当前位置:范文派>教学范文>说课稿>《按比例分配解决问题》六年级数学说课稿

《按比例分配解决问题》六年级数学说课稿

时间:2023-09-18 11:55:32 说课稿 我要投稿
  • 相关推荐

《按比例分配解决问题》六年级数学说课稿

  作为一名专为他人授业解惑的人民教师,就难以避免地要准备说课稿,说课稿有助于提高教师的语言表达能力。那么什么样的说课稿才是好的呢?以下是小编为大家收集的《按比例分配解决问题》六年级数学说课稿,希望能够帮助到大家。

《按比例分配解决问题》六年级数学说课稿

《按比例分配解决问题》六年级数学说课稿1

  一、说教材:

  1、教学内容:

  这部分内容是再教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5和例6的教学应用正、反比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是再原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  成正、反比例的量,在生活实际中应用很广,学生再前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知蚀解答,再原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,再教学上要十分重视从旧知识引申出新知识,再这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

  2、教学目标:

  知识与技能:

  1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的分析、判断和推理能力。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  3、教学重点:用比例知识解决实际问题

  4、教学难点:能够正确分析题中的比例关系,列出方程

  二、说学情

  用比例解决问题这部分内容是学生在对比例的基本性质有了一定的`建构基础以及掌握了正、反比例的意义的背景下进行探索学习的。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。

  三、说教法学法:

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,为学生创设有效的数学活动,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探索、合作交流的学习方式,让学生通过看、想、交流等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力,确保数学活动的有效性。

  四、说教学流程:

  一、情境引入:

  老师请你用一把米尺去测量学校旗杆的高度,你能行吗?给出信息,引入新课内容。

  二、联系实际,复习迁移

  1、出示课件:数学门诊

  判断下面的说法是否正确,并说明理由。

  2、判断下面两种相关联的量是否成正比例?为什么?

  三、情境教学新课

  1、学习例5,用正比例意义解决问题。

  (1)、学生提出问题。同学们,全社会都在节约水资源。请大家想一想,和我们息息相关的用水问题里藏有哪些数学问题呢?

  小结:水的单价一定,用水吨数与总价成正比例。

  2、教师提出问题。

  看来同学们能正确判断两种量成什么比例关系了。这一节课我们一起运用比例知蚀解决一些实际问题。请看屏幕。

  出示例5:

  思考:题中告诉了我们哪些信息?要解决什么问题?你能利用数学知识帮李奶奶算出上个月的水费吗?

《按比例分配解决问题》六年级数学说课稿2

  一、说教材:

  (一)教材分析

  《比的应用--按比例分配》是苏教版小学数学教材六年级第十一册第三单元最后一个内容,这部分内容含两个例题,安排3课时进行教学,今天我说的是其中第1课时。

  按比例分配问题是比的一种应用,即把一个数量按照一定的比进行分配,是“平均分”问题的发展,它在实际生活工作中有广泛的应用,学习它能使学生深刻的体会到数学源于生活,又高于生活,最后又服务于生活的辨正关系。这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

  按比例分配问题大致有三种解法,教材是采用先把比转化成份数,再转化成分数,使题目成为分数乘法应用题,然后按求一个数的几分之几是多少的方法来解答。这样安排使得学生容易接受,不仅加深对前面分数应用题的理解,还有利于加强知识间的联系。这里把比转化成了份数后,也可以把题目转化为归一应用题,运用归一应用题的解题方法解答,所以,教学中可以补充归一解答,以拓宽学生的.解题思路,提高学生的解题能力。教材注意联系生活工作实际导入例题,使学生从中体会按比例分配问题的现实意义,并提高学生的应用意识。

  (二)学情分析

  对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

  (三)目标定位根据学生生活经验、知识背景及本课的知识特点,我预定如下几个教学目标:

  第一知识方面:在自主探索学习中理解按比例分配的现实意义,掌握按比例分配应用题的结构特点,沟通比与分数之间的联系找到解决方法,能正确解答按比例分配应用题。

  第二能力方面:能够通过对分配问题的现实考察,提出不同于以前平均分的、更合理的分配方案,培养学生的发现问题、分析问题、解决问题的能力,

  第三情感方面:创设民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活的思维品质过程中形成积极的学习情感。

  (四)重点与难点

  重点:认识比例分配问题的现实意义和特征,探索并掌握解决方法,能正确解决相关现实问题。

  难点:把比转化分数或成份,再使题目转化为分数应用题或归一应用题。

  (五)教具学具

  小黑板

  二、说教学过程:

  鉴于本课的教学内容设定的教学目标及学生的认知规律和实际情况,预设如下4部分展开学习。

  (一)联系生活,方法求变

  学生口头解答下面的应用题。

  把12张画片平均分给甲、乙两个小朋友,他们各分到多少张画片?

  教师提问:这12张画片是按怎样的方法分配的?(平均分配)

  (二)交流探索、掌握方法教师谈话,引出课题。

  1.平均分是把一个数量按1:1的方法进行分配,每一份的数量都是同样对的。它的解题思路是用总数量除以总份量等于平均数即每份数。在实际生活中常常把总数按一定的比进行分配,而不是平均分。如把12张画片按2:1分给甲、乙两个小朋友,求他们各分到多少张画片,这就不是平均分了。这种方法叫按比分配。今天,我们就来学习按比分配。

  板书:按比分配

  2.教师提问:按比分配是把一个数量按什么进行分配的呢?

  学生思考。

  小结:把一个数量按照一定的比进行分配。这个种分配方法通常叫做按比分配。

  教师指出:按比分配在实际生活中广泛的应用,如药水的配制、混凝土的配制等。

  3.教学例11.提升方法,

  1.教学例11(出示例题)

  学生先读题,明确已知条件和问题,教师提出下列问题:

  (1)分什么?总量是什么?

  (2)按照什么分配?

  学生回答后,教师要让学生着重理解”是红色与黄色方格数的比是3:2”这句话的含义。让学生讨论发言。为了便于学生理解,可以根据小黑板上的图分一分。

  红色:有()格?黄色:有()格?

  使学生明白:这句话的意思是把30个方格平均分成5份,3份涂红色,2份涂黄色。

  (3)红色方格和黄色方格各有多少格?用什么方法计算,为什么?

  让学生用两种方法计算,兵说一说思路。

  方法一:3+2=530/5*3=18(格)30/5*2=12(格)

  这种方法十八个部分的比看着各部分的份数,按份数和总量的关系进行思考,先求每份数,再用每份数分别乘各部分的份数。

  方法二:30*3/3+2=18(格)30*2/3+2=12(格)

  这种方法是先把各部分的比转化为各部分分别占总数的几分之几,然后按”求一个数的几分之几是多少”的方法求出各部分的数量。教师指出;今后我们解答按比例分配的问题时,最好用第二种方法来解。

  指导学生检验结果。

  提问:你能用什么方法验证结果是否正确?

  学生讨论,交流。

  方法一:18+12=30(格)把两部分量相加,看是不是等于总量。

  方法二:18:12=3:2求出两部分量的比,化简后是不是等于3比2.

  (三)多层训练,形成技能。

  引导学生观察前面的几道题,想一想他们的结构特征是什么,要分几步区解答。

  让学生明确:按比分配问题的结构特征是有总量和比,求分得的各部分的具体数量。

  它的解答步骤和方法是:

  (1)先看分什么,总量是多少。

  (2)再看按什么来分。

  (3)求出总份量。

  (4)求各部分占总份数的几分之几。

  (5)求出各部分的具体数量,按“求一个数的几分之几是多少”的分数乘法应用题来计算。

  2.巩固练习。

  学生独立完成教材第61页练习十的第1-3题。

  三、教法和学法

  以上只是我对本课教学过程的预设,但是推广素质教育的主渠道在于我们的课堂教学。实际教学过程中将尽可能结合学生的生活经验,为学生提供现实情景和活跃的情趣,贴近学生的思维调动区,让学生自主探究、合作交流,体会数学与生活的联系。

【《按比例分配解决问题》六年级数学说课稿】相关文章:

按比例分配教学反思03-13

《按比例分配》教学设计03-04

按比分配教学反思06-16

解决问题说课稿02-02

数学解决问题教学设计01-17

六年级数学正比例教案02-28

中班数学《按规律排序》教学反思03-01

数学比例的基本性质教学设计02-03

用百分数解决问题说课稿02-19