高中数学说课稿
作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,借助说课稿可以提高教学质量,取得良好的教学效果。写说课稿需要注意哪些格式呢?下面是小编精心整理的高中数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学说课稿1
一、教材分析
本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。
从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。
二、教学目标
根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:
知识与技能:
1. 知道最小二乘法和回归分析的思想;
2. 能根据线性回归方程系数公式求出回归方程
过程与方法:
经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。
情感态度与价值观
通过合作学习,养成倾听别人意见和建议的良好品质
三、重点难点分析:
根据目标分析,确定教学重点和难点如下:
教学重点:
1. 知道最小二乘法和回归分析的思想;
2.会求回归直线
教学难点:
建立回归思想,会求回归直线
四、教学设计
提出问题
理论探究
验证结论
小结提升
应用实践
作业设计
教学环节
内容及说明
创设情境
探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
问题与引导设计
师生活动
设计意图
问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?
教师提问,学生
通过动手操作得
出散点图并回答
以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。
教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.
问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,乙,丙三个同学的判断有什么看法?
学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一
该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。
问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的`问题多
在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题
通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。
学生可能提出的问题:
①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?
②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?
③这些样本数据揭示出两个相关变量之间怎样的关系呢?
④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果
高中数学说课稿2
各位老师:
今天我说课的题目是《输入、输出语句和赋值语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
我们用自然语言或程序框图描述的算法,但是计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句、条件语句和循环语句.。而我们今天所要学习的是前三种算法语句,它们基本上是对应于算法中的顺序结构的。
2.教学的重点和难点
重点:正确理解输入语句、输出语句、赋值语句的作用。
难点:准确写出输入语句、输出语句、赋值语句。
二、教学目标分析
1.知识与技能目标:
(1)正确理解输入语句、输出语句、赋值语句的结构。
(2)会写一些简单的程序。
(3)掌握赋值语句中的“=”的作用。
2.过程与方法目标:
(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。
(2)通过模仿,操作,探索的过程,体会算法的基本思想和基本语句的用途,提高学生应用数学软件的能力.
3.情感,态度和价值观目标
(1) 通过对三种语句的了解和实现,发展有条理的思考,表达的能力,提高逻辑思维能力.
(2) 学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养.
(3) 结合计算机软件的应用, 增强应用数学的意识,在计算机上实现算法让学生体会成功喜悦.
三、教学方法与手段分析
1.教学方法:引导与合作交流相结合,学生在体会三种语句结构格式的`过程中,让学生积极参与,讨论交流,充分挖掘三种算法语句的格式特点及意义,在分析具体问题的过程中总结三种算法语句的思想与特征.
2.教学手段:运用计算机、图形计算器辅助教学
四、教学过程分析
1. 创设情境(约5分钟)
在课的开始,我要求学生们举出一些在日常生活中所应用到的有关计算机的例子,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,并告诉他们在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,然后接着问他们知不知道计算机到底是怎样工作的?通过这个问题引出我们今天所要学习的内容。(板出课题)
在这个过程中,我让学生们将课本学习的内容与现实生活联系在了一起,这样能够激起他们对接下来的所要学习内容的兴趣,为整节课的学习打下一个良好的基础。
2.探究新知(约15分钟)
这里我先给出一个题目:用描点法作出函数
的图象,用描点法作函数的图象时,需要先求出自变量与函数的对应值。编写程序,分别计算当
时的函数值。(程序由我在课前准备好,教学中直接调用运行)
程序:INPUT“x=”;x 输入语句
y=x^3+3*x^2-24*x+30 赋值语句
PRINT x 输出语句
PRINT y 输出语句
END
(学生们先看,再跟着做,先不必深究该程序如何得来,只要模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力)
之后,我向学生们提问:在这个程序中,他们觉得哪些是输入语句、输出语句和赋值语句?(同学们互相交流、议论、猜想、概括出结论。提示:“input”和“print”的中文意思,还要请学生们注意到在赋值语句中的赋值号“=”与数学中的等号意义不同。)
此过程由老师引导,学生们自己讨论并总结出什么是输入语句、输出语句和赋值语句,这样比老师直接地将知识传授给他们,学习的效果更佳,同时也锻炼了学生们思考问题的能力和概括能力,激发学习兴趣。
然后给出一个思考题:在1.1.2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后请学生作答)这样可以及时应用刚刚学习的内容,并可以将前后所学知识联系起来。
3.例题精析(约12分钟)
在本环节中我为学生们准备了三道例题,这三道例题均选自课本的例2、例3和例4,学生通过这几道例题的讲解,结合计算机程序上机运用,可以掌握在程序设计语言中的前三种算法语句,体会到他们在程序中的意义和作用。
4.课堂精练(约4分钟)
P15 练习 1.
提问:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)通过提问启发学生们思考,发散思维。
5.课堂小结(约5分钟)
⑴输入语句、输出语句和赋值语句的结构特点及联系
⑵应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题
⑶ 赋值语句中“=”的作用及应用
⑷编程一般的步骤:先写出算法,再进行编程。
6.布置作业
P23 习题1.2 A组 1(2)、2
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
7.板书设计
高中数学说课稿3
一、教材分析
1.教材所处的地位和作用
本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。
2 教学的重点和难点
重点:两种排序法的排序步骤及计算机程序设计
难点:排序法的计算机程序设计
二、教学目标分析
1.知识与技能目标:
掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
2.过程与方法目标:
能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。
3.情感,态度和价值观目标
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
三、教学方法与手段分析
1.教学方法:充分发挥学生的`主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、学法分析
模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
五、教学过程分析
一、创设情境
提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢?
通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法
二、探索新知
这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题:
(1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?
(2)冒泡法排序中对5个数字进行排序最多需要多少趟?
(3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?
提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。
三、知识应用
例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序
(根据刚刚提问所总结的方法完成解题步骤)
练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.
(及时将学到的知识应用,有利于知识的掌握)
例2 设计冒泡排序法对5个数据进行排序的程序框图.
(在之前所学习知识的基础上画出程序框图,然后给出一个思考题)
思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序?
(之后出一个练习题,找出思考题的答案)
练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。
(这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。)
四、课堂小结:
(1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤
(2两种排序法的计算机程序设计
(3)注意循环语句的使用与算法的循环次数,对算法进行改进。
通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
高中数学说课稿4
【教材分析】
1.本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:"如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值",以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.
2.教学重点
会求闭区间上连续开区间上可导的函数的最值.
3.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.
4.教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1.知识和技能目标
(1)理解函数的最值与极值的区别和联系.
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.
3.情感和价值目标
(1)认识事物之间的的区别和联系.
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题.
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.
【教法选择】
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用.
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学.
【学法指导】
对于求函数的`最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.
【教学过程】
本节课的教学,大致按照"创设情境,铺垫导入--合作学习,探索新知--指导应用,鼓励创新--归纳小结,反馈回授"四个环节进行组织.
教学环节
教学内容
设计意图
一、创设情境,铺垫导入
1.问题情境:在日常生活、生产和科研中,常常会遇到求什么条件下可以使成本最低、产量最大、效益最高等问题,这往往可以归结为求函数的最大值与最小值.
如图,有一长80cm,宽60cm
的矩形不锈钢薄板,用此薄板折
成一个长方体无盖容器,要分别
过矩形四个顶点处各挖去一个
全等的小正方形,按加工要求,长方体的高不小于10cm且不大于
20cm.设长方体的高为xcm,体积
为Vcm3.问x为多大时,V最大?
并求这个最大值.
解:由长方体的高为xcm,可知其底面两边长分别是
(80-2x)cm,(60-2x)cm,(10≤x≤20).
所以体积V与高x有以下函数关系
V=(80-2x)(60-2x)x
=4(40-x)(30-x)x.
2.引出课题:分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值.
以实例引发思考,有利于学生感受到数学来源于现实生活,培养学生用数学的意识,同时营造出宽松、和谐、积极主动的课堂氛围,在新旧知识的矛盾冲突中,激发起学生的探究热情.
实际问题中,函数和自变量x范围的设置,都紧扣本节课的核心:确定闭区间上的连续函数的最(大)值.
通过运用几何画板演示,增强直观性,帮助学生迅速准确地发现相关的数量关系.提出问题后,引导学生发现,求所列函数的最大值是以前学习过的方法不能解决的,由此引出新课,使学生深感继续学习新知识的必要性,为进一步的研究作好铺垫.
教学环节
教学内容
设计意图
二、合作学习,探索新知
1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
问题1:如果是在开区间(a,b)上情况如何?
问题2:如果[a,b]上不连续一定还成立吗?
2.如图为连续函数f(x)的图象:在闭区间[a,b]上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得?3.以上分析,说明求函数f(x)在闭区间[a,b]上最值的关键是什么?
归纳:设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值与最小值的步骤如下:
(1)求f(x)在(a,b)内的极值;
(2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.
通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中.
对取得最大值最小值的两种可能位置的结论,在高中阶段不作证明,为使学生形成更深刻的印象,更好地进行发现,教学中通过改变区间位置,引导学生观察各种区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度.
为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情.
学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作.
在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象概括、分析归纳及语言表述等基本的数学思维能力.深化对概念意义的理解:极值反映函数的一种局部性质,最值则反映函数的一种整体性质.
三、指导应用,鼓励创新
例2如图,有一长80cm,宽60cm
的矩形不锈钢薄板,用此薄板折
成一个长方体无盖容器,要分别
过矩形四个顶点处各挖去一个
全等的小正方形,按加工要求,长方体的高不小于10cm不大于
20cm,设长方体的高为xcm,体积
为Vcm3.问x为多大时,V最大?
并求这个最大值.分析:建立V与x的函数的关系后,问题相当于求x为何值时,V最小,可用本节课学习的导数法加以解决.
例题2的解决与本课的引例前后呼应,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力.
四、归纳小结,反馈回授
课堂小结:
1.在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值;2.求闭区间上连续函数的最值的方法与步骤;3.利用导数求函数最值的关键是对可导函数使导数为零的点的判定.
作业布置:P1391、2、3
通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力.课外作业有利于教师发现教学中的不足,及时反馈调节.
【教学设计说明】
本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以"是否存在?存在于哪里?怎么求?"为线索展开.
1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以"学生的发展为本"的基本理念.
2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能力性.
3.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.
4.关于教学法,为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻"教师为主导、学生为主体、探究为主线、思维为核心"的数学教学思想,引导学生主动参与到课堂教学全过程中.
高中数学说课稿5
一、说教材:
1. 地位及作用:
“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2. 教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b) 培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3. 重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的`推导和化简,因此建立一个适当的直角坐标系是本节的关键。
二、 说教材处理
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1.学生状况分析及对策:
2.教材内容的组织和安排:
本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业
三、 说教法和学法
1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
四、 教学过程
教学环节
3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
小结
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
1.椭圆的定义和标准方程及其应用。
2.椭圆标准方程中a,b,c诸关系。
3.求椭圆方程常用方法和基本思路。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。
布置作业
(1) 77页——78页 1,2,3,79页 11
(2) 预习下节内容
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
高中数学说课稿6
各位评委老师好:今天我说课的题目是
是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。
一、 教材分析
是在学习了基础上进一步研究 并为后面学习 做准备,在整个
高中数学中起着承上启下的作用,因此本节内容十分重要。
根据新课标要求和学生实际水平我制定以下教学目标
1、 知识能力目标:使学生理解掌握
2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力
3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于
观察勇于思考的学习习惯和严谨 的科学态度
根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是
二、教法学法
根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。
三、 教学过程
四、 教学程序及设想
1、由……引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:……
2、由实例得出本课新的知识点是:……
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习……
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的'地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
五、教学评价
学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应
当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。
高中数学说课稿7
抛物线焦点性质的探索(说课)
一、教材分析
1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。
2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的'教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:
(1) 知识目标:了解焦点的有关性质;并掌握这些性质的证明方法;体会数形结合思想与分类讨论思想在解决解析几何题中的指导作用
(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。
(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。
3 教学内容、重点、难点及关键 本节安排两节课,
第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;
第二节课:证明第一节所得到的有关性质。
重点:
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
难点;
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
二、教学策略及教法设计
学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。
三、网络教学环境设计
学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自己的研究获得结论,并互相讨论观察到的现象、交流研究结果。
四、教学过程设计
4.1 使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型 问题1 回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。 由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。
高中数学说课稿8
一、教材分析
教材的地位和作用:本节课教学内容是高一(下)第四章4.6节第一课时(两角和与差的余弦)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及它们的简单应用。这节内容在高考中不但是热点,而且一般都是中、低档题,是一定要拿到分的题。
教学重点:两角和与差的余弦公式的推导与运用。
教学难点:余弦和角公式的推导以及应用,学会恰当代换、逆用公式等技能。
二、教学目标
(一)知识目标:
1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导;
2、能用代换法推导C(α-β)公式;
3、初步学会公式的简单应用和逆用公式等基本技能。
(二)能力目标:
1、通过公式的推导,在培养学生三大能力的基础上,着重培养学生获得数学知识的能力和数学交流的能力;
2、通过公式的灵活运用,培养学生的转化思想和变换能力。
(三)情感目标:
1、通过观察、对比体会公式的线形美,对称美
2、通过教师启发引导,培养学生不怕困难,勇于探索勇于创新的求知精神。
三、学情分析:
根据现在的学生知识迁移能力差、计算能力差的特点,第一节课不要太多公式应用。
四、教法分析
1、创设情境----提出问题----探索尝试----启发引导----解决问题。
引导学生建立一直角坐标系xOy,同时在这一坐标系内作单位圆O,并作出角,使角的始边为Ox,交圆O于点,终边交圆O于点;角的始边为O,终边交圆O于,角的始边为O,终边交圆O于点,并引导学生用的三角函数标出点的坐标。并充分利用单位圆、平面内两点的距离公式,使学生弄懂由距离等式化得的三角恒等式,并整理成为余弦的和角公式,从而克服本课的难点。
2、教具:多媒体投影系统。(多媒体系统可以有效增加课堂容量,色彩的强烈对比可以突出对比效果;动画的应用可以将抽象的问题直观化,体现直观性原则。)
五、学法指导
1、能灵活求写角的终边与单位圆的交点坐标,并结合平面几何知识推证出公式。
2、本节的中心公式是,然后对作不同的特值代换可得其他公式,故灵活适当的代换是学好本节内容的基础。
3、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。
在教学过程中,启动学生自主性学习,自得知识,自觅规律,自悟原理,主动发展思维和能力。
六、教学过程
(一)新课引入,产生对公式的需求。
1、学生先讨论“ =cos(450+300)=cos450+cos300是否成立?”。(学生可能通过计算器、量余弦线的长度、特殊角三角函数值和余弦函数的值域三种途径解决问题)。得出cos(450+300)≠cos450 +cos300。进而得出cos(α+β)≠cosα+cosβ这个结论。那么此时又是多少,75°,15°虽然不是特殊角,但有某种特殊性,即可以表示成特殊角的和与差。那么能不能由特殊角的.三角函数值来表示这种和角与差角的三角函数值?
2、如果特殊角可以,对一般的两个角,当它的三角函数值已知时,能否求出和与差的三角函数值?即能否用单角的三角函数来表示复角的三角函数呢?提出cos(α+β)又等于什么呢?写出标题。
(二)预备知识
在解决上面的问题之前,我们先来作一点准备,解决“平面内两点间距离的公式”这一问题。
(1)回忆初中学习过的数轴上的两点间的距离公式
(2)通过上面的复习,我们已经熟悉了数轴上两点间距离公式。那么,平面内两点间距离与这两点的坐标有什么样的关系呢?(通过课件演示让学生体会平面内两点间距离和同一坐标轴上两点间距离的关系)
平面内两点间距离公式推导分析:设P1(x1,y1),P2(x2,y2)由勾股定理联想从P1、P2分别作X、Y轴的垂线,则有:M1(x1,0),M2(x2,0),N1(0,y1),N2(0,y2)。通过演示课件P1Q= M1M2=│x2-x1│ QP2= N1N2=│y2-y1│根据勾股定理写出P1P22=P1Q2+QP22=(x2-x1)2+(y2-y1)2。由此得平面内P1(x1,y1)、P2(x2,y2)两点间的距离公式:P1P2= (x2-x1)2+(y2-y1)2
习:P(3,-1),Q(-3,-9)求PQ(建议这部分不要花太多时间)
(3)、复习单位圆上点的坐标表示,为推导公式作铺垫。
(三)公式推导
我们要用α、β、α+β的三角函数来表示α+β的余弦,那么就得作出α、β、α+β的角,构造α、β、α+β的角时,联想建坐标系、作单位圆。(1)分别指出点P1、P2、P3的坐标。(2)求出弦P1P3的长。(3)思考构造弦P1P3的等量关系。当发现|P1P3|可以用cos(α+β)表示时,想到应该寻找与P1P3相等的弦,从而才想到作出角(-β)。
在直角坐标系内做单位圆,并做出任意角α,α+β和-β。它们的终边分别交单位圆于P2、P3和P4点,单位圆与X轴交于P1。则:P1(1,0)、 P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、
1.根据“同圆中相等的圆心角所对的弦相等”得到距离等式
2.将转化为三角恒等式,逐步变形整理成余弦的和角公式。
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2展开,整理得2-2cos(α+β)=2-2cosαcosβ+2sinαsinβ
所以cos(α+β)=cosαcosβ-sinαsinβ.记作
注意:(1)公式的结构特征:左边是两角和的余弦,右边是两两同名函数的积。
(2)公式的记忆口诀:哥哥捡伞伞(用音译,让学生觉得有趣并得以记住公式)
(3)公式的用途:用单角α、β的三角函数来表示复角的α+β余弦
(4)注意强调公式中α、β是任意角。因为α、β是任意角,且两点间的距离公式具有一般性,所以此公式适用于任意角,具有一般性。以后可以用此公式导出其它公式,如用-β去代替β导出C(α-β) 。
(四)公式应用
正因为α、β的任意性,所以赋予C(α+β)公式的强大生命力。
提问:
1、请用特殊角分别代替公式中α、β,你会求出哪些非特殊角的值呢?
让学生动笔自由尝试、主动探索。同学会求cos15°、cos75°、cos105°等。
2、若β固定,分别用代替α,你将发现什么结论呢?
用C(α±β)公式得到证明:让学生发现C(α±β)公式是诱导公式的推广,诱导公式是C(α±β)公式的特殊情况。当其中一个角是的整数倍时用诱导公式较好。
由P1P3=P2P4(同圆相等的
圆心角所对弦相等)及两点
间距离公式,得:
[cos(α+β)-1]2+[sin(α+β)-0]2
=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开整理合并得:
cos(α+β)=cosα cosβ-sinαsinβ这就是两角和的余弦公式。(其中α,β为任意角)将其中β换成-β,公式仍成立:
cos(α+ β)=cosαcosβ -sinαsinβ
cos(α+(-β))= cosαcos(-β)-sinαsin(-β)
化简得两角差的余弦公式:
cos(α-β)= cosαcosβ+sinαsinβ
求证:(1)cos(-α)= sinα
(2)sin(-α)= cosα
证明:
(1)cos(-α)=cos cosα+sin sinα
=sinα
(2)sin(-α)=cos[ -(-α)]
=cosα
证明(1)、(2)的结论即为诱导公式。
例1、利用和(差)角公式求750、150角的余弦。
分析:将750可以看成450+300而450和300均为特殊
角,借助它们即可求出750的余弦。(学生自己完成)
解:cos750 = cos(450+300)
= cos450cos300 -sin450sin300
= ×- ×
=cos150
= cos(450-300)
= cos450cos300+sin450sin300
高中数学说课稿9
尊敬的各位考官:
大家好,我是今天的xx号考生,今天我说课的内容是《单调性与最大(小)值》的第一课时《单调性》。
新课标指出:高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
本节课选自人教A版高中数学必修1第一章《集合与函数概念》的第三节《函数的基本性质》第一小节《单调性与最大(小)值》的第一课时。本小节主要讲解的内容是函数的单调性以及最大、最小值的.概念,本节课主要讲解增减函数的概念以及单调性。之前学生对于函数的概念已经进行了学习,本节课是在原来的基础上进一步巩固函数的概念,但是主要是针对性质的学习。并且为之后研究函数的性质、用函数的性质解决生活中的问题起到非常关键性的作用。所以本节课的学习对于学生至关重要。
二、说学情
接下来谈谈学生的实际情况。高中一年级的学生虽然刚刚步入高中,需要适应高中的教学方式,但是学生的观察能力、总结能力、归纳能力、类比能力、抽象能力等已经发展的比较成熟。所以教学中,可以将更多的活动交给学生进行探究。还可以进行自主学习,提高各方面的能力。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
认识函数值随自变量的增大而增大(减小)的规律,由此得出增(减)函数的定义。掌握用定义证明函数单调性的基本方法与步骤。
(二)过程与方法
在研究函数性质的过程中,通过自主探究活动,学习数学思考的基本方法,提高数学思维能力。
(三)情感态度价值观
感知从具体到抽象、从特殊到一般、从感性到理性的认知过程,养成良好的数学学习习惯。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:增(减)函数的定义。教学难点是:从图象升降的直观认识过渡到函数增减的数学符号语言表述;用定义证明函数的单调性。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、自主探究等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
首先是导入环节,大屏幕直接展示图1.3-1,并让学生通过对两个图象的观察,总结图象具有什么特点,根据学生对图象变化特点的表述,引出本节课研究的内容为《单调性》。
这样通过函数的图象进行引入,既能够提高学生的学习兴趣,还能够为后面研究增减函数的抽象定义做铺垫,让学生对于函数的性质有比较直观的认识。
(二)探索新知
接下来是教学中最重要的探索新知环节,我主要分为以下几步。
第一个内容是对“上升”、“下降”的直观认识。
高中数学说课稿10
一、说教材
1、教材的地位与作用《分类计数原理与分步计数原理》,是高中数学第十章排列、组合的第一节课。分类计数原理和分步计数原理是排列、组合的基础,学生对这两个原理的理解,掌握和运用,成为学好本章的一个关键。
2、教学目标
(1)知识目标掌握计数的两个基本原理,并能正确的用它们分析和解决一些简单的问题。
(2)能力目标通过计数基本原理的理解和运用,提高学生分析问题和解决问题的能力,开发学生的逻辑思维能力。
(3)情感目标培养学生勇于探索、勇于创新的精神,面对现实生活中复杂的事物和现象,能够作出正确的分析,准确的判断,进而拿出完善的处理方案,提高实际的应变能力。
3、重点、难点重点是分类计数原理与分步计数原理难点是正确运用分类计数原理与分步计数原理
二、说教法启发引导式
三、说学法指导学生运用观察分析讨论总结的学习方法。
四、教具、学具多媒体
五、教学程序
1、提出课题——引入新课
首先,提出本节课的课题分类计数原理与分步计数原理设计意图:明确任务,激发兴趣。
2、观察归纳——形成概念:
首先,我结合图给出问题1:
问题1:从北京到上海,可以乘火车,也可以乘汽车。一天中有火车3班,汽车有2班。那么一天中,乘坐这些交通工具从北京到上海共有多少种不同的走法?(答案:3+2=5)由这个问题我们得到分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法‥‥‥,在第n类办法中有mn种不同的方法,那么完成这件事共有:N=m1+m2++mn种不同的方法接下来,我再结合图给出问题2:
问题2:从北京到上海,要从北京先乘火车到郑州,再于第二天从郑州乘汽车到上海。一天中从北京到郑州的火车有3班,从郑州到上海的汽车有2班。那么两天中,从北京到上海共有多少种不同的走法?(答案:3x2=6)。
由这个问题我们得到分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法‥‥‥,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2××mn种不同的方法。
设计意图:由两个实际问题,引导学生得到分类计数原理与分步计数原理,培养学生的观察、归纳能力。
3、比较归纳深化概念两个原理的比较:
1)共同点:都是计数原理,即统计完成某件事不同方法种数的原理,因此都要先弄清是怎样一件事,如何才算完成这件事。
2)不同点:分类计数原理中的n类办法相互独立,且每类里的每种方法都可独立完成该事件;分步计数原理中的n个步骤缺一不可,每一步都不能独立完成该件事,只有这n个步骤都完成之后,这件事才算完成。
设计意图:通过两个原理的比较,让更好的掌握原理的.使用。
4、学以致用——培养能力
例1、书架的第一层放有4本不同的计算机书,第二层放有3本不同的文艺书,第3层放有2本不同的体育书。
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(书架取书问题)引导学生分析解答,注意区分是分类还是分步。
例2、一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数字的号码?
例3、如图是广场中心的一个大花坛,国庆期间要在A、B、C、D四个区域摆放鲜花,有4种不同颜色的鲜花可供选择,规定每个区域只准摆放一种颜色的鲜花,相邻区域鲜花颜色不同,问共有多少种不同的摆花方案?
设计意图:为了使学生达到对知识的深化理解,从而达到巩固提高的效果。
5、任务后延——自主探究
(1)填空:
①一件工作可以用2种方法完成,有5人会第一种方法完成,另有4人会用第2种方法完成,从中选出1人来完成这件工作,不同的选法的种数是9。
②从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同走法的种数是6。
(2)现有高中一年级的学生3名,高中二年级的学生5名,高中三年级的学生4名。
①从中选1人参加接待外宾的活动,有多少种不同的选法?12
②从3个年级各选1人参加接待外宾的活动,有多少种不同的选法?60
(3)把(a1+a2+a3)(b1+b2+b3+b4+b5)(c1+c2+c3+c4)展开后不合并时共有多少项?60
设计意图:培养学生灵活运用所学知识解决实际问题的能力。
6、总结反思——提高认识本节课学习了以下内容(1)分类计数原理(2)分步计数原理(3)两个原理的比较(4)用两个原理解题的步骤
设计意图:突出重点,帮助学生对所学知识系统化、条理化
7、布置作业——知识拓展P97习题10。11,2,3题设计意图:巩固所学知识,发现和弥补教学中的遗漏和不足,培养学生良好的学习习惯。
六、板书设计(略)
高中数学说课稿11
一、教材分析
1、教材的地位和作用
推理与证明是人教版普通高中课程标准实验教科书选修1—2第二章第一节内容,思想贯穿于高中数学的整个知识体系,是新课标教材的亮点之一。本节内容将归纳推理的一般方法进行了必要的总结和归纳,同时也对后继知识的学习起到引领的作用、
2、教材处理
《归纳推理》是培养学生观察、分析、发现、概括、猜想和探索能力的极好素材。根据本节课标要求:从演示观察,先形象地真实举例,然后转化为猜想,引导探究典型例子分析,加强对概念的理解。
二、教学目标分析:
1、知识技能目标:理解归纳推理的概念,了解归纳推理的作用,掌握归纳推理的一般步骤,会利用归纳进行一些简单的归纳推理。
2、过程方法目标:学生自主学习归纳推理的一般方法,建构归纳推理的思维方式、让学生明白数学发现的过程和方法,培养学生分析解决问题的能力,锻炼他们探索规律,融会贯通的能力,并使学生思维能力得到提升。
3、情感态度,价值观目标:通过学生主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度、
三、教学的重点、难点分析:
1、教学重点:了解归纳推理含义、能利用归纳进行简单推理。
教学策略:演示观察,先形象地真实举例,然后转化为猜想,引导探究典型例子分析,加强对概念的理解
2、教学难点:用归纳进行推理,做出猜想。
教学策略:第一,创设情景;第二,观察规律,得出猜想;第三,实际应用,提出质疑。
四、教法分析、教学手段与教具选择:
1、教学方法:自主探究、协作学习、启发发现、课堂讨论法
2、教具:多媒体、粉笔、黑板。
3、教学手段:多媒体教学课件。
五、学法分析:
本课教给学生的学法是“发现问题、分析问题、解决问题”。因此本课教学过程中,让学生带着学习任务通过自主学习发现、课堂讨论、相互合作等方式,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。
六、教学过程设计分析:
1、创设情景、引入新课
游戏:袋子里装有大小质地一样的玻璃球,摸一个出来是红色,摸第二个出来也是红色,第三、第四还是红色…
问题1:有什么猜想?
师生活动:老师把玻璃球搅拌均匀,可叫一个学生摸球,其他学生细心观察。
设计意图:游戏吸引学生注意力,提高学习兴趣,形象地引出归纳推理。
问题2:观察10=3+7,12=5+7,32=13+19 …等式特征,有怎样的规律?
师生活动:这里要引导学生观察:这是一个等式,左右两边数字有什么特征,学生的猜想多种多样,不要抹杀学生的洞察力,可进一步引导学生尝试:其它的偶数有同样的规律吗?
设计意图:通过欣赏一些伟大猜想产生的过程,探索出歌德巴赫猜想:一个偶数(不小于6)总可以表示成两个奇质数之和。带领学生走进归纳推理的'领域。学生主动探究、自我发现,培养勇于探索的优良作风。
问题3:歌德巴赫猜想的历史了解吗?
师生活动:通过多媒体让学生阅读材料。
设计意图:提高学生数学思维的情趣,了解数学文化,对数学充满信心的积极态度,培养爱国精神。
问题4:歌德巴赫猜想的推理过程如何?
师生活动:让学生探究歌德巴赫是怎样提出这个猜想的。
设计意图:通过自己发现歌德巴赫猜想的推理过程———归纳推理的产生,为理解归纳推理的含义做铺垫。
问题5:由上述推理过程能否用自己语言描述归纳推理的含义?
师生活动:学生自己总结,教师个别提问,学生修改,该问题只有部分同学能及时地回答出来。有些同学犹疑不答,有些同学会说出不同的语句获不全面、不十分准确。教师通过评价学生的结论引入归纳推理含义——是由部分到整体、由个别到一般的推理。
设计意图:使学生更深刻理解和记忆归纳推理的含义,培养学生归纳、总结、理解能力,这比老师直接给出概念效果要好得多。
问题6:你能用归纳推理提出一个猜想吗?
师生活动:学生各抒己见,踊跃回答,有生活的,有数学的,其它学科的等。例如:
① 金、银、铜、铁、铝等金属能导电,归纳出“一切金属都能导电”
② 硫酸、硝酸、碳酸等含有氧元素,归纳出“所有的酸都含有氧元素”
③篮球、排球、乒乓球等是圆的,归纳出“所有的球都是圆的”
……
可以让同学们相互补充,老师适当点评和肯定。
设计意图:更深一步具体理解归纳推理的含义,初步形成能用归纳推理得出结论的步骤。感受归纳推理无处不在,自然而有趣,创造和谐积极的学习气氛。这比直接解释概念记忆要深刻和通俗易懂。
2、典型例题、知识应用
例:观察右图,可以发现
1+3=4=22,
1+3+5=9=32,
1+3+5+7=16=42,
1+3+5+7+9=25=52,
问题7:上面等式如何由图中观察出来?1+3+ …+1999=?由上述具体事实能得出怎样的一般性规律?能用一条等式表示出来吗?
师生活动:问题逐个解决,个别回答,集体回答相结合。部分学生会观察上式,但不会从图中总结规律,这里要从小正方形的个数或面积去引导他们观察,引导学生得出等式的规律要看等号左右两边存在什么规律。
总结:由几条特殊的等式存在的规律,归纳出一般性的结论1+3+…+(2n-1)=n2(n∈N*)成立,这就是归纳推理。
设计意图:给出例子让学生通过直观感知、观察分析、归纳体会归纳推理的一般步骤,进一步感受归纳推理的作用。让他们懂得数形结合去做题。
问题8:
师生活动:
题目没有直接给出部分事物特征,应先找出来再观察、归纳、猜想、引导学生做题方向,个别提问,师生共同完成、总结。
设计意图:体会归纳推理的一般步骤,进一步感受归纳推理的作用。让学生感受归纳推理起到了能够提供研究方向的作用,培养学生进行归纳推理的能力。
问题9、归纳推理的一般步骤如何?
师生活动:通过两个例题,学生自行总结,教师综合结论得出
一般步骤:⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;
设计意图:总结步骤,为后面应用打基础,让学生自行总结充分体现学生的自主性。
3、思考练习
1)、观察下面的“三角阵”
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 a 5 1
……
1 10 45 … … 45 10 1
试找出相邻两行数之间的关系,并求a
师生活动:学生观察,寻找规律,老师和学生共同评价学生的观察结果并接着问:上面“三角阵”还有其它规律吗?让学生分组讨论回答
设计意图:感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律。同时让学生感受到只要做个有心人,发现规律并非难事。
2)、在数列{an}中,若a1=1,
an+1=(n∈N﹡),试猜想这个数列的通项公式、
师生活动:请三位学生上黑板板书,并另请三位批改,让学生自己掌握做题方法和步骤
答案:通过运算a2、a3、a4等的值得出an=
3)、画一画、猜一猜:根据下列图案中圆圈的排列规则,猜想第(5)个图形是怎样排列的,由多少个圆圈组成;第n个图形中共有多少个圆圈?
n=1 n=2 n=3 n=4
师生活动:由学生在讲义上作图,发现规律并总结,再通过学生之间充分讨论之后相互交流,教师点评。
设计意图:学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用。引导学生发现并总结规律。给学生创建一个开放的、有活力、有个性的数学学习环境,感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律。同时让学生感受到只要做个有心人,发现规律并非难事。
答案:第5个图形中共有圆圈21个;第n个图形中共有圆圈:n(n—1)+1个
4、质疑、解疑
问题9:猜想的一般结论是否成立?即归纳推理的可靠性如何?为什么要学习归纳推理?
师生活动:教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程。
再例:硫酸、硝酸、碳酸等酸中含有氧元素,归纳出“所有的酸都含有氧元素”。反例:盐酸是酸,但不含氧元素
设计意图:通过这个问题情境的设置,引起学生对归纳推理的结论可靠性进行思考。其结论具有猜测性、或然性,不能作为数学证明的依据。但它是一种具有创造性的推理,为研究问题提供一个方向让学生在解决问题的过程中发现归纳推理需要检验过程,从而自我修正归纳推理的一般步骤。
问题10:组织学生进行分组讨论,引导学生从生活和学习两大方面对归纳推理的应用进行举例。
师生活动:分组竞赛,挑1、2个小组的题目出来让其他小组进行分析。
设计意图:分组讨论降低了概念学习的难度,加深对归纳推理的应用使学生能够更多的围绕重点展开探索和研究。学生的主体意识在这里获得充分的体现。
七、课堂小结:
1、你在知识方面学会了什么?
2、你注意到过程与方法了吗?
3、你在思维和情感方面有何收益?
师生活动:学生讨论总结,相互补充,教师点评。
设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程。
八、作业
1、(必做题)课本P30第1题
2、(选做题):猜想10条直线的交点最多有多少个?(画图分析)答案:45个
3、课后学习:上网查找了解有关“四色猜想”、“哥尼斯堡七桥猜想”、“叙拉古猜想”、“费马猜想”等资料
设计意图:设计必做题是知识的初步应用和基础知识的巩固选做题是针对学有余力的同学提升高度,链接高考。思考题是开放性题目,拓展学生思维,用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。
九、教学效果分析:
本节课以问题为载体,设计情景,生活、数学实力生动地学习了归纳推理的知识,体现了学生主动,教师指导的地位。本节课在注重基础知识的同时培养学生归纳推理的能力,在尊重学生个性差异的基础上选择合适的例题、习题,为不同层次学生的学习提供了广阔的空间。以分组讨论为探究的基本形式,激励学生积极主动地探索结论,同时利用著名猜想让学生体会数学的人文价值。通过生活实例和数学实例,使学生了解归纳推理的涵义,感受归纳推理能猜测和发现一些新结论,探索和提供解决一些问题的思路和方向的作用,并能运用归纳进行简单的推理、
十、板书设计
归纳推理
一、推理
二、归纳推理的含义
三、归纳推理的应用
四、归纳推理的一般步骤
五、小结
例1
例2
练习
高中数学说课稿12
【一】教学背景分析
1、教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2、学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3、教学目标
(1)知识目标:
①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2)能力目标:
①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3)情感目标:
①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4、教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点:
①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
【二】教法学法分析
1、教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2、学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。
下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二
1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2、如果圆心在,半径为时又如何呢?
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用内化新知
问题三
1、写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2、写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。
II。灵活应用提升能力
问题四
1、求以点为圆心,并且和直线相切的圆的方程。
2、求过点,圆心在直线上且与轴相切的圆的方程。
3、已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的.方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用回归自然
问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六
1、求过原点和点,且圆心在直线上的圆的标准方程。
2、求圆过点的切线方程。
3、求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法
①圆心为,半径为r的圆的标准方程为:
圆心在原点时,半径为r的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2、分层作业
(A)巩固型作业:教材P81-82:(习题7.6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3、激发新疑
问题七1。把圆的标准方程展开后是什么形式?
2、方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:
横向阐述教学设计
(一)突出重点抓住关键突破难点
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体教师主导探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维提升能力激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中数学说课稿13
我今天说课的课题是新课标高中数学人教版A版必修第二册第三章“3.1.1倾斜角与斜率”。我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。
一、说教材:
1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。
2、教学目标
根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)知识与技能目标:
了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。
(2)过程与方法目标:
引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力
(3)情感、态度与价值观目标:
在平等的教学氛围中,通过学生之间、师生之间的`交流、合作和评价,实现共同探究、教学相长的教学情境。
3、教学重点、难点
(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。
(2)教学难点:斜率公式的推导
二、说教法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自己的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。
三、说学法
在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。
四、说教学程序:
1、导入新课:
提出问题:如何确定一条直线的位置?
(1)两点确定一条直线;
(2)一点能确定一条直线吗?
过一点P可以作无数条直线,这些直线的倾斜程度不同,如何描述直线的倾斜程度?本节课将解决这个问题。
设计意图:打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,直线的倾斜角这一概念的产生是因为研究直线的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。
2、探究发现:
(1)直线的倾斜角:
有新课导入直接引出此概念,学生易于接受,但是容易忽视其中的重点字。因此重点强调定义的几个注意点:①x轴正半轴;②直线向上方向;③当直线与x轴平行或重合时,直线的倾斜角为0度。由此得出直线倾斜角的取值范围。
(2)直线的确定方法:
确定平面直角坐标系中一条直线位置的几何要素:直线上的一个定点以及它的倾斜角,二者缺一不可。
(3)直线的斜率:
注:直线的倾斜角与斜率的区别:
所有的直线都有倾斜角;但是不是所有直线都有斜率(倾斜角为90°的直线没有斜率,因为90°的正切不存在。)
(4)由两点确定的直线的斜率:
先让学生自主探究、学生之间互相交流,然后再由师生共同归纳得出结论:
经过两点P1(x1.y1),P2(x2,y2)直线的斜率公式:(x1≠x2)。
3、学用结合:
(1)例题讲解:P89-90/例题1和例题2。
例题的讲解主要关注思路的点拨以及解题过程的规范书写。
(2)课堂练习:
P91/练习第1、2题
4、总结归纳:
直线的倾斜角直线的斜率直线的斜率公式
定义
取值范围
5、布置作业:P 91/练习第3、4题。
高中数学说课稿14
一、教材分析
1、教学内容
本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2、教材的地位和作用
函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3、教材的重点﹑难点﹑关键
教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。
教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程、
4、学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。
二、目标分析
(一)知识目标:
1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(二)过程与方法
培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。
三、教法与学法
1、教学方法
在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。
2、学习方法
自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。
四、过程分析
本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
(一)问题情景:
为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)
新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)函数单调性的定义引入
1、几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:
问题1、观察下列函数图象,从左向右看图象的变化趋势?
问题2:你能明确说出“图象呈上升趋势”的意思吗?
通过学生的交流、探讨、总结,得到单调性的“通俗定义”:
从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?
通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。
设计意图:
①通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。
②通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。
③从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。
④从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。
(三)增函数、减函数的定义
在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。
定义中的“当x1x2时,都有f(x1)
注意:
(1)函数的单调性也叫函数的增减性;
(2)注意区间上所取两点x1,x2的任意性;
(3)函数的单调性是对某个区间而言的,它是一个局部概念。
让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。
设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处
理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。
(四)例题分析
在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。
2、例2、证明函数在区间(—∞,+∞)上是减函数。
在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。
变式一:函数f(x)=—3x+b在R上是减函数吗?为什么?
变式二:函数f(x)=kx+b(k
变式三:函数f(x)=kx+b(k
错误:实质上并没有证明,而是使用了所要证明的结论
例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的'理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。
(五)巩固与探究
1、教材p36练习2,3
2、探究:二次函数的单调性有什么规律?
(几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。
设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。
通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。
(六)回顾总结
通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。
设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。
(七)课外作业
1、教材p43习题1。3A组1(单调区间),2(证明单调性);
2、判断并证明函数在上的单调性。
3、数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。
设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。
(七)板书设计(见ppt)
五、评价分析
有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:
第一、教要按照学的法子来教;
第二、在学生已有知识结构和新概念间寻找“最近发展区”;
第三、强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。
高中数学说课稿15
一、教学背景分析
(一)教材地位分析:《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.
(二)重点、难点分析:本节课的重点是椭圆的定义及其标准方程,标准方程的推导是本节课的难点,要突破这一难点,关键是引导学生正确选择去根式的策略.
(三)学情分析:在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.
二、教学目标设计
(一)知识目标:掌握椭圆的定义及其标准方程;会根据条件写出椭圆的标准方程;通过对椭圆标准方程的探求,再次熟悉求曲线方程的一般方法.
(二)能力目标:学生通过动手画椭圆、分组讨论探究椭圆定义、推导椭圆标准方程等过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力.
(三)情感目标:在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神.
三、教法学法设计
(一)教学方法设计:为了更好地培养学生自主学习能力,提高学生的.综合素质,我主要采用探究式教学方法.一方面我通过设置情境、问题诱导充分发挥主导作用;另一方面学生通过对我提供的素材进行直观观察→动手操作→讨论探究→归纳抽象→总结规律的过程充分体现主体地位.
使用多媒体辅助教学与自制教具相结合的设计方案,实现多媒体快捷、形象、大容量的优势与自制教具直观、实用的优势的结合,既突出了知识的产生过程,又增加了课堂的趣味性.
1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;
2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;
3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;
4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;
5.通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.
四、教学建议
教材分析
1.知识结构
2.重点难点分析
重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.
椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.
(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.
另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.
(2)根据椭圆的定义求标准方程,应注意下面几点:
①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.
②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.
③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.
④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.
(3)两种标准方程的椭圆异同点
中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.
椭圆的焦点在轴上标准方程中项的分母较大;
椭圆的焦点在轴上标准方程中项的分母较大.
另外,形如中,只要,,同号,就是椭圆方程,它可以化为.
(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.
【高中数学说课稿】相关文章:
高中数学说课稿07-29
高中数学《三角函数》说课稿08-19
高中数学优秀教案12-11
高中数学数列教案03-11
高中数学教学反思09-30
高中数学教学设计06-08
高中数学教学总结03-15
高中数学教学反思(精选)07-08
高中数学教学反思论文10-29
高中数学教学计划05-09