作应用,形成技能

  课内检测:

  1.已知两上三角形相似,请完成下面表格:

  相似比 2

  对应高之比 0.5

  周长之比 3 k

  面积之比 100

  2.在一张比例尺为1:20xx的地图上,一块多边形地区的周长为72cm,面积为200cm2,求这个地区的实际周长和面积。

  设计意图:落实双基,形成技能

  (五)习题拓展,发展能力

  已知,如图,ΔABC中,BC=10cm,高AH=8cm。点P、Q分别在线段AB、AC上,且PQ∥BC,分别过点P、Q作BC边的垂线PM、QN,垂足分别为M、N。我们把这样得到的矩形PMNQ称为△ABC的内接矩形。显然这样的内接矩形有无数个。

  (1)小明在研究这些内接矩形时发现:当点P向点A运动过程中,线段PM长度逐渐变大,而线段PQ的长度逐渐变小;当点P向点B运动的过程中,线段PM逐渐变小,而线段PQ的长度逐渐变大,根据此消彼长的想法,他提出一个大胆的猜想:在点P的运动过程中,矩形PQNM的面积s是不变的。你认为他的猜想正确吗?为什么?

  (2)在点P的运动过程中,矩形PMNQ的面积有最大值吗?有最小值吗?

  答: 最大值, 最小值(填“有”或“没有”)。请你粗略地画出矩形面积S随线段PM长度x变化的大致图象。

  (3)小明对关于矩形PMNQ的面积的最值问题提出了如下猜想:

  ①当点P为AB中点时,矩形PMNQ的面积最大;

  ②当PM=PQ时,矩形PMNQ的面积最大。

  你认为哪一个猜想较为合理?为什么?

  (4)设图中线段PM的长度为x,请你建立矩形PQNM的面积S关于变量x的函数关系式。

  设计意图:将课本基本习题改造成发展学生能力的开放型问题研究,体现了课程整合的价值。

  (六)作业 (略)

  另外值得一提的是:本节课对学生的评价,更多的应关注对学生学习的过程性评价。在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,我通过语言、目光、动作给予鼓励与表扬,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。

数学说课稿 篇2

  一、教材中的地位及作用

  《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。

  二、学情分析

  我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。

  三、教学目标

  知识与技能目标:在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。

  过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。

  情感、态度与价值目标:通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。

  四、重点难点

  重点:探索并掌握图形坐标变化与图形变换之间的内在关系。

  难点:坐标变化和图形拉伸、压缩间的关系。

  五、教法与学法分析

  1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发。为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的.教法为:

  (1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。

  (2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。

  2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:

  (1)探究学习法。把问题留给学生,引导他们去解决问题。

  (2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。

  六、教学过程

  教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。

  教学环节师生活动过程设计意图

  情景引入利用多媒体向学生展示一段动画,在动画和音乐声中,让学生进入课堂状态,同时,让学生对本堂课产生好奇和疑问。利用优美的音乐和动画,激发学生的探识欲望

  新课导入课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,—1)(3,0)(4,2),(0,0),并顺次连接。

  问题:所作图形象什么?

  通过多媒体,在坐标系中拖动一条可以随意移动的直线鱼,让学生观察,在这条鱼移动的过程中,什么发生了变化?什么没变?

  让学生讨论总结出自己的结论,教师不作任何说明。

  要求学生在讨论的基础上去作图:让鱼向右移动3个单位。

  作出图形,比较所作图形是否和所得结论吻合。

  多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。

  问题引入。

  探索新知想一想议一议

  一、在前面问题的基础上,由学生直接说出:当向左游动2个单位时,图形的坐标发生了什么变化?向上或向下游动2个单位时,图形的坐标又发生了什么变化?

  通过课件演示其变化过程,验证学生的答案。

  二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?

  由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。

  综合学生的结论,引导他们得出如下结论:

  当纵坐标不变,横坐标增加时,图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移。横坐标增加或减少a(a>0)时,图形向右或向左平移a个单位。

  当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移。纵坐标增加或减少a(a>0)时,图形向上或向下平移a个单位。把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的印象,又培养了他们学习和解决数学的能力。

数学说课稿 篇3

  一、找准学生学习新知的“最近发展区”,在大背景下认识分数

  1、分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。教学时,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。

  2、以往我们在初次教学分数时,总是以单个的物体的进行平均分,然后“半个”无法用整数表示的时候就引入了分数,优点是这样分数出现的实际需要性能够凸现,学生对分数的产生印象深刻;缺点是这样以单个的物体入手,学生对分数的认识受到局限,会导致到高段学习分数的意义的时候,对单位“1”难以理解和接受。其实“一半”和“半个”是有区别的,只有“半个”才用分数表示是不全面的。因此,我在分数引入的时候,请学生说身边一些事物的一半,发现日光灯是11个,一半一下子无法说出来。同时一个圆的一半是多少也无法说清。然后,引出“所有事物的一半我们只用一个数表示出来”。从而引入分数二分之一,这样对于分数的认识放在了一个宽广的背景下来学习,学生体会到任何事物的一半都可以用一个1/2来表示。

  二、加强直观教学,降低认知难

  分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,教师充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,尽管学生在正方形纸上这出了几个几分之一的分数,并且用分数表示出来,但是学生在比较分数大小的'时候,还是受到整数认识的影响,认为1/32比1/8大,于是课件显示猪八戒分西瓜的过程,学生直观的认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。

  三、根据学生年龄特征,创设有趣的问题情境

  对于小学生来说,数学学习往往是他们自己生活经验中对数学现象的一种“解读”.在教学中,如果能密切联系学生的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,那么学起来必然亲切、有趣、易懂了。学生的好胜心理强,教师在学生认识了1/4。纸上折了1/4后,谁还能折出其它分子是1的分数,学生动手积极性很高,纷纷折出了其它分数。当问谁折的分数大的时候学生就更愿意比了。起初,学生对分数的比较这一知识停留在比较表面、比较肤浅的水平上。他们用整数的大小比较方法来比较分数,教师也不做出判断,而是利用学生喜欢听的故事,将知识蕴于故事中,在听故事、看课件演示中,使学生主动得构建自己的知识,而不是被动地去接受知识。当回过头来再比谁折的分数大的时候,学生都笑了。而教师也不必再多说什么,学生已经自己推翻了先前的认识。

  在整个课堂预设时,想的比较完美,事实上在真正上这堂课的时候有很多的缺憾、很多教学环节还有待完善。从整体上认识分数,对三年级学生而言是否要求拔得过高,在折分数操作时是否需要及时的比较等等。我想只有一次次积累、一次次思考,才能上出真正平实而有效的数学课。

数学说课稿 篇4

  一、教材分析

  1.地位和作用

  “分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。

  2.学情分析

  我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。

  3.教学目标 (1) 知识目标:理解分式的概念,并能判断一个有理式是不是分式。

  (2) 技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。

  (3) 能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。

  (4) 情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。

  4.教学重点与难点

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  (1)重点:分式的'意义:分式与除法的关系;

  (2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。

  二、教学方法与学法本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。

  三、教学过程

  本节课的教学我主要分下面这样几个环节

  1.设问激疑,以旧探新,类比联想,形成概念

  教师先问学生两个问题,帮助学生回忆分数。

  思考:请各位同学将下列各题用一个恰当的分数来表示:

  1. 一段绳子长3米,把它平均分成4份,则每份长是多少?

  2. 甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?

  然后教师再请学生看以下两个问题。

  思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?

  2.甲地到乙地的路程是180千米,一辆汽车行驶.

  小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?

  学生通过运算、比较;可以发现.

  是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“分式的意义”。

  接着,教师在此基础上引导学生类比联想,给出分式的概念。即两个数相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B” 或“”来表示。

  分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。

  (这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)

数学说课稿 篇5

  一、说教材

  1、教学内容苏教版《义务教育六年制小学教科书·数学》四年级下册第130~131页。

  2、教材简析

  本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的。通过学习三角形的内角和使学生学会求三角形中第三个内角的度数的方法,同时让学生经历探索、猜想、归纳等过程,发展学生的合情推理能力。

  3、教学目标

  (1)让学生探索发现三角形的内角和是180°。

  (2)通过动手拼摆等活动提高学生的动手能力和思维能力,感受数学的转化思想。

  (3)进一步发展学生空间观念。

  4、教学重点

  探索发现三角形的内角和是180°。

  5、教具准备

  多媒体课件

  6、学具准备

  每人准备几个不同类型的三角形。

  二、说教法、学法

  新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证,通过实验、操作、交流等活动,获得知识与能力,掌握解决问题的方法,获得情感体验。

  三、说教学过程

  (一)猜角设疑,揭示课题我们来做个游戏叫“猜角”。请同学们拿起桌子上量好角角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。想信吗?(不相信),下面我们来试一试。(师生猜角活动。)师:你想知道老师是怎么猜的吗?其中的奥秘就在今天我们要探索的'知识。(板书:“的内角和”并齐读课题)[设计意图]在教学中激励学生展开积极的思维活动。先创设猜角的游戏情境,让学生对三角形三个角的度数关系产生好奇,引发学生的探究欲望。通过本节课的学习,你有什么收获?你还有什么问题吗?

【数学说课稿】相关文章:

数学活动说课稿08-13

数学说课稿07-22

初中数学的说课稿07-24

初中数学说课稿08-16

小学数学说课稿05-28

小学数学说课稿06-10

《数学广角——搭配》说课稿08-25

数学《买文具》说课稿10-26

初中数学说课稿08-23

小学数学优秀说课稿06-24