当前位置:范文派>教学范文>说课稿>数学说课稿初中

数学说课稿初中

时间:2024-06-09 13:11:16 说课稿 我要投稿

有关数学说课稿初中范文汇总6篇

  作为一名辛苦耕耘的教育工作者,常常要写一份优秀的说课稿,借助说课稿可以有效提升自己的教学能力。那么你有了解过说课稿吗?下面是小编精心整理的数学说课稿初中6篇,仅供参考,大家一起来看看吧。

有关数学说课稿初中范文汇总6篇

数学说课稿初中 篇1

  一、说教材

  1.说课内容:

  北师版三年级下册第二单元《对称、平移和旋转》中的第一课时的教学内容。

  2.教材的地位和作用:

  对称是一种最基本的图形变换,对于帮助学生建立空间观念,培养学生的空间想象能力有着不可忽视的作用,同时对称在自然界和日常生活中具有很重要的作用。教材结合欣赏民间艺术的剪纸图案,以及服饰、工艺品与建筑等图案,让学生感知现实世界中普遍存在的轴对称现象,让学生体会轴对称图形的特征,为今后进一步学习对称图形做准备。

  3.教学目标:

  (1)了解生活中的对称现象,体会轴对称图形的特征,能正确识别轴对称图形,能在方格纸上画出简单图形的轴对称图形。

  (2)通过观察、猜想、验证、操作,经历认识轴对称图形的过程,培养学生动手、创新等能力。

  (3)在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美,培养学生的审美情趣。

  4.教学重点:

  认识轴对称图形的基本特征。

  5.教学难点:

  制作轴对称图形。

  二、说教法

  根据本节教材内容和编排的特点,为了更有效地突出重点,突破难点,以学生的发展为本,采用了以探究发现法为主,直观演示法、设疑诱导法为辅的教学方法。教学中,精心设计带有启发性和思考性的问题,激发学生探求知识的欲望,逐步推导归纳出结论,培养学生的思维能力。

  三、说学法

  为了落实新课标的理念,在本节课的教学中体现了动手实践、自主探索与合作交流的学习方式,为了让学生充分体验到轴对称图形的特征,安排了玩一玩、折一折、剪一剪、画一画等一系列有趣的实践活动,为学生提供了充足的学习素材,创设了较宽松的学习空间,经历了知识的形成过程。

  四、说教学过程

  (一)玩对称,激趣引入

  课始,老师一句:给你一张纸,你会怎么玩?一个玩字就把学生的兴趣调动起来了,接着老师的撕纸表演,作品小衣服的亮相,更是把学生的兴趣推到了极致!你会象老师这样玩吗?话音刚落,孩子们就迫不及待地开始了折纸和撕纸。灵巧的小手把一张张白纸变成了一个个美丽的图形,争先恐后地将作品贴到黑板上。这样的新课导入,抓住了孩子们好动爱玩的年龄特点,通过撕纸这一操作活动,让学生目之所及,手之所触,都是美丽的轴对称图形,从直观上引发出对称之美,课堂教学随之直奔学习主题。

  (二)识对称,体悟特征

  1.找特征,初识轴对称图形(作品)

  结合学生的撕纸作品,师一句:这些图形有相同的地方吗?找准了学生的认知起点,学生通过观察、比较,很快就发现了其中的奥秘:这些图形左右两边形状相同,对折后会完全重合。在此基础上我巧妙地引入轴对称图形这一概念,接着从轴字出发,引导学生认识轴对称图形的对称轴。

  2.验特征,再识轴对称图形(图片)

  出示图片,它们是轴对称图形吗?你有什么办法来验证?抓住了学生好胜的特点,学生很快就想到用对折的办法验证了自己的说法;这一环节加深了学生对轴对称图形的'认识。

  3.辨特征,找出真假轴对称图形(课件)

  赏心悦目的练习面画,增强了学生思考的主动性;练习的层次性,促进了学生对知识的内化。

  (三)做对称,深化体验

  1.猜一猜:(出示轴对称图形的一半)这是什么?(学生充满自信地猜测着,猜到最后一个,打开后居然不是同学们异口同声猜出的花瓶。)在学生的惊讶中,老师趁势启发学生:想一想,花瓶的另一半形状和大小会是怎样呢?你能想办法剪出这只完整的花瓶吗?

  2.剪一剪:小组合作完成花瓶图,全班交流时着重引导学生说一说制作的方法,并给予激励性评价。

  3.画一画:你想自己做一个轴对称图形吗?全班交流时鼓励学生说出他们画图形的窍门。

  此环节的设计,旨在让学生带着知识走进实践,不着痕迹地得出了制作轴对称图形的方法,主张通过实践使学生学会运用知识,发展思维。

  (四)赏对称,提升认识

  由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的美妙与神奇,并进一步拓宽学生的视野,受到美的熏陶,感受数学与生活的紧密联系。

数学说课稿初中 篇2

  一、 教材分析

  1、教材的地位和作用

  这节教材是初中数学____ 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等

  知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  关于学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、 教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1. 知识与技能目标:

  2. 过程与方法目标:

  3. 情感态度与价值目标:

  三、 教学方法分析

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的.思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  为了有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  其中小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

  (7)当堂检测 对比反馈

  (8) 布置作业,提高升华

  要以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上是我对本节课的见解,不足之处敬请各位评委谅解 !

数学说课稿初中 篇3

  说课,就是教师备课之后讲课之前(或者在讲课之后)把教材、教法、学法、授课程序等方面的思路、教学设计、|板书设计及其依据面对面地对同行(同学科教师)或其他听众作全面讲述的一项教研活动或交流活动。以下是小编整理的初中数学《勾股定理的逆定理》说课稿,欢迎大家阅读参考。

  一、教材分析:

  (一)、本节课在教材中的地位作用

  “勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

  (二)、教学目标:

  根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

  知识技能:

  1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

  2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

  过程与方法:

  1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

  2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

  3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

  情感态度:

  1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

  2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

  (三)、学情分析:

  尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

  重点:勾股定理逆定理的应用

  难点:勾股定理逆定理的证明

  关键:辅助线的添法探索

  二、教学过程:

  本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

  (一)、复习回顾:复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

  (二)、创设问题情境

  一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

  (三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

  因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

  这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的',为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

  接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

  在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的自学能力。

  (四)、组织变式训练

  本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

  (五)、归纳小结,纳入知识体系

  本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

  (六)、作业布置

  由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

  三、说教法、学法与教学手段

  为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

  此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

  总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

数学说课稿初中 篇4

  [说教材]

  一、教材分析

  (一)、教材地位作用:《正方形的判定》是华东师大版义务教育实验教材数学八年级(下册)第20章第4节的内容,本节课注重新旧知识的联系与类比,注重图形的分析、判别;在学生学习了平行四边形、距形、菱形的判定之后,接触正方形的性质的基础上,引入了正方形的判定,这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形的判定进行综合的不可缺少的重要环节。

  (二)、教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  知识目标:

  1、掌握正方形的`判定方法。

  2、运用正方形的判定方法解决问题。

  能力目标:

  1、让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力,让其逻辑推理能力有进一步的提升。

  2、灵活应用正方形的判定,培养学生的思维能力。

  情感目标:通过对平行四边形、距形、菱形等判定方法的类比,进一步领悟类比的思想方法和数形结合的思想。

  (三)教学重点与难点:根据数学课程标准的要求,结合学生的实际特点,确定教学的重点与难点:

  重点:正方形的判定方法。

  难点:正方形判定方法的应用。

  (充分运用多媒体教学手锻,并把课件设置为比较生动、有趣容、易懂的动画,设置问题、探究讨论、例题讲解、巩固练习、课堂小结直到布置作业,突出主线,层层深入,逐一突破重难点。)

  [说学生]

  二、学情分析:

  初二学生经过两年的几何学习,学生对几何图形的观察,几何图形的分析能力已初步形成。但我教了几年的数学中发现一些很严重的问题,也就是我最头痛的问题,学生很怕做几何题,特别是证明题,具体有两种情况:“不会看也不会写”、“会看但写不出来”,即文字表述无法用几何语言来表示,逻辑推理过程混乱。

  [说教学法]

  三、教法选择:

  本节课的内容虽然不多,但是前三节课内容平行四边形、菱形、矩形的判定进行综合,对学生的逆向思维与推理能力要求比较高,针对本班的学生的知识结构和心理特征,因此我采用了多媒体辅助教学,运用了“情境引入、动手操作、合作交流、引导提问、归纳论证、深化巩固”的启发式教学方法。教学中,引导学生经历“提出假设——操作验证——推理论证”的过程,充分感受教学思维的特点,进一步提高逻辑推理的能力,增强探索新知识的兴趣。

  四、学法指导:

  结合本课内容特点和新课标精神,学生在学习中发挥主体作用。采取“假设、操作、观察、思考、讨论、论证、类比、应用”的探究式学习方法,在掌握新知识的同时,培养大胆猜想、独立思考、合作交流、勇于探索的良好习惯,提高操作观察能力和逻辑思维水平。

  [说教学过程]

  五、教学过程:

  根据《新课标》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课的教学过程我是这样设计的:

  六、教学评价

  本节课是我前几天刚上的内容,在教学设计上,我依据教材、《课标》及学生实际情况,坚持了以学生为中心的教学思想,运用了引导启发式的教学方法,教学内容的组织考虑了逻辑顺序与心理顺序的结合、知识学习与技能人格发展的统一,取得较好的效果。但还有一部分的学生在课堂上已掌握,但过几天后就忘记了,这些学生都存在很多问题,如少练、厌学的现象。所以在以后的教学工作中还要努力改进。

数学说课稿初中 篇5

  一、教材分析:

  本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

  二、学习任务分析:

  1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。

  2、能将有理数用数轴上的点来表示。

  3、通过观察数轴上的点的位置关系初步比较有理数的大小,并能通过数轴上点的移动说出表示点的数

  三、目标分析:

  1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。

  2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。

  3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。

  4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学

  四、教法选择:

  创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。

  本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。

  概念的得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的"听数学"为"做数学"。

  数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的'一面。

  五、教学重难点的确定和突破:

  1、正确画出数轴是本节教学的重点。

  首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。

  2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。

  通过例题要求学生动手操作画出数轴并描述点

  说明:

  (1)可能有不少学生会忘记正方向

  (2)原点左边的数的表识会发生标反的错误。

  (3)数轴上的正方向,同时也表示由小到大的方向。

  (4)单位长度的截取可以是任意长度,不是唯一的。

  (5)数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。

  3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:

  通过在数轴上描点:4,-2,-4,5,1/3,0

  先对数进行分类,正数,零,负数,负数在0(既原点)的左边,正数在原点的右边再按整数和分数描点,通过练习巩固能说出数轴上的点表示什么数?

  P23练习中第3题为下节课的内容做下了铺垫,即数的大小比较,这里要求学生能在新排列一下,使学生能了解数轴哂纳感,负数、0、正数,之间的关系。

  4、提高:下列说法正确的是:

  (1)在+3和+4之间没有正数

  (2)在0和—1之间没有负数

  (3)在+1和+2之间有无穷个正分数

  (4)在0、1、和0、2之间没有正分数

  这题通过数轴的直观描述进一步说明数轴上的点与有理数之间的关系,使学生能从感性认识上升到理性认识,进一步提高学生的逻辑思维能力和提高分析问题的能力。

数学说课稿初中 篇6

各位评委,各位老师:

  大家好!

  我是来自界首一中的数学教师张贺,今天我说课的题目是华东版数学第一册第四章《直线与角》的第1课时。

  下面我从教材分析、学生情况、教学目标、活动设计、教学过程()、教学设计说明几个方面谈谈对本节课的理解。

  一教材分析

  1 教材的地位和作用

  本章是初中几何教学的开篇,在此之前,学生习惯于数字运算,从本章开始由数量转入到空间形式,从具体运算转入到逐步进行演绎推理的学习。而本节又是几何教学的入门课,如何使学生从一开始就对几何产生兴趣,是学习本节的关键,为今后系统学习几何知识做好心里准备。

  2 教学重点

  使学生初步了解几何研究的对象,结合实例激发学生学习几何的兴趣是本节的教学重点。

  3 教学难点

  学生在小学已经学过许多图形知识,但大都是直观形象的,主要属于感性认识阶段。在本节教学中关于体、面、线、点以及几何图形、平面图形、立体图形等概念的教学也应从直观教育入手,不易较多上升理性认识。因此如何把握课堂教学深浅尺度是本节课的难点。

  二学生情况

  初一学生年龄较小,思维正处在由具体形象思维向抽象逻辑思维转变的阶段,也正是由代数运算向几何推理过渡的较好时期。在小学学习的有关图形知识的基础上系统学习几何知识的条件已经具备,因此从本节开始进行几何教学是切实可行的。

  我所任教的班级是界首一中开展“现代化小班教育”的远程实验班,通过前阶段的教学,学生已经初步具有自学能力和分组讨论的经验,这为我本节课的教学提供了保障。

  三教学目标

  初一几何课的教学,是培养学生良好思维素质的关键,在教学中教师应充分运用现代教学方法和教学手段,把传授知识和培养学生的数学素养结合起来,为创造性人才的成长打下坚实的基础。本节课中能力目标与情感目标的贯彻更为关键。因此,结合本节教材,我制定以下教学目标:

  知识目标:使学生初步了解几何研究的对象;了解体、面、线、点以及几何

  图形、平面图形、立体图形等概念。

  能力目标:初步培养学生的观察能力,概括的能力,拓展空间观念;了解学

  习几何的方法。

  情感目标:激发学生学习几何的兴趣;了解几何来源于生活,又服务于生活,

  进行“认识来源于实践”的唯物主义教育;通过小组交流讨论,

  培养学生合作交流的集体观念。

  四活动设计

  为了使学生获得知识的同时,能力目标和情感目标更好的得到贯彻,在本节课的教学中,我根据创新教育、主体教育、成功教育等教学观,采用自学、讨论、精讲相结合的教学模式,充分发挥学生的主体精神,使学生真正成为学习的主人。教师只是在学生发现问题、思维受阻、缺乏勇气时进行引导。

  五教学过程

  教学过程分为回顾、自学、讨论、精讲、练习五个阶段。

  1 回顾

  内 容

  方 式

  师生活动

  1本学期前三章知识要点:

  第一章 有理数的性质与运算

  第二章 整式的概念与加减运算

  第三章 一元一次方程的解法与应用

  小结:这些知识属于数与式的运算,像这样的知识称为代数知识。

  2 在小学里也学习了与图形有关的知识(如长方体,正方形,三角形等),像这类与图形有关的知识,我们称为几何知识。

  从这节课开始,我们共同探讨一些简单的几何知识。

  ppt展示

  展示几种常见几何图形

  教师引导,学生口答,教师归纳

  教师引导

  此阶段的教学起到承上启下的作用,同时也为学生体会几何与代数的关系奠定基础。

  2 自学

  内 容

  方 式

  师生活动

  请大家阅读课本第95页至96页课文,完成下列问题:

  1 描述体面线点的意义;

  2 了解平面图形与立体图形;

  3 几何学研究物体的哪些性质?

  Ppt显示自学提纲

  学生独立自学,教师巡视,个别指导

  通过此阶段的学习,逐步提高学生的自学能力。

  3 讨论

  内 容

  方 式

  师生活动

  学生分组讨论:

  1 交流自学心得;

  2 探讨点线面体的关系;

  3 体会几何与生活的关系。

  Ppt显示讨论主题

  学生分组讨论,组长主持,学科代表流动指导,教师巡回辅导

  此阶段教学,学生行动、思维都较为活跃,为情感目标的落实提供机会。此时教师应注意课堂气氛的调节,防止主题偏离。

  4 精讲

  内 容

  方 式

  师生活动

  结合讨论情况,教师精讲:

  1几何学的起源:

  几何来源于生活,又服务于生活;

  介绍欧几里德与《几何原本》

  2 几何学的研究对象:

  物体的形状大小和位置三种性质;

  3 点线面体的关系

  点动成线 线动成面 面动成体

  4 平面图形与立体图形

  5 学习几何的方法

  多媒体辅助教学

  动画展示

  足球→球体

  茶杯→圆柱体…

  利用几何画板的跟踪功能显示点线面体的关系

  教师结合学生讨论中存在和发现的问题进行精讲

  引导学生举出生活中的`实例

  在此阶段,结合学生讨论中存在和发现的问题进行精讲,同时利用多媒体辅助教学,让学生在掌握知识的同时增强感性认识,激发学生学习几何的兴趣,从而突出重点。

  5 作业

  内 容

  方 式

  师生活动

  1 列举出三个你生活中反映点线面体关系的实例;

  2 查阅欧几里德与《几何原本》的有关介绍;

  3 了解中国古代数学中的几何成就;

  课外进行,

  通过图书资料和因特网查阅

  学生自主进行

  可分散,可协作

  通过学生完成练习,体会几何与生活的关系,提高学生搜索信息的能力,使学生的信息素养得到培养,通过了解我国古代数学成就也可激发学生的爱国热情。

  六 设计说明

  1、板书设计

  几 何

  几何来源于生活……

  几何研究物体的……

  点动成线 ……

  屏幕展示

  这样设计便于突出知识目标。

  2、每个学生都具备创新的幼芽,关键在于要不断扶植和巩固学生想成为发现者的愿望,并借助于一定方法来实现他们的愿望。因此,在数学教学中,要结合学生的实际,因材施教,根据学生的基础,提出不同要求,为每一个学生创造发挥自己才能的空间。

  3、在教学中,加强几何教学与信息技术教育的整合,利用计算机等多媒体教学手段,向学生展示丰富多彩的几何世界,也有利于激发学习几何的兴趣。

  以上使我对本节课的理解,不足之处,请各位评委、老师指正。

  谢谢大家!

【数学说课稿初中】相关文章:

初中数学的说课稿07-24

初中数学说课稿08-16

初中数学说课稿08-23

初中数学说课稿15篇06-02

初中说课稿06-18

数学活动说课稿08-13

数学说课稿07-22

初中政治说课稿07-14

初中物理说课稿06-22

说课稿初中模板07-03